Towards Grand Unification of Object Tracking
We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a si...
Saved in:
Published in | Computer Vision - ECCV 2022 Vol. 13681; pp. 733 - 751 |
---|---|
Main Authors | , , , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer
01.01.2022
Springer Nature Switzerland |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783031198021 3031198026 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/978-3-031-19803-8_43 |
Cover
Loading…
Abstract | We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a single or part of tasks and over-specialize on the characteristics of specific tasks. By contrast, Unicorn provides a unified solution, adopting the same input, backbone, embedding, and head across all tracking tasks. For the first time, we accomplish the great unification of the tracking network architecture and learning paradigm. Unicorn performs on-par or better than its task-specific counterparts in 8 tracking datasets, including LaSOT, TrackingNet, MOT17, BDD100K, DAVIS16-17, MOTS20, and BDD100K MOTS. We believe that Unicorn will serve as a solid step towards the general vision model. Code is available at https://github.com/MasterBin-IIAU/Unicorn. |
---|---|
AbstractList | We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same model parameters. Due to the fragmented definitions of the object tracking problem itself, most existing trackers are developed to address a single or part of tasks and over-specialize on the characteristics of specific tasks. By contrast, Unicorn provides a unified solution, adopting the same input, backbone, embedding, and head across all tracking tasks. For the first time, we accomplish the great unification of the tracking network architecture and learning paradigm. Unicorn performs on-par or better than its task-specific counterparts in 8 tracking datasets, including LaSOT, TrackingNet, MOT17, BDD100K, DAVIS16-17, MOTS20, and BDD100K MOTS. We believe that Unicorn will serve as a solid step towards the general vision model. Code is available at https://github.com/MasterBin-IIAU/Unicorn. |
Author | Luo, Ping Yuan, Zehuan Sun, Peize Wang, Dong Yan, Bin Lu, Huchuan Jiang, Yi |
Author_xml | – sequence: 1 givenname: Bin surname: Yan fullname: Yan, Bin – sequence: 2 givenname: Yi surname: Jiang fullname: Jiang, Yi email: jiangyi.enjoy@bytedance.com – sequence: 3 givenname: Peize surname: Sun fullname: Sun, Peize – sequence: 4 givenname: Dong surname: Wang fullname: Wang, Dong email: wdice@dlut.edu.cn – sequence: 5 givenname: Zehuan surname: Yuan fullname: Yuan, Zehuan – sequence: 6 givenname: Ping surname: Luo fullname: Luo, Ping – sequence: 7 givenname: Huchuan surname: Lu fullname: Lu, Huchuan |
BookMark | eNo1kM1OwzAQhA0URFv6BhzyABh2vf5JjqiCglSpl_ZsOY4Daauk2EG8PmkLp5VmZ3Y134SN2q4NjN0jPCKAeSpMzokDIcciB-K5lXTBJjQoJ0FesjFqRE4kiys2G_z_O4EjNgYCwQsj6YZNkBQKoyDHWzZLaQsAwgxepDF7WHc_LlYpW0TXVtmmberGu77p2qyrs1W5Db7P1tH5XdN-3LHr2u1TmP3NKdu8vqznb3y5WrzPn5d8S1D0XMqyNFIXVEKVlzJ4lZNWKKGu0dVGCON9jai0khUJLVAFbWReao2CUAmaMnG-mw5xeBuiLbtulyyCPcKxQ1lLdqhrTyzsEc4QkufQIXZf3yH1NhxTPrR9dHv_6Q59iMkaFDCwsFqDNQXQL1PbYVQ |
ContentType | Book Chapter |
Copyright | The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
Copyright_xml | – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 |
DBID | FFUUA |
DEWEY | 006.37 |
DOI | 10.1007/978-3-031-19803-8_43 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISBN | 3031198034 9783031198038 |
EISSN | 1611-3349 |
