Function-Hiding Inner Product Encryption Is Practical

In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional...

Full description

Saved in:
Bibliographic Details
Published inSecurity and Cryptography for Networks Vol. 11035; pp. 544 - 562
Main Authors Kim, Sam, Lewi, Kevin, Mandal, Avradip, Montgomery, Hart, Roy, Arnab, Wu, David J.
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
Abstract In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional encryption where both secret keys and ciphertext are associated with vectors. The combination of a secret key for a vector x $${\mathbf {x}}$$ and a ciphertext for a vector y $$\mathbf {y}$$ reveal ⟨x,y⟩ $$\langle {\mathbf {x}}, \mathbf {y}\rangle $$ and nothing more about y $$\mathbf {y}$$ . An inner product encryption scheme is function-hiding if the keys and ciphertexts reveal no additional information about both x $${\mathbf {x}}$$ and y $$\mathbf {y}$$ beyond their inner product. In the last few years, there has been a flurry of works on the construction of function-hiding inner product encryption, starting with the work of Bishop, Jain, and Kowalczyk (Asiacrypt 2015) to the more recent work of Tomida, Abe, and Okamoto (ISC 2016). In this work, we focus on the practical applications of this primitive. First, we show that the parameter sizes and the run-time complexity of the state-of-the-art construction can be further reduced by another factor of 2, though we compromise by proving security in the generic group model. We then show that function privacy enables a number of applications in biometric authentication, nearest-neighbor search on encrypted data, and single-key two-input functional encryption for functions over small message spaces. Finally, we evaluate the practicality of our encryption scheme by implementing our function-hiding inner product encryption scheme. Using our construction, encryption and decryption operations for vectors of length 50 complete in a tenth of a second in a standard desktop environment.
AbstractList In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional encryption where both secret keys and ciphertext are associated with vectors. The combination of a secret key for a vector x $${\mathbf {x}}$$ and a ciphertext for a vector y $$\mathbf {y}$$ reveal ⟨x,y⟩ $$\langle {\mathbf {x}}, \mathbf {y}\rangle $$ and nothing more about y $$\mathbf {y}$$ . An inner product encryption scheme is function-hiding if the keys and ciphertexts reveal no additional information about both x $${\mathbf {x}}$$ and y $$\mathbf {y}$$ beyond their inner product. In the last few years, there has been a flurry of works on the construction of function-hiding inner product encryption, starting with the work of Bishop, Jain, and Kowalczyk (Asiacrypt 2015) to the more recent work of Tomida, Abe, and Okamoto (ISC 2016). In this work, we focus on the practical applications of this primitive. First, we show that the parameter sizes and the run-time complexity of the state-of-the-art construction can be further reduced by another factor of 2, though we compromise by proving security in the generic group model. We then show that function privacy enables a number of applications in biometric authentication, nearest-neighbor search on encrypted data, and single-key two-input functional encryption for functions over small message spaces. Finally, we evaluate the practicality of our encryption scheme by implementing our function-hiding inner product encryption scheme. Using our construction, encryption and decryption operations for vectors of length 50 complete in a tenth of a second in a standard desktop environment.
Author Roy, Arnab
Wu, David J.
Mandal, Avradip
Lewi, Kevin
Montgomery, Hart
Kim, Sam
Author_xml – sequence: 1
  givenname: Sam
  surname: Kim
  fullname: Kim, Sam
– sequence: 2
  givenname: Kevin
  surname: Lewi
  fullname: Lewi, Kevin
– sequence: 3
  givenname: Avradip
  surname: Mandal
  fullname: Mandal, Avradip
– sequence: 4
  givenname: Hart
  surname: Montgomery
  fullname: Montgomery, Hart
– sequence: 5
  givenname: Arnab
  surname: Roy
  fullname: Roy, Arnab
– sequence: 6
  givenname: David J.
  surname: Wu
  fullname: Wu, David J.
  email: dwu4@cs.stanford.edu
BookMark eNpVkEFPAjEQhauiEZB_4GH_QHXaabft0RAQEhI96LnpdouCpLt2l4P_3i548TTJe_Mm874JGcUmBkLuGTwwAPVolKZIkRlqNGNIwXJzQWZZxiyeNLgkY1YyRhGFufrncRyRMSBwapTAGzJhIMEYoZS6JbOu2wMAB2006jGRy2P0_a6JdLWrd_GjWMcYUvGamvro-2IRffppB79Yd1l1ede7wx253rpDF2Z_c0rel4u3-YpuXp7X86cN3SOYnlbITc25k34b6q2sjJZOM3RKgQ5QKg8KhJSaeSjzTzKEsvKVrsBwxlQdcEr4-W7XpvxcSLZqmq_OMrADKJtbW7S5tz1BsQOoHBLnUJua72PoehuGlA-xT-7gP13bh9TZkmcCpbYChJUC8Bdfvmay
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2018
Copyright_xml – notice: Springer Nature Switzerland AG 2018
DBID FFUUA
DEWEY 005.82
DOI 10.1007/978-3-319-98113-0_29
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319981130
3319981137
EISSN 1611-3349
Editor Catalano, Dario
De Prisco, Roberto
Editor_xml – sequence: 1
