Beyond Outlier Detection: LookOut for Pictorial Explanation
Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to convince a human analyst that the point is indeed an outlier? We provide succinct, interpretable, and simple pictorial explanations of outlyin...
Saved in:
Published in | Machine Learning and Knowledge Discovery in Databases Vol. 11051; pp. 122 - 138 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2019
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to convince a human analyst that the point is indeed an outlier? We provide succinct, interpretable, and simple pictorial explanations of outlying behavior in multi-dimensional real-valued datasets while respecting the limited attention of human analysts. Specifically, we propose to output a few focus-plots, i.e., pairwise feature plots, from a few, carefully chosen feature sub-spaces. The proposed LookOut makes four contributions: (a) problem formulation: we introduce an “analyst-centered” problem formulation for explaining outliers via focus-plots, (b) explanation algorithm: we propose a plot-selection objective and the LookOut algorithm to approximate it with optimality guarantees, (c) generality: our explanation algorithm is both domain- and detector-agnostic, and (d) scalability:LookOut scales linearly with the size of input outliers to explain and the explanation budget. Our experiments show that LookOut performs near-ideally in terms of maximizing explanation objective on several real datasets, while producing visually interpretable and intuitive results in explaining groundtruth outliers. Code related to this paper is available at: https://github.com/NikhilGupta1997/Lookout. |
---|---|
AbstractList | Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to convince a human analyst that the point is indeed an outlier? We provide succinct, interpretable, and simple pictorial explanations of outlying behavior in multi-dimensional real-valued datasets while respecting the limited attention of human analysts. Specifically, we propose to output a few focus-plots, i.e., pairwise feature plots, from a few, carefully chosen feature sub-spaces. The proposed LookOut makes four contributions: (a) problem formulation: we introduce an “analyst-centered” problem formulation for explaining outliers via focus-plots, (b) explanation algorithm: we propose a plot-selection objective and the LookOut algorithm to approximate it with optimality guarantees, (c) generality: our explanation algorithm is both domain- and detector-agnostic, and (d) scalability:LookOut scales linearly with the size of input outliers to explain and the explanation budget. Our experiments show that LookOut performs near-ideally in terms of maximizing explanation objective on several real datasets, while producing visually interpretable and intuitive results in explaining groundtruth outliers. Code related to this paper is available at: https://github.com/NikhilGupta1997/Lookout. |
Author | Faloutsos, Christos Eswaran, Dhivya Akoglu, Leman Shah, Neil Gupta, Nikhil |
Author_xml | – sequence: 1 givenname: Nikhil surname: Gupta fullname: Gupta, Nikhil email: Nikhil.Gupta.cs514@cse.iitd.ac.in – sequence: 2 givenname: Dhivya surname: Eswaran fullname: Eswaran, Dhivya – sequence: 3 givenname: Neil surname: Shah fullname: Shah, Neil – sequence: 4 givenname: Leman surname: Akoglu fullname: Akoglu, Leman – sequence: 5 givenname: Christos surname: Faloutsos fullname: Faloutsos, Christos |
BookMark | eNpVkM9OwzAMxgMMxDb2BFz6AgG7TpoGTjDGH2nSOMA5SrsUOqq2pJkEb0_GuHCy9bM_y983YaO2ax1j5wgXCKAutco5cSDgCDqVXJn8gM0ipch-kTpkY8wQOZHQR_9mAkZsHPuUayXohE0QciJQKWanbDYMGwBIETMp1Zhd37rvrl0nq21oaueTOxdcGequvUqWXfcRcVJ1Pnmuy9D52jbJ4qtvbGt3K2fsuLLN4GZ_dcpe7xcv80e-XD08zW-WfEOQB465JbFelw4KWbpK24JSTQBlhQK1s6UuipwUFrnSApR1zloprRAZKpHpgqYM93eH3tftm_OmiK8NBsHs0jLRuyETHZvfaExMK2rEXtP77nPrhmDcTlS6NnjblO-2D84PRuoUBZDBVBiUkn4AzZFpGg |
ContentType | Book Chapter |
Copyright | Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 |
DBID | FFUUA |
DEWEY | 6.31 |
DOI | 10.1007/978-3-030-10925-7_8 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9783030109257 3030109259 |
EISSN | 1611-3349 |
Editor | Berlingerio, Michele Ifrim, Georgiana Hurley, Neil Gärtner, Thomas Bonchi, Francesco |
