Training Behavior of Deep Neural Network in Frequency Domain
Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the study of implicit biases underlying the training process of DNNs. In this work, for both real and synthetic datasets, we empirically find that a...
Saved in:
Published in | Neural Information Processing Vol. 11953; pp. 264 - 274 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the study of implicit biases underlying the training process of DNNs. In this work, for both real and synthetic datasets, we empirically find that a DNN with common settings first quickly captures the dominant low-frequency components, and then relatively slowly captures the high-frequency ones. We call this phenomenon Frequency Principle (F-Principle). The F-Principle can be observed over DNNs of various structures, activation functions, and training algorithms in our experiments. We also illustrate how the F-Principle helps understand the effect of early-stopping as well as the generalization of DNNs. This F-Principle potentially provides insight into a general principle underlying DNN optimization and generalization. |
---|---|
AbstractList | Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the study of implicit biases underlying the training process of DNNs. In this work, for both real and synthetic datasets, we empirically find that a DNN with common settings first quickly captures the dominant low-frequency components, and then relatively slowly captures the high-frequency ones. We call this phenomenon Frequency Principle (F-Principle). The F-Principle can be observed over DNNs of various structures, activation functions, and training algorithms in our experiments. We also illustrate how the F-Principle helps understand the effect of early-stopping as well as the generalization of DNNs. This F-Principle potentially provides insight into a general principle underlying DNN optimization and generalization. |
Author | Zhang, Yaoyu Xiao, Yanyang Xu, Zhi-Qin John |
Author_xml | – sequence: 1 givenname: Zhi-Qin John surname: Xu fullname: Xu, Zhi-Qin John email: xuzhiqin@sjtu.edu.cn – sequence: 2 givenname: Yaoyu surname: Zhang fullname: Zhang, Yaoyu – sequence: 3 givenname: Yanyang surname: Xiao fullname: Xiao, Yanyang |
BookMark | eNpFUE1PAjEUrIpGQP6Bh_0D1bav224TLwqiJkQvmHhryvZVvtzF7qLx31vAxNO8zMtMZqZHOlVdISGXnF1xxvS10QUFyoBRUJoVVFohjkgPErMnimPS5YpzCiDNyf9Dv3VIN92CGi3hjPQ4B8m0kkaek0HTLBljQqhcKNYlN9PoFtWies_ucO6-FnXM6pCNEDfZM26jWydov-u4yhZVNo74ucWq_MlG9UeSXZDT4NYNDv6wT17H99PhI528PDwNbyd0Ccy0FDxCQIHGozEl80G4PC90wR0YKR1Kj3nwAQrGvVZBSa8weG8UdyYUMIM-EQffZhNTVIx2VterxnJmd0vZtJQFmyrb_TB2t1QSyYNoE-uUumkt7lQlVm2qVc7dpsXY2NwYzfLcQjIThYBfIc1pBQ |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DOI | 10.1007/978-3-030-36708-4_22 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISBN | 3030367088 9783030367084 |
EISSN | 1611-3349 |
Editor | Wong, Kok Wai Gedeon, Tom Lee, Minho |
Editor_xml | – sequence: 1 fullname: Lee, Minho – sequence: 2 fullname: Wong, Kok Wai – sequence: 3 fullname: Gedeon, Tom |
EndPage | 274 |
ExternalDocumentID | EBC5997055_310_282 |
GroupedDBID | 38. AABBV AEDXK AEJLV AEKFX AIFIR ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z7R Z7X Z81 Z83 Z84 Z85 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-j309t-3de3fe2e9de99c0df2a558781a3944ae4de5fdf3801d76f64d6efdd961a9f83b3 |
ISBN | 303036707X 9783030367077 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 19:47:50 EDT 2025 Thu May 29 00:01:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q337.5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j309t-3de3fe2e9de99c0df2a558781a3944ae4de5fdf3801d76f64d6efdd961a9f83b3 |
OCLC | 1134076494 |
PQID | EBC5997055_310_282 |
PageCount | 11 |
ParticipantIDs | springer_books_10_1007_978_3_030_36708_4_22 proquest_ebookcentralchapters_5997055_310_282 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Theoretical Computer Science and General Issues |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-15, 2019, Proceedings, Part I |
PublicationTitle | Neural Information Processing |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Hartmanis, Juris Gao, Wen Bertino, Elisa Woeginger, Gerhard Goos, Gerhard Steffen, Bernhard Yung, Moti |
RelatedPersons_xml | – sequence: 1 givenname: Gerhard surname: Goos fullname: Goos, Gerhard – sequence: 2 givenname: Juris surname: Hartmanis fullname: Hartmanis, Juris – sequence: 3 givenname: Elisa surname: Bertino fullname: Bertino, Elisa – sequence: 4 givenname: Wen surname: Gao fullname: Gao, Wen – sequence: 5 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 6 givenname: Gerhard surname: Woeginger fullname: Woeginger, Gerhard – sequence: 7 givenname: Moti surname: Yung fullname: Yung, Moti |
SSID | ssj0002265260 ssj0002792 |
Score | 2.5738692 |
Snippet | Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 264 |
SubjectTerms | Deep learning Deep Neural Network Fourier analysis Generalization |
Title | Training Behavior of Deep Neural Network in Frequency Domain |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5997055&ppg=282 http://link.springer.com/10.1007/978-3-030-36708-4_22 |
Volume | 11953 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagXIADMEBs_JAP3CqjNI4TR4IDgk3TNCohbaicLDu2RSeRoDU9dH89z7_SpuwyLlFlWY77vsjv-fl9nxF6b3XDK80yosAdkaLilijDGaHKKmqZ1vnM8Z2_zcvTy-JswRbbsiLPLunVh-bmVl7J_6AKbYCrY8neAdlhUGiA34AvPAFheO4Fv-M0axRc8ooZkU_kYYxV_8kbgR0Xa3_68GtJvi_bUd3tkCn-KbvNeui_lF1obDcyDTN4NX-ZRJJU9McLX435M40zmYeKcpdBObkOFdobCNB_yyju7UxiVp_O46nFvOt9Mdg0XSyR1pndRITjPo0SESkRuZfK3GbTRjtX8JyZ046Ld7hEBheszrC_CQueCQty6WQWaZA1TYts0D2P_joPt_z84wp2qz9gZOLexkkhcnDY9yvOJujB5-Oz8x9DRg4CUZa7zWL0405aMZxBhVk5ZlCaddRu2v6LHVbmba8c7V_2jtx9JHPxFD127BbsaCdgv2fonmkP0JMEAY4QHKBHO0KVz9HHBD5O4OPOYgc-DuDjCD5etngAHwfwX6DLk-OLL6ck3rtBrmhW94RqQ63JTa1NXTeZtrlkjFd8Jh2LWppCG2a1pRDc6Kq0ZaFLY7Wuy5msLaeKvkSTtmvNK4SVzGDHLFVtJSsUBMeGyoZToy2XVaGLQ0SSXYSvDoglyU2wwkqwunZ6TwJ2ISLn-SGaJuMJ130lkuw2WF1QAVYX3urCWf3oTr1fo4fbz_oNmvTXa_MWIs5evYufyl85-Hj- |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Xu%2C+Zhi-Qin+John&rft.au=Zhang%2C+Yaoyu&rft.au=Xiao%2C+Yanyang&rft.atitle=Training+Behavior+of+Deep+Neural+Network+in+Frequency+Domain&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030367077&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=264&rft.epage=274&rft_id=info:doi/10.1007%2F978-3-030-36708-4_22 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5997055-l.jpg |