  fullname: Catalano, Dario
– sequence: 2
  fullname: De Prisco, Roberto
EndPage 562
ExternalDocumentID EBC6298368_404_540
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z84
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j309t-b329d22a5cfedf5b985a813a7708e067c07045581c060025ee6bcb8b092117de3
ISBN 9783319981123
3319981129
ISSN 0302-9743
IngestDate Tue Jul 29 20:14:47 EDT 2025
Thu May 29 01:12:47 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA268
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j309t-b329d22a5cfedf5b985a813a7708e067c07045581c060025ee6bcb8b092117de3
Notes The full version of this paper is available at https://eprint.iacr.org/2016/440.pdf. K. Lewi—Work done while at Stanford University.
Original Abstract: In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f, and a ciphertext for a message x, a decryptor learns f(x) and nothing else about x. Inner product encryption is a special case of functional encryption where both secret keys and ciphertext are associated with vectors. The combination of a secret key for a vector x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {x}}$$\end{document} and a ciphertext for a vector y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y}$$\end{document} reveal ⟨x,y⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle {\mathbf {x}}, \mathbf {y}\rangle $$\end{document} and nothing more about y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y}$$\end{document}. An inner product encryption scheme is function-hiding if the keys and ciphertexts reveal no additional information about both x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {x}}$$\end{document} and y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {y}$$\end{document} beyond their inner product. In the last few years, there has been a flurry of works on the construction of function-hiding inner product encryption, starting with the work of Bishop, Jain, and Kowalczyk (Asiacrypt 2015) to the more recent work of Tomida, Abe, and Okamoto (ISC 2016). In this work, we focus on the practical applications of this primitive. First, we show that the parameter sizes and the run-time complexity of the state-of-the-art construction can be further reduced by another factor of 2, though we compromise by proving security in the generic group model. We then show that function privacy enables a number of applications in biometric authentication, nearest-neighbor search on encrypted data, and single-key two-input functional encryption for functions over small message spaces. Finally, we evaluate the practicality of our encryption scheme by implementing our function-hiding inner product encryption scheme. Using our construction, encryption and decryption operations for vectors of length 50 complete in a tenth of a second in a standard desktop environment.
OCLC 1050994777
PQID EBC6298368_404_540
PageCount 19
ParticipantIDs springer_books_10_1007_978_3_319_98113_0_29
proquest_ebookcentralchapters_6298368_404_540
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Security and Cryptology
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 11th International Conference, SCN 2018, Amalfi, Italy, September 5-7, 2018, Proceedings
PublicationTitle Security and Cryptography for Networks
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0002089838
ssj0002792
Score 2.4693654
Snippet In a functional encryption scheme, secret keys are associated with functions and ciphertexts are associated with messages. Given a secret key for a function f,...
SourceID springer
proquest
SourceType Publisher
StartPage 544
Title Function-Hiding Inner Product Encryption Is Practical
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6298368&ppg=540
http://link.springer.com/10.1007/978-3-319-98113-0_29
Volume 11035
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELVguaAeCpSqtIBy4IZcObGdOEdYLSwIOAHiZsUfkdpDWm3SA_z6ziTO7iZwgUsURY41mWc54-d5Y0JOygL-enGR0LIUngrpBFWps1Q6Z0TusGgc8pC3d-n8QVw_yafVeZqtuqQxP-3Lm7qSj6AKzwBXVMm-A9llp_AA7gFfuALCcB0Fv0OatdNwhJPnWvp_unj-24Tq023m4F2X3l2vD4kL-IehMXT-y3WJApVfoFQAa76eziqLneBwuKpDHSMbRlmgBWI1ogV6WnBELK5xW2eXg6Uk56i2g-iLD-bGmHXVRF7NtOvJFSiEwnc5ZTrwF4PC1rKryDQqbD07n6ZJrniqtGBCQ6NNspkpOSFbZ7Prm8clVZYwBc0UKnN6I_OudtLK6DVV5Fs2DdYPoy3vNpK43yGfUF0SoewDrNwlG77aI5_7szWiMNV-IXIEVtSCFQWwohVY0VUdLcHaJw8Xs_vpnIYjLuhvzvKGGp7kLkkKaUvvSmlyJQsV8yLLmPIQSFiYkYWUKrYMN1Cl96mxRhmWw8I9c55_JZPqT-W_kUgw_NrMWuNT8Kc3XHBuy1xgErOT7IDQ3gW63YgP2b-2--Baj8A4IKe9nzQ2r3Vf4RocrLkGB-vWwRod_P2dvf8g26tRe0gmzeKfP4LwrjHHAf7_xg5Jsg
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Security+and+Cryptography+for+Networks&rft.atitle=Function-Hiding+Inner+Product+Encryption+Is+Practical&rft.date=2018-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783319981123&rft.volume=11035&rft_id=info:doi/10.1007%2F978-3-319-98113-0_29&rft.externalDBID=540&rft.externalDocID=EBC6298368_404_540
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6298368-l.jpg