Real-Time Intermediate Flow Estimation for Video Frame Interpolation
Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the...
Saved in:
Published in | Computer Vision - ECCV 2022 Vol. 13674; pp. 624 - 642 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
01.01.2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Abstract | Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4–27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. https://github.com/megvii-research/ECCV2022-RIFE |
---|---|
AbstractList | Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4–27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. https://github.com/megvii-research/ECCV2022-RIFE |
Author | Shi, Boxin Huang, Zhewei Heng, Wen Zhou, Shuchang Zhang, Tianyuan |
Author_xml | – sequence: 1 givenname: Zhewei surname: Huang fullname: Huang, Zhewei – sequence: 2 givenname: Tianyuan surname: Zhang fullname: Zhang, Tianyuan – sequence: 3 givenname: Wen surname: Heng fullname: Heng, Wen – sequence: 4 givenname: Boxin surname: Shi fullname: Shi, Boxin email: shiboxin@pku.edu.cn – sequence: 5 givenname: Shuchang surname: Zhou fullname: Zhou, Shuchang email: zsc@megvii.com |
BookMark | eNo1kM1Og0AQx1etxrb2DTzwAqszO8CyR1NbbdLExFTjbbPAoFTKImB8fWmrp5n8PyaZ30SMal-zENcINwigb41OJEkglDisKI2l-ERMaFAOwtupGGOMKIlCcyZmg_bvgRqJMRAoaXRIF2KCFKEyFCfhpZh13RYAlB6yoMfi_pldJTfljoNV3XO747x0PQfLyv8Ei64vd64vfR0Uvg1ey5x9sGzdf7jx1cG9EueFqzqe_c2peFkuNvNHuX56WM3v1nJLYHoZRZhijkUaRcY4zJMoDXVeGOW0YRXHBJwazEyOkJosTWNOOCoypYgYc2KaCnW82zVtWb9za1PvPzuLYPfQ7PC8JTtgsAdGdg9tKIXHUtP6r2_uesv7VsZ137oq-3DN8ElnNSrQcWijBGycAP0C_VNsbw |
ContentType | Book Chapter |
Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
DBID | FFUUA |
DEWEY | 006.37 |
DOI | 10.1007/978-3-031-19781-9_36 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 303119781X 9783031197819 |
EISSN | 1611-3349 |
Editor | Farinella, Giovanni Maria Avidan, Shai Cissé, Moustapha Brostow, Gabriel Hassner, Tal |
Editor_xml | – sequence: 1 fullname: Avidan, Shai – sequence: 2 fullname: Cissé, Moustapha – sequence: 3 fullname: Farinella, Giovanni Maria – sequence: 4 fullname: Brostow, Gabriel – sequence: 5 fullname: Hassner, Tal |
EndPage | 642 |
ExternalDocumentID | EBC7120764_580_680 |
GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-j309t-551b1d1fb5599a1d85b47df92a79e26630eb91c9d10b9cbb6e8e5fc2233e1d3e3 |
ISBN | 9783031197802 3031197801 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:15:49 EDT 2025 Thu May 29 01:35:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j309t-551b1d1fb5599a1d85b47df92a79e26630eb91c9d10b9cbb6e8e5fc2233e1d3e3 |
Notes | Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19781-9_36. |
OCLC | 1351293684 |
PQID | EBC7120764_580_680 |
PageCount | 19 |
ParticipantIDs | springer_books_10_1007_978_3_031_19781_9_36 proquest_ebookcentralchapters_7120764_580_680 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XIV |
PublicationTitle | Computer Vision - ECCV 2022 |
PublicationYear | 2022 |
Publisher | Springer Springer Nature Switzerland |
Publisher_xml | – name: Springer – name: Springer Nature Switzerland |
RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002731107 ssj0002792 |
Score | 2.5717063 |
Snippet | Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 624 |
Title | Real-Time Intermediate Flow Estimation for Video Frame Interpolation |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7120764&ppg=680 http://link.springer.com/10.1007/978-3-031-19781-9_36 |
Volume | 13674 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS-QwGMaDjhfx4K4fqLsrOXgrkSbpR3J0Zysi6kF08BaaNAEXd0aciuBf75t-TKd1Lu6lDCEtIb808_RNnjcInci0EC6PGCkMNySiLibCJJQYAG5lLpjT3jt8fZNc3EeXD_FDl_K3cpeU-tS8r_SV_A9VKAOu3iX7BbKLh0IB_Aa-cAXCcB2I336Ytc4r0JzHEEwqe3hAgmw8ngQsZGx5HNyCEiTe6FEH_yqnSGmD86fZW5DB-_2v2204eSzszEvZtvLz7KkD14QGGBuEBtrQYO-TEf6y_MqhCPtzIE_qw3I-zajLmyjgVuLvpUQqviKBdVIfyjRIYJ39HqeUhWkSqViECiqto_VUxCO0cZZdXk0WITFQUv5r1Dtw2kbSOkdS1-gl9-OqNvW-EwZL25ViuPuGtryLBHt7B7TyO1qz0x203Wh-3MyocyhqMbZlu-jPAhleRoY9Mtwhw4AMV8hwhQz3kO2h-_PsbnxBmsMuyF8eypKActW0oE77FHA5LUSso7RwkuWptKCieGi1pEYWNNTSaJ1YYWNnQN1xSwtu-T4aTWdTe4BwTJ2LDHfaOBM54XSagszV0sk8MaETh4i0naSqJflmH7Cpu2SuBrgOUdD2pPLV56rNdQ39rrgCBKpCoDyCoy8-_Qfa7MbuTzQqX17tLxB6pT5uBsgHSOJNSw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+-+ECCV+2022&rft.atitle=Real-Time+Intermediate+Flow+Estimation+for+Video+Frame+Interpolation&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031197802&rft.volume=13674&rft_id=info:doi/10.1007%2F978-3-031-19781-9_36&rft.externalDBID=680&rft.externalDocID=EBC7120764_580_680 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7120764-l.jpg |