Towards Grand Unification of Object Tracking

We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a si...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision - ECCV 2022 Vol. 13681; pp. 733 - 751
Main Authors Yan, Bin, Jiang, Yi, Sun, Peize, Wang, Dong, Yuan, Zehuan, Luo, Ping, Lu, Huchuan
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 01.01.2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031198021
3031198026
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-19803-8_43

Cover

Loading…
Abstract We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a single or part of tasks and over-specialize on the characteristics of specific tasks. By contrast, Unicorn provides a unified solution, adopting the same input, backbone, embedding, and head across all tracking tasks. For the first time, we accomplish the great unification of the tracking network architecture and learning paradigm. Unicorn performs on-par or better than its task-specific counterparts in 8 tracking datasets, including LaSOT, TrackingNet, MOT17, BDD100K, DAVIS16-17, MOTS20, and BDD100K MOTS. We believe that Unicorn will serve as a solid step towards the general vision model. Code is available at https://github.com/MasterBin-IIAU/Unicorn.
AbstractList We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a single or part of tasks and over-specialize on the characteristics of specific tasks. By contrast, Unicorn provides a unified solution, adopting the same input, backbone, embedding, and head across all tracking tasks. For the first time, we accomplish the great unification of the tracking network architecture and learning paradigm. Unicorn performs on-par or better than its task-specific counterparts in 8 tracking datasets, including LaSOT, TrackingNet, MOT17, BDD100K, DAVIS16-17, MOTS20, and BDD100K MOTS. We believe that Unicorn will serve as a solid step towards the general vision model. Code is available at https://github.com/MasterBin-IIAU/Unicorn.
Author Luo, Ping
Yuan, Zehuan
Sun, Peize
Wang, Dong
Yan, Bin
Lu, Huchuan
Jiang, Yi
Author_xml – sequence: 1
  givenname: Bin
  surname: Yan
  fullname: Yan, Bin
– sequence: 2
  givenname: Yi
  surname: Jiang
  fullname: Jiang, Yi
  email: jiangyi.enjoy@bytedance.com
– sequence: 3
  givenname: Peize
  surname: Sun
  fullname: Sun, Peize
– sequence: 4
  givenname: Dong
  surname: Wang
  fullname: Wang, Dong
  email: wdice@dlut.edu.cn
– sequence: 5
  givenname: Zehuan
  surname: Yuan
  fullname: Yuan, Zehuan
– sequence: 6
  givenname: Ping
  surname: Luo
  fullname: Luo, Ping
– sequence: 7
  givenname: Huchuan
  surname: Lu
  fullname: Lu, Huchuan
BookMark eNo1kM1OwzAQhA0URFv6BhzyABh2vf5JjqiCglSpl_ZsOY4Daauk2EG8PmkLp5VmZ3Y134SN2q4NjN0jPCKAeSpMzokDIcciB-K5lXTBJjQoJ0FesjFqRE4kiys2G_z_O4EjNgYCwQsj6YZNkBQKoyDHWzZLaQsAwgxepDF7WHc_LlYpW0TXVtmmberGu77p2qyrs1W5Db7P1tH5XdN-3LHr2u1TmP3NKdu8vqznb3y5WrzPn5d8S1D0XMqyNFIXVEKVlzJ4lZNWKKGu0dVGCON9jai0khUJLVAFbWReao2CUAmaMnG-mw5xeBuiLbtulyyCPcKxQ1lLdqhrTyzsEc4QkufQIXZf3yH1NhxTPrR9dHv_6Q59iMkaFDCwsFqDNQXQL1PbYVQ
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.37
DOI 10.1007/978-3-031-19803-8_43
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 3031198034
9783031198038
EISSN 1611-3349
Editor Farinella, Giovanni Maria
Avidan, Shai
Cissé, Moustapha
Brostow, Gabriel
Hassner, Tal
Editor_xml – sequence: 1
  fullname: Avidan, Shai
– sequence: 2
  fullname: Cissé, Moustapha
– sequence: 3
  fullname: Farinella, Giovanni Maria
– sequence: 4
  fullname: Brostow, Gabriel
– sequence: 5
  fullname: Hassner, Tal
EndPage 751
ExternalDocumentID EBC7120750_660_790
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-j309t-44bb74693b0d8b4ec58365140ff1af7227ccf115654d326215e6748b661231523
ISBN 9783031198021
3031198026
ISSN 0302-9743
IngestDate Tue Jul 29 20:26:50 EDT 2025
Thu May 29 17:01:58 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j309t-44bb74693b0d8b4ec58365140ff1af7227ccf115654d326215e6748b661231523
Notes Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19803-8_43.
B. Yan—This work was performed while Bin Yan worked as an intern at ByteDance.
OCLC 1351275081
PQID EBC7120750_660_790
PageCount 19
ParticipantIDs springer_books_10_1007_978_3_031_19803_8_43
proquest_ebookcentralchapters_7120750_660_790
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXI
PublicationTitle Computer Vision - ECCV 2022
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731113
ssj0002792
Score 2.5470202
Snippet We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same...
SourceID springer
proquest
SourceType Publisher
StartPage 733
SubjectTerms Object tracking
Title Towards Grand Unification of Object Tracking
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7120750&ppg=790
http://link.springer.com/10.1007/978-3-031-19803-8_43
Volume 13681
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLIiBb_GtDGzBKHESxxmhKiDEx0KrblbsxgNIrdSGhV_PXWK3TehSlrSyksi5Z9kvL353hFwXozzRBc9polCtylNNhQZAMq3CTIswFwwNzq9v_KkfPw-T4aL4auUuKdWt_lnpK_kPqtAGuKJLdg1k5zeFBvgP-MIREIZji_w2ZdY6r4Ctx-APKnu4T_1etzvwWcBYYxxU-2Jn_uMUJXKgmMaqdEgT3xXKMJjhXH-5NcxKAIy1JAAnATZeDWFpCsNMBLX_eD7XRbyukPJn5lzeLAGXUrw2okLWSZSaiarTusJnK1F1776bhgwpiOQ8kHDSJtlMRdIhW3e955fBXPoCxoQF7tFp4zrJ61xIi04vuRxX9anxPtD6hF0xg489soNuEQ9tHNDLfbJRjA_IruX2np05Z9Dk4HJth-TGQuNV0HhL0HgT49XQeA6aI9J_6H10n6gtXkE_oyAraRwrlcY8i1QwEioudCIiDuw0MCbMTcpYqrUBOs6TeAQUGphXgXVfFMd8OECqomPSGU_GxQnxUjOCoIYGqEMQm8IIWGWYMiKMmIGf4JRQFwxZfWK3-3p1_egz2YLllPguYhJPn0mXuxpCLSMJoZZVqCWG-mzNu5-T7cUYvSCdcvpdXAJxK9WVHQi_X0U4ZQ
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+-+ECCV+2022&rft.atitle=Towards+Grand+Unification+of+Object+Tracking&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031198021&rft.volume=13681&rft_id=info:doi/10.1007%2F978-3-031-19803-8_43&rft.externalDBID=790&rft.externalDocID=EBC7120750_660_790
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7120750-l.jpg