Real-Time Intermediate Flow Estimation for Video Frame Interpolation

Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision - ECCV 2022 Vol. 13674; pp. 624 - 642
Main Authors Huang, Zhewei, Zhang, Tianyuan, Heng, Wen, Shi, Boxin, Zhou, Shuchang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 01.01.2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Online AccessGet full text

Cover

Loading…
Abstract Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4–27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. https://github.com/megvii-research/ECCV2022-RIFE
AbstractList Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for VFI. To realize a high-quality flow-based VFI method, RIFE uses a neural network named IFNet that can estimate the intermediate flows end-to-end with much faster speed. A privileged distillation scheme is designed for stable IFNet training and improve the overall performance. RIFE does not rely on pre-trained optical flow models and can support arbitrary-timestep frame interpolation with the temporal encoding input. Experiments demonstrate that RIFE achieves state-of-the-art performance on several public benchmarks. Compared with the popular SuperSlomo and DAIN methods, RIFE is 4–27 times faster and produces better results. Furthermore, RIFE can be extended to wider applications thanks to temporal encoding. https://github.com/megvii-research/ECCV2022-RIFE
Author Shi, Boxin
Huang, Zhewei
Heng, Wen
Zhou, Shuchang
Zhang, Tianyuan
Author_xml – sequence: 1
  givenname: Zhewei
  surname: Huang
  fullname: Huang, Zhewei
– sequence: 2
  givenname: Tianyuan
  surname: Zhang
  fullname: Zhang, Tianyuan
– sequence: 3
  givenname: Wen
  surname: Heng
  fullname: Heng, Wen
– sequence: 4
  givenname: Boxin
  surname: Shi
  fullname: Shi, Boxin
  email: shiboxin@pku.edu.cn
– sequence: 5
  givenname: Shuchang
  surname: Zhou
  fullname: Zhou, Shuchang
  email: zsc@megvii.com
BookMark eNo1kM1Og0AQx1etxrb2DTzwAqszO8CyR1NbbdLExFTjbbPAoFTKImB8fWmrp5n8PyaZ30SMal-zENcINwigb41OJEkglDisKI2l-ERMaFAOwtupGGOMKIlCcyZmg_bvgRqJMRAoaXRIF2KCFKEyFCfhpZh13RYAlB6yoMfi_pldJTfljoNV3XO747x0PQfLyv8Ei64vd64vfR0Uvg1ey5x9sGzdf7jx1cG9EueFqzqe_c2peFkuNvNHuX56WM3v1nJLYHoZRZhijkUaRcY4zJMoDXVeGOW0YRXHBJwazEyOkJosTWNOOCoypYgYc2KaCnW82zVtWb9za1PvPzuLYPfQ7PC8JTtgsAdGdg9tKIXHUtP6r2_uesv7VsZ137oq-3DN8ElnNSrQcWijBGycAP0C_VNsbw
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.37
DOI 10.1007/978-3-031-19781-9_36
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 303119781X
9783031197819
EISSN 1611-3349
Editor Farinella, Giovanni Maria
Avidan, Shai
Cissé, Moustapha
Brostow, Gabriel
Hassner, Tal
Editor_xml – sequence: 1
  fullname: Avidan, Shai
– sequence: 2
  fullname: Cissé, Moustapha
– sequence: 3
  fullname: Farinella, Giovanni Maria
– sequence: 4
  fullname: Brostow, Gabriel
– sequence: 5
  fullname: Hassner, Tal
EndPage 642
ExternalDocumentID EBC7120764_580_680
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-j309t-551b1d1fb5599a1d85b47df92a79e26630eb91c9d10b9cbb6e8e5fc2233e1d3e3
ISBN 9783031197802
3031197801
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:49 EDT 2025
Thu May 29 01:35:37 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j309t-551b1d1fb5599a1d85b47df92a79e26630eb91c9d10b9cbb6e8e5fc2233e1d3e3
Notes Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19781-9_36.
OCLC 1351293684
PQID EBC7120764_580_680
PageCount 19
ParticipantIDs springer_books_10_1007_978_3_031_19781_9_36
proquest_ebookcentralchapters_7120764_580_680
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XIV
PublicationTitle Computer Vision - ECCV 2022
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731107
ssj0002792
Score 2.5717063
Snippet Real-time video frame interpolation (VFI) is very useful in video processing, media players, and display devices. We propose RIFE, a Real-time Intermediate...
SourceID springer
proquest
SourceType Publisher
StartPage 624
Title Real-Time Intermediate Flow Estimation for Video Frame Interpolation
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7120764&ppg=680
http://link.springer.com/10.1007/978-3-031-19781-9_36
Volume 13674
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NS-QwGMaDjhfx4K4fqLsrOXgrkSbpR3J0Zysi6kF08BaaNAEXd0aciuBf75t-TKd1Lu6lDCEtIb808_RNnjcInci0EC6PGCkMNySiLibCJJQYAG5lLpjT3jt8fZNc3EeXD_FDl_K3cpeU-tS8r_SV_A9VKAOu3iX7BbKLh0IB_Aa-cAXCcB2I336Ytc4r0JzHEEwqe3hAgmw8ngQsZGx5HNyCEiTe6FEH_yqnSGmD86fZW5DB-_2v2204eSzszEvZtvLz7KkD14QGGBuEBtrQYO-TEf6y_MqhCPtzIE_qw3I-zajLmyjgVuLvpUQqviKBdVIfyjRIYJ39HqeUhWkSqViECiqto_VUxCO0cZZdXk0WITFQUv5r1Dtw2kbSOkdS1-gl9-OqNvW-EwZL25ViuPuGtryLBHt7B7TyO1qz0x203Wh-3MyocyhqMbZlu-jPAhleRoY9Mtwhw4AMV8hwhQz3kO2h-_PsbnxBmsMuyF8eypKActW0oE77FHA5LUSso7RwkuWptKCieGi1pEYWNNTSaJ1YYWNnQN1xSwtu-T4aTWdTe4BwTJ2LDHfaOBM54XSagszV0sk8MaETh4i0naSqJflmH7Cpu2SuBrgOUdD2pPLV56rNdQ39rrgCBKpCoDyCoy8-_Qfa7MbuTzQqX17tLxB6pT5uBsgHSOJNSw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+-+ECCV+2022&rft.atitle=Real-Time+Intermediate+Flow+Estimation+for+Video+Frame+Interpolation&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031197802&rft.volume=13674&rft_id=info:doi/10.1007%2F978-3-031-19781-9_36&rft.externalDBID=680&rft.externalDocID=EBC7120764_580_680
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7120764-l.jpg