Editor_xml | – sequence: 1 fullname: Berlingerio, Michele – sequence: 2 fullname: Ifrim, Georgiana – sequence: 3 fullname: Gärtner, Thomas – sequence: 4 fullname: Bonchi, Francesco – sequence: 5 fullname: Hurley, Neil |
EndPage | 138 |
ExternalDocumentID | EBC5921403_124_155 |
GroupedDBID | 0D6 0DA 38. AABBV AEDXK AEJLV AEKFX AEZAY AIFIR ALEXF ALMA_UNASSIGNED_HOLDINGS AYMPB BBABE CXBFT CZZ EXGDT FCSXQ FFUUA I4C IEZ MGZZY NSQWD OORQV SBO TPJZQ TSXQS Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z84 Z85 Z87 Z88 -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 |
ID | FETCH-LOGICAL-j308t-18a34ddce0b5cef9ab329300cf1419eac9bb8371b879407aeeaa55a44617469b3 |
ISBN | 9783030109240 3030109240 |
ISSN | 0302-9743 |
IngestDate | Tue Jul 29 20:13:46 EDT 2025 Mon Apr 07 21:44:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
LCCallNum | Q334-342 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j308t-18a34ddce0b5cef9ab329300cf1419eac9bb8371b879407aeeaa55a44617469b3 |
OCLC | 1083307216 |
PQID | EBC5921403_124_155 |
PageCount | 17 |
ParticipantIDs | springer_books_10_1007_978_3_030_10925_7_8 proquest_ebookcentralchapters_5921403_124_155 |
PublicationCentury | 2000 |
PublicationDate | 2019 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 2019 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Cham |
PublicationSeriesSubtitle | Lecture Notes in Artificial Intelligence |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSeriesTitleAlternate | Lect.Notes Computer |
PublicationSubtitle | European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Proceedings, Part I |
PublicationTitle | Machine Learning and Knowledge Discovery in Databases |
PublicationYear | 2019 |
Publisher | Springer International Publishing AG Springer International Publishing |
Publisher_xml | – name: Springer International Publishing AG – name: Springer International Publishing |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Naor, Moni Mitchell, John C. Terzopoulos, Demetri Steffen, Bernhard Pandu Rangan, C. Kanade, Takeo Kittler, Josef Hutchison, David Tygar, Doug |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni – sequence: 8 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. – sequence: 9 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard – sequence: 10 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri – sequence: 11 givenname: Doug surname: Tygar fullname: Tygar, Doug |
SSID | ssj0002116557 ssj0002792 |
Score | 2.352442 |
Snippet | Why is a given point in a dataset marked as an outlier by an off-the-shelf detection algorithm? Which feature(s) explain it the best? What is the best way to... |
SourceID | springer proquest |
SourceType | Publisher |
StartPage | 122 |
SubjectTerms | Interpretability Outlier detection Pictorial explanation |
Title | Beyond Outlier Detection: LookOut for Pictorial Explanation |
URI | http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5921403&ppg=155 http://link.springer.com/10.1007/978-3-030-10925-7_8 |
Volume | 11051 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZouUw7bMCmMbbJh50meUrqpLHZibVlqHTAoZ16s2zHlkCok9Zw4a_nvcRJmogLu0Rtmh_u-yz7vc_vfSbkq4-ldLnVLIe5kiUmt8x4J5nQ0kcjI2BGQWrg99X4YpXM1-m63WCxrC4pzHf7-Gxdyf-gCucAV6ySfQGyzUPhBHwGfOEICMOx5_x2adawwxCmQbpaIbUqNbysKTKU1bSYnlnW9U11oXG-2u72kFC8cv1Q3GPJydQVZVpWmeqxgPfBD2US4s0tEvvIrGPCnt60WAa2AAuUOmxBzRb2-MYdyuvsVyfC5BgyRRCkRZ0hE7yy-NkBeDfnAm5leG_KMiXa-aZeY48rfd6e3PXs5ySVI1QRVOB6KLhoQAaZSIdk_2w2X_xpCLQRCgeluOdi28ZKUan93shMVUrCvSZ1goreOnjpXizfktdYckKxFgQaeUD23OaQvKk33KBh_D0iPyrIaICMNpCd0gAYBcBoAxjdAewdWZ3PlpMLFna_YHc8EgWLheZJnlsXmdQ6L7Xh4JpFkfVxEkuYL6UxgmexETCkRpl2Tus01RDeQ5A5loa_J8PN3437QKjwbiwyz8fajBLuvBaoWhdLzxPNbZIcE1YbQpVr9CEx2FZ_e6t6iByTb7W1FF6-VbX4NVhZcQVWVqWVFVj54wsffkJetR33ExkW_x7cZ3D8CvMldIEnSBVUPA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Machine+Learning+and+Knowledge+Discovery+in+Databases&rft.atitle=Beyond+Outlier+Detection%3A+LookOut+for+Pictorial+Explanation&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030109240&rft.volume=11051&rft_id=info:doi/10.1007%2F978-3-030-10925-7_8&rft.externalDBID=155&rft.externalDocID=EBC5921403_124_155 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5921403-l.jpg |