PointMixer: MLP-Mixer for Point Cloud Understanding
MLP-Mixer has newly appeared as a new challenger against the realm of CNNs and Transformer. Despite its simplicity compared to Transformer, the concept of channel-mixing MLPs and token-mixing MLPs achieves noticeable performance in image recognition tasks. Unlike images, point clouds are inherently...
Saved in:
Published in | Computer Vision - ECCV 2022 Vol. 13687; pp. 620 - 640 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
01.01.2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
ISBN | 9783031198113 3031198115 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-19812-0_36 |
Cover
Abstract | MLP-Mixer has newly appeared as a new challenger against the realm of CNNs and Transformer. Despite its simplicity compared to Transformer, the concept of channel-mixing MLPs and token-mixing MLPs achieves noticeable performance in image recognition tasks. Unlike images, point clouds are inherently sparse, unordered and irregular, which limits the direct use of MLP-Mixer for point cloud understanding. To overcome these limitations, we propose PointMixer, a universal point set operator that facilitates information sharing among unstructured 3D point cloud. By simply replacing token-mixing MLPs with Softmax function, PointMixer can “mix” features within/between point sets. By doing so, PointMixer can be broadly used for intra-set, inter-set, and hierarchical-set mixing. We demonstrate that various channel-wise feature aggregation in numerous point sets is better than self-attention layers or dense token-wise interaction in a view of parameter efficiency and accuracy. Extensive experiments show the competitive or superior performance of PointMixer in semantic segmentation, classification, and reconstruction against Transformer-based methods. |
---|---|
AbstractList | MLP-Mixer has newly appeared as a new challenger against the realm of CNNs and Transformer. Despite its simplicity compared to Transformer, the concept of channel-mixing MLPs and token-mixing MLPs achieves noticeable performance in image recognition tasks. Unlike images, point clouds are inherently sparse, unordered and irregular, which limits the direct use of MLP-Mixer for point cloud understanding. To overcome these limitations, we propose PointMixer, a universal point set operator that facilitates information sharing among unstructured 3D point cloud. By simply replacing token-mixing MLPs with Softmax function, PointMixer can “mix” features within/between point sets. By doing so, PointMixer can be broadly used for intra-set, inter-set, and hierarchical-set mixing. We demonstrate that various channel-wise feature aggregation in numerous point sets is better than self-attention layers or dense token-wise interaction in a view of parameter efficiency and accuracy. Extensive experiments show the competitive or superior performance of PointMixer in semantic segmentation, classification, and reconstruction against Transformer-based methods. |
Author | Choe, Jaesung Park, Chunghyun Rameau, Francois Kweon, In So Park, Jaesik |
Author_xml | – sequence: 1 givenname: Jaesung orcidid: 0000-0002-8978-6702 surname: Choe fullname: Choe, Jaesung email: jaesung.choe@kaist.ac.kr – sequence: 2 givenname: Chunghyun orcidid: 0000-0001-9743-8495 surname: Park fullname: Park, Chunghyun – sequence: 3 givenname: Francois orcidid: 0000-0001-5031-7653 surname: Rameau fullname: Rameau, Francois – sequence: 4 givenname: Jaesik orcidid: 0000-0001-5541-409X surname: Park fullname: Park, Jaesik – sequence: 5 givenname: In So orcidid: 0000-0001-9626-5983 surname: Kweon fullname: Kweon, In So |
