Beyond Outlier Detection: LookOut for Pictorial Explanation

Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to convince a human analyst that the point is indeed an outlier? We provide succinct, interpretable, and simple pictorial explanations of outlyin...

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 11051; pp. 122 - 138
Main Authors Gupta, Nikhil, Eswaran, Dhivya, Shah, Neil, Akoglu, Leman, Faloutsos, Christos
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to convince a human analyst that the point is indeed an outlier? We provide succinct, interpretable, and simple pictorial explanations of outlying behavior in multi-dimensional real-valued datasets while respecting the limited attention of human analysts. Specifically, we propose to output a few focus-plots, i.e., pairwise feature plots, from a few, carefully chosen feature sub-spaces. The proposed LookOut makes four contributions: (a) problem formulation: we introduce an “analyst-centered” problem formulation for explaining outliers via focus-plots, (b) explanation algorithm: we propose a plot-selection objective and the LookOut algorithm to approximate it with optimality guarantees, (c) generality: our explanation algorithm is both domain- and detector-agnostic, and (d) scalability:LookOut scales linearly with the size of input outliers to explain and the explanation budget. Our experiments show that LookOut performs near-ideally in terms of maximizing explanation objective on several real datasets, while producing visually interpretable and intuitive results in explaining groundtruth outliers. Code related to this paper is available at: https://github.com/NikhilGupta1997/Lookout.
AbstractList Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to convince a human analyst that the point is indeed an outlier? We provide succinct, interpretable, and simple pictorial explanations of outlying behavior in multi-dimensional real-valued datasets while respecting the limited attention of human analysts. Specifically, we propose to output a few focus-plots, i.e., pairwise feature plots, from a few, carefully chosen feature sub-spaces. The proposed LookOut makes four contributions: (a) problem formulation: we introduce an “analyst-centered” problem formulation for explaining outliers via focus-plots, (b) explanation algorithm: we propose a plot-selection objective and the LookOut algorithm to approximate it with optimality guarantees, (c) generality: our explanation algorithm is both domain- and detector-agnostic, and (d) scalability:LookOut scales linearly with the size of input outliers to explain and the explanation budget. Our experiments show that LookOut performs near-ideally in terms of maximizing explanation objective on several real datasets, while producing visually interpretable and intuitive results in explaining groundtruth outliers. Code related to this paper is available at: https://github.com/NikhilGupta1997/Lookout.
Author Faloutsos, Christos
Eswaran, Dhivya
Akoglu, Leman
Shah, Neil
Gupta, Nikhil
Author_xml – sequence: 1
  givenname: Nikhil
  surname: Gupta
  fullname: Gupta, Nikhil
  email: Nikhil.Gupta.cs514@cse.iitd.ac.in
– sequence: 2
  givenname: Dhivya
  surname: Eswaran
  fullname: Eswaran, Dhivya
– sequence: 3
  givenname: Neil
  surname: Shah
  fullname: Shah, Neil
– sequence: 4
  givenname: Leman
  surname: Akoglu
  fullname: Akoglu, Leman
– sequence: 5
  givenname: Christos
  surname: Faloutsos
  fullname: Faloutsos, Christos
