Training Behavior of Deep Neural Network in Frequency Domain

Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the study of implicit biases underlying the training process of DNNs. In this work, for both real and synthetic datasets, we empirically find that a...

Full description

Saved in:
Bibliographic Details
Published inNeural Information Processing Vol. 11953; pp. 264 - 274
Main Authors Xu, Zhi-Qin John, Zhang, Yaoyu, Xiao, Yanyang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the study of implicit biases underlying the training process of DNNs. In this work, for both real and synthetic datasets, we empirically find that a DNN with common settings first quickly captures the dominant low-frequency components, and then relatively slowly captures the high-frequency ones. We call this phenomenon Frequency Principle (F-Principle). The F-Principle can be observed over DNNs of various structures, activation functions, and training algorithms in our experiments. We also illustrate how the F-Principle helps understand the effect of early-stopping as well as the generalization of DNNs. This F-Principle potentially provides insight into a general principle underlying DNN optimization and generalization.
AbstractList Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the study of implicit biases underlying the training process of DNNs. In this work, for both real and synthetic datasets, we empirically find that a DNN with common settings first quickly captures the dominant low-frequency components, and then relatively slowly captures the high-frequency ones. We call this phenomenon Frequency Principle (F-Principle). The F-Principle can be observed over DNNs of various structures, activation functions, and training algorithms in our experiments. We also illustrate how the F-Principle helps understand the effect of early-stopping as well as the generalization of DNNs. This F-Principle potentially provides insight into a general principle underlying DNN optimization and generalization.
Author Zhang, Yaoyu
Xiao, Yanyang
Xu, Zhi-Qin John
Author_xml – sequence: 1
  givenname: Zhi-Qin John
  surname: Xu
  fullname: Xu, Zhi-Qin John
  email: xuzhiqin@sjtu.edu.cn
– sequence: 2
  givenname: Yaoyu
  surname: Zhang
  fullname: Zhang, Yaoyu
– sequence: 3
  givenname: Yanyang
  surname: Xiao
  fullname: Xiao, Yanyang
BookMark eNpFUE1PAjEUrIpGQP6Bh_0D1bav224TLwqiJkQvmHhryvZVvtzF7qLx31vAxNO8zMtMZqZHOlVdISGXnF1xxvS10QUFyoBRUJoVVFohjkgPErMnimPS5YpzCiDNyf9Dv3VIN92CGi3hjPQ4B8m0kkaek0HTLBljQqhcKNYlN9PoFtWies_ucO6-FnXM6pCNEDfZM26jWydov-u4yhZVNo74ucWq_MlG9UeSXZDT4NYNDv6wT17H99PhI528PDwNbyd0Ccy0FDxCQIHGozEl80G4PC90wR0YKR1Kj3nwAQrGvVZBSa8weG8UdyYUMIM-EQffZhNTVIx2VterxnJmd0vZtJQFmyrb_TB2t1QSyYNoE-uUumkt7lQlVm2qVc7dpsXY2NwYzfLcQjIThYBfIc1pBQ
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DOI 10.1007/978-3-030-36708-4_22
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISBN 3030367088
9783030367084
EISSN 1611-3349
Editor Wong, Kok Wai
Gedeon, Tom
Lee, Minho
Editor_xml – sequence: 1
  fullname: Lee, Minho
– sequence: 2
  fullname: Wong, Kok Wai
– sequence: 3
  fullname: Gedeon, Tom
EndPage 274
ExternalDocumentID EBC5997055_310_282
GroupedDBID 38.
AABBV
AEDXK
AEJLV
AEKFX
AIFIR
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z7R
Z7X
Z81
Z83
Z84
Z85
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j309t-3de3fe2e9de99c0df2a558781a3944ae4de5fdf3801d76f64d6efdd961a9f83b3
ISBN 303036707X
9783030367077
ISSN 0302-9743
IngestDate Tue Jul 29 19:47:50 EDT 2025
Thu May 29 00:01:33 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q337.5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j309t-3de3fe2e9de99c0df2a558781a3944ae4de5fdf3801d76f64d6efdd961a9f83b3
OCLC 1134076494
PQID EBC5997055_310_282
PageCount 11
ParticipantIDs springer_books_10_1007_978_3_030_36708_4_22
proquest_ebookcentralchapters_5997055_310_282
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 26th International Conference, ICONIP 2019, Sydney, NSW, Australia, December 12-15, 2019, Proceedings, Part I
PublicationTitle Neural Information Processing
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Hartmanis, Juris
Gao, Wen
Bertino, Elisa
Woeginger, Gerhard
Goos, Gerhard
Steffen, Bernhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Gerhard
  surname: Woeginger
  fullname: Woeginger, Gerhard
– sequence: 7
  givenname: Moti
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002265260
ssj0002792
Score 2.5738692
Snippet Why deep neural networks (DNNs) capable of overfitting often generalize well in practice is a mystery [24]. To find a potential mechanism, we focus on the...
SourceID springer
proquest
SourceType Publisher
StartPage 264
SubjectTerms Deep learning
Deep Neural Network
Fourier analysis
Generalization
Title Training Behavior of Deep Neural Network in Frequency Domain
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5997055&ppg=282
http://link.springer.com/10.1007/978-3-030-36708-4_22
Volume 11953
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLagXIADMEBs_JAP3CqjNI4TR4IDgk3TNCohbaicLDu2RSeRoDU9dH89z7_SpuwyLlFlWY77vsjv-fl9nxF6b3XDK80yosAdkaLilijDGaHKKmqZ1vnM8Z2_zcvTy-JswRbbsiLPLunVh-bmVl7J_6AKbYCrY8neAdlhUGiA34AvPAFheO4Fv-M0axRc8ooZkU_kYYxV_8kbgR0Xa3_68GtJvi_bUd3tkCn-KbvNeui_lF1obDcyDTN4NX-ZRJJU9McLX435M40zmYeKcpdBObkOFdobCNB_yyju7UxiVp_O46nFvOt9Mdg0XSyR1pndRITjPo0SESkRuZfK3GbTRjtX8JyZ046Ld7hEBheszrC_CQueCQty6WQWaZA1TYts0D2P_joPt_z84wp2qz9gZOLexkkhcnDY9yvOJujB5-Oz8x9DRg4CUZa7zWL0405aMZxBhVk5ZlCaddRu2v6LHVbmba8c7V_2jtx9JHPxFD127BbsaCdgv2fonmkP0JMEAY4QHKBHO0KVz9HHBD5O4OPOYgc-DuDjCD5etngAHwfwX6DLk-OLL6ck3rtBrmhW94RqQ63JTa1NXTeZtrlkjFd8Jh2LWppCG2a1pRDc6Kq0ZaFLY7Wuy5msLaeKvkSTtmvNK4SVzGDHLFVtJSsUBMeGyoZToy2XVaGLQ0SSXYSvDoglyU2wwkqwunZ6TwJ2ISLn-SGaJuMJ130lkuw2WF1QAVYX3urCWf3oTr1fo4fbz_oNmvTXa_MWIs5evYufyl85-Hj-
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Neural+Information+Processing&rft.au=Xu%2C+Zhi-Qin+John&rft.au=Zhang%2C+Yaoyu&rft.au=Xiao%2C+Yanyang&rft.atitle=Training+Behavior+of+Deep+Neural+Network+in+Frequency+Domain&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2019-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783030367077&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=264&rft.epage=274&rft_id=info:doi/10.1007%2F978-3-030-36708-4_22
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5997055-l.jpg