Editor | Farinella, Giovanni Maria Avidan, Shai Cissé, Moustapha Brostow, Gabriel Hassner, Tal |
Editor_xml | – sequence: 1 fullname: Avidan, Shai – sequence: 2 fullname: Cissé, Moustapha – sequence: 3 fullname: Farinella, Giovanni Maria – sequence: 4 fullname: Brostow, Gabriel – sequence: 5 fullname: Hassner, Tal |
EndPage | 751 |
ExternalDocumentID | EBC7120750_660_790 |
GroupedDBID | 38. AABBV AAZWU ABSVR ABTHU ABVND ACBPT ACHZO ACPMC ADNVS AEDXK AEJLV AEKFX AHVRR ALMA_UNASSIGNED_HOLDINGS BBABE CZZ FFUUA IEZ SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -~X 29L 2HA 2HV ACGFS ADCXD EJD F5P LAS LDH P2P RSU ~02 |
ID | FETCH-LOGICAL-j309t-44bb74693b0d8b4ec58365140ff1af7227ccf115654d326215e6748b661231523 |
ISBN | 9783031198021 3031198026 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:26:50 EDT 2025 Thu May 29 17:01:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | TA1634 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j309t-44bb74693b0d8b4ec58365140ff1af7227ccf115654d326215e6748b661231523 |
Notes | Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-19803-8_43. B. Yan—This work was performed while Bin Yan worked as an intern at ByteDance. |
OCLC | 1351275081 |
PQID | EBC7120750_660_790 |
PageCount | 19 |
ParticipantIDs | springer_books_10_1007_978_3_031_19803_8_43 proquest_ebookcentralchapters_7120750_660_790 |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXI |
PublicationTitle | Computer Vision - ECCV 2022 |
PublicationYear | 2022 |
Publisher | Springer Springer Nature Switzerland |
Publisher_xml | – name: Springer – name: Springer Nature Switzerland |
RelatedPersons | Hartmanis, Juris Gao, Wen Steffen, Bernhard Bertino, Elisa Goos, Gerhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard orcidid: 0000-0001-9619-1558 surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Moti orcidid: 0000-0003-0848-0873 surname: Yung fullname: Yung, Moti |
SSID | ssj0002731113 ssj0002792 |
Score | 2.5470202 |
Snippet | We present a unified method, termed Unicorn, that can simultaneously solve four tracking problems (SOT, MOT, VOS, MOTS) with a single network using the same... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 733 |
SubjectTerms | Object tracking |
Title | Towards Grand Unification of Object Tracking |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7120750&ppg=790 http://link.springer.com/10.1007/978-3-031-19803-8_43 |
Volume | 13681 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELWgLIiBb_GtDGzBKHESxxmhKiDEx0KrblbsxgNIrdSGhV_PXWK3TehSlrSyksi5Z9kvL353hFwXozzRBc9polCtylNNhQZAMq3CTIswFwwNzq9v_KkfPw-T4aL4auUuKdWt_lnpK_kPqtAGuKJLdg1k5zeFBvgP-MIREIZji_w2ZdY6r4Ctx-APKnu4T_1etzvwWcBYYxxU-2Jn_uMUJXKgmMaqdEgT3xXKMJjhXH-5NcxKAIy1JAAnATZeDWFpCsNMBLX_eD7XRbyukPJn5lzeLAGXUrw2okLWSZSaiarTusJnK1F1776bhgwpiOQ8kHDSJtlMRdIhW3e955fBXPoCxoQF7tFp4zrJ61xIi04vuRxX9anxPtD6hF0xg489soNuEQ9tHNDLfbJRjA_IruX2np05Z9Dk4HJth-TGQuNV0HhL0HgT49XQeA6aI9J_6H10n6gtXkE_oyAraRwrlcY8i1QwEioudCIiDuw0MCbMTcpYqrUBOs6TeAQUGphXgXVfFMd8OECqomPSGU_GxQnxUjOCoIYGqEMQm8IIWGWYMiKMmIGf4JRQFwxZfWK3-3p1_egz2YLllPguYhJPn0mXuxpCLSMJoZZVqCWG-mzNu5-T7cUYvSCdcvpdXAJxK9WVHQi_X0U4ZQ |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+-+ECCV+2022&rft.atitle=Towards+Grand+Unification+of+Object+Tracking&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031198021&rft.volume=13681&rft_id=info:doi/10.1007%2F978-3-031-19803-8_43&rft.externalDBID=790&rft.externalDocID=EBC7120750_660_790 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7120750-l.jpg |