BookMark | eNpVUMtOAzEMDFAQbekfcNgfCNjxbpxwQ1V5SK3ogZ6jfaTQUu2W7Fbi80m3XDjZmvHYnhmJQd3UXohbhDsE4HvLRpIEQonWoJLgSJ-JSYQpgj0G52KIGlESpfbiH4c0EEMgUNJySldihJSBSjljuhaTtt0CgOI4q2AoaNls6m6x-fHhIVnMl7Jvk3UTkp5JprvmUCWruvKh7fK62tQfN-Jyne9aP_mrY7F6mr1PX-T87fl1-jiXWwLbSW0g9zbl-IpVbLTlqip0agjXHlOrSsqMtd5UaONvORnWaIqssJpLH63RWKjT3nYf4lkfXNE0X61DcMeYXPTsyEXXro_EHWOKovQk2ofm--DbzvmjqvR1F_Jd-Znvu-jEMSpmQJdpcJo1_QIWzmQ1 |
ContentType | Book Chapter |
Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
DBID | FFUUA |
DEWEY | 006.37 |
DOI | 10.1007/978-3-031-19812-0_36 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 9783031198120 3031198123 |
EISSN | 1611-3349 |
Editor | Farinella, Giovanni Maria Avidan, Shai Cissé, Moustapha Brostow, Gabriel Hassner, Tal |
Editor_xml | – sequence: 1 fullname: Avidan, Shai – sequence: 2 fullname: Cissé, Moustapha – sequence: 3 fullname: Farinella, Giovanni Maria – sequence: 4 fullname: Brostow, Gabriel – sequence: 5 fullname: Hassner, Tal |
EndPage | 640 |
ExternalDocumentID | EBC7127701_560_676 |
GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-j309t-680ae9470309278697ddb64831fe1492c35899e8d19757a387618b5b967ce6113 |
ISBN | 9783031198113 3031198115 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:26:52 EDT 2025 Thu May 29 17:02:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j309t-680ae9470309278697ddb64831fe1492c35899e8d19757a387618b5b967ce6113 |
Notes | Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19812-0_36. J. Choe and C. Park—Both authors have equally contributed to this work. |
OCLC | 1350247573 |
ORCID | 0000-0001-5541-409X 0000-0001-5031-7653 0000-0001-9626-5983 0000-0002-8978-6702 0000-0001-9743-8495 |
PQID | EBC7127701_560_676 |
PageCount | 21 |
ParticipantIDs | springer_books_10_1007_978_3_031_19812_0_36 proquest_ebookcentralchapters_7127701_560_676 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXVII |
PublicationTitle | Computer Vision - ECCV 2022 |
PublicationYear | 2022 |
Publisher | Springer Springer Nature Switzerland |
Publisher_xml | – name: Springer – name: Springer Nature Switzerland |
RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002731120 ssj0002792 |
Score | 2.524876 |
Snippet | MLP-Mixer has newly appeared as a new challenger against the realm of CNNs and Transformer. Despite its simplicity compared to Transformer, the concept of... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 620 |
Title | PointMixer: MLP-Mixer for Point Cloud Understanding |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7127701&ppg=676 http://link.springer.com/10.1007/978-3-031-19812-0_36 |
Volume | 13687 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9swEBbZ9FJ66Ju-8aF7Mi62bEtWoYfFpCwhWRa6G_YmLEdms21jqG3a7rV_pL-lv6yjl-2ke9leTDJRJHlGaB6ab4TQ21SUUSkSEZRVAQ5KRnHAkpQF6iSXSsFkqUMXyxNyfJ7ML9KLyeTXKGupa8W78vpGXMn_SBVoIFeFkr2FZPtOgQCfQb7wBAnDc8_43Q2zmroC9j4Gf6Xh4b5LW4j9WZ6vfBziAYNxaRL-5oVsOquqLOLZHLkD8fJnN4DCiq-y6JxdW9abZv8vqqfN5_F6O60323a5-SH1vZPLxWmgv6g0xsMcHx6FuoGff6k7hU8cQWrMxqYKLjcfFvZI46RudaaY37-l3YTGUQqM96IULkqpUrBVL5--b9prA2fecWhBoUYRyyKDT3XALti0we0xJGn2aaKqL8am2qndewkOR2qcmCpQ_2iIcVIIDBao0WC2PCYH6IBmyRTdOZrNF6s-UAf2HdikYa_eVcVFczRlZqUAQ27WqSnpNLzFCKx505A7bs3eSbw2cM4eoHsK9OIpNAow-yGayO0jdN-6KJ7lfQMkJw9He4ySQfLvvV7uHsj9z2_9k6dl7u3I_Ak6_zg7y48DexdHcBWHrA1IFhaSJUo_MEwzwuh6LUiSxVElwcnGZZyC5y6zdcRoSosYlGyUiVQwQksJwoqfoum23spnyFNV4cCKlhUB1wMsJ0GJqCR0xiQrwoo8R4FjCtcZAzZNuTQsaDiNMKVhxMFY54RCe99xjqvmDXeluIHlPObAcq5ZzhXLX9yq9Ut0d1jNr9C0_dbJ12CFtuKNXSd_AdEWd5E |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+%E2%80%93+ECCV+2022&rft.au=Choe%2C+Jaesung&rft.au=Park%2C+Chunghyun&rft.au=Rameau%2C+Francois&rft.au=Park%2C+Jaesik&rft.atitle=PointMixer%3A+MLP-Mixer+for%C2%A0Point+Cloud+Understanding&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2022-01-01&rft.pub=Springer+Nature+Switzerland&rft.isbn=9783031198113&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=620&rft.epage=640&rft_id=info:doi/10.1007%2F978-3-031-19812-0_36 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7127701-l.jpg |