BookMark eNpVkM9OwzAMxgMMxDb2BFz6AgG7TpoGTjDGH2nSOMA5SrsUOqq2pJkEb0_GuHCy9bM_y983YaO2ax1j5wgXCKAutco5cSDgCDqVXJn8gM0ipch-kTpkY8wQOZHQR_9mAkZsHPuUayXohE0QciJQKWanbDYMGwBIETMp1Zhd37rvrl0nq21oaueTOxdcGequvUqWXfcRcVJ1Pnmuy9D52jbJ4qtvbGt3K2fsuLLN4GZ_dcpe7xcv80e-XD08zW-WfEOQB465JbFelw4KWbpK24JSTQBlhQK1s6UuipwUFrnSApR1zloprRAZKpHpgqYM93eH3tftm_OmiK8NBsHs0jLRuyETHZvfaExMK2rEXtP77nPrhmDcTlS6NnjblO-2D84PRuoUBZDBVBiUkn4AzZFpGg
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 6.31
DOI 10.1007/978-3-030-10925-7_8
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030109257
3030109259
EISSN 1611-3349
Editor Berlingerio, Michele
Ifrim, Georgiana
Hurley, Neil
Gärtner, Thomas
Bonchi, Francesco
Editor_xml – sequence: 1
  fullname: Berlingerio, Michele
– sequence: 2
  fullname: Ifrim, Georgiana
– sequence: 3
  fullname: Gärtner, Thomas
– sequence: 4
  fullname: Bonchi, Francesco
– sequence: 5
  fullname: Hurley, Neil
EndPage 138
ExternalDocumentID EBC5921403_124_155
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
AIFIR
ALEXF
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j308t-18a34ddce0b5cef9ab329300cf1419eac9bb8371b879407aeeaa55a44617469b3
ISBN 9783030109240
3030109240
ISSN 0302-9743
IngestDate Tue Jul 29 20:13:46 EDT 2025
Mon Apr 07 21:44:08 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum Q334-342
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j308t-18a34ddce0b5cef9ab329300cf1419eac9bb8371b879407aeeaa55a44617469b3
OCLC 1083307216
PQID EBC5921403_124_155
PageCount 17
ParticipantIDs springer_books_10_1007_978_3_030_10925_7_8
proquest_ebookcentralchapters_5921403_124_155
PublicationCentury 2000
PublicationDate 2019
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 2019
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Lecture Notes in Artificial Intelligence
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I
PublicationTitle Machine Learning and Knowledge Discovery in Databases
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
SSID ssj0002116557
ssj0002792
Score 2.352442
Snippet Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to...
SourceID springer
proquest
SourceType Publisher
StartPage 122
SubjectTerms Interpretability
Outlier detection
Pictorial explanation
Title Beyond Outlier Detection: LookOut for Pictorial Explanation
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921403&ppg=155
http://link.springer.com/10.1007/978-3-030-10925-7_8
Volume 11051
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZouUw7bMCmMbbJh50meUrqpLHZibVlqHTAoZ16s2zHlkCok9Zw4a_nvcRJmogLu0Rtmh_u-yz7vc_vfSbkq4-ldLnVLIe5kiUmt8x4J5nQ0kcjI2BGQWrg99X4YpXM1-m63WCxrC4pzHf7-Gxdyf-gCucAV6ySfQGyzUPhBHwGfOEICMOx5_x2adawwxCmQbpaIbUqNbysKTKU1bSYnlnW9U11oXG-2u72kFC8cv1Q3GPJydQVZVpWmeqxgPfBD2US4s0tEvvIrGPCnt60WAa2AAuUOmxBzRb2-MYdyuvsVyfC5BgyRRCkRZ0hE7yy-NkBeDfnAm5leG_KMiXa-aZeY48rfd6e3PXs5ySVI1QRVOB6KLhoQAaZSIdk_2w2X_xpCLQRCgeluOdi28ZKUan93shMVUrCvSZ1goreOnjpXizfktdYckKxFgQaeUD23OaQvKk33KBh_D0iPyrIaICMNpCd0gAYBcBoAxjdAewdWZ3PlpMLFna_YHc8EgWLheZJnlsXmdQ6L7Xh4JpFkfVxEkuYL6UxgmexETCkRpl2Tus01RDeQ5A5loa_J8PN3437QKjwbiwyz8fajBLuvBaoWhdLzxPNbZIcE1YbQpVr9CEx2FZ_e6t6iByTb7W1FF6-VbX4NVhZcQVWVqWVFVj54wsffkJetR33ExkW_x7cZ3D8CvMldIEnSBVUPA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.atitle=Beyond+Outlier+Detection%3A+LookOut+for+Pictorial+Explanation&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030109240&rft.volume=11051&rft_id=info:doi/10.1007%2F978-3-030-10925-7_8&rft.externalDBID=155&rft.externalDocID=EBC5921403_124_155
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921403-l.jpg