Function-Hiding Inner Product Encryption Is Practical

In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional...

Full description

Saved in:
Bibliographic Details
Published inSecurity and Cryptography for Networks Vol. 11035; pp. 544 - 562
Main Authors Kim, Sam, Lewi, Kevin, Mandal, Avradip, Montgomery, Hart, Roy, Arnab, Wu, David J.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
More Information
Summary:In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional encryption where both secret keys and ciphertext are associated with vectors. The combination of a secret key for a vector x $${\mathbf {x}}$$ and a ciphertext for a vector y $$\mathbf {y}$$ reveal ⟨x,y⟩ $$\langle {\mathbf {x}}, \mathbf {y}\rangle $$ and nothing more about y $$\mathbf {y}$$ . An inner product encryption scheme is function-hiding if the keys and ciphertexts reveal no additional information about both x $${\mathbf {x}}$$ and y $$\mathbf {y}$$ beyond their inner product. In the last few years, there has been a flurry of works on the construction of function-hiding inner product encryption, starting with the work of Bishop, Jain, and Kowalczyk (Asiacrypt 2015) to the more recent work of Tomida, Abe, and Okamoto (ISC 2016). In this work, we focus on the practical applications of this primitive. First, we show that the parameter sizes and the run-time complexity of the state-of-the-art construction can be further reduced by another factor of 2, though we compromise by proving security in the generic group model. We then show that function privacy enables a number of applications in biometric authentication, nearest-neighbor search on encrypted data, and single-key two-input functional encryption for functions over small message spaces. Finally, we evaluate the practicality of our encryption scheme by implementing our function-hiding inner product encryption scheme. Using our construction, encryption and decryption operations for vectors of length 50 complete in a tenth of a second in a standard desktop environment.
Bibliography:The full version of this paper is available at https://eprint.iacr.org/2016/440.pdf. K. Lewi—Work done while at Stanford University.
Original Abstract: In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional encryption where both secret keys and ciphertext are associated with vectors. The combination of a secret key for a vector x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {x}}$$\end{document} and a ciphertext for a vector y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y}$$\end{document} reveal ⟨x,y⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {\mathbf {x}}, \mathbf {y}\rangle $$\end{document} and nothing more about y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y}$$\end{document}. An inner product encryption scheme is function-hiding if the keys and ciphertexts reveal no additional information about both x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {x}}$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y}$$\end{document} beyond their inner product. In the last few years, there has been a flurry of works on the construction of function-hiding inner product encryption, starting with the work of Bishop, Jain, and Kowalczyk (Asiacrypt 2015) to the more recent work of Tomida, Abe, and Okamoto (ISC 2016). In this work, we focus on the practical applications of this primitive. First, we show that the parameter sizes and the run-time complexity of the state-of-the-art construction can be further reduced by another factor of 2, though we compromise by proving security in the generic group model. We then show that function privacy enables a number of applications in biometric authentication, nearest-neighbor search on encrypted data, and single-key two-input functional encryption for functions over small message spaces. Finally, we evaluate the practicality of our encryption scheme by implementing our function-hiding inner product encryption scheme. Using our construction, encryption and decryption operations for vectors of length 50 complete in a tenth of a second in a standard desktop environment.
ISBN:9783319981123
3319981129
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-98113-0_29