Efficient Algorithms for a Graph Partitioning Problem

Motivated by an expensive computation performed by a computational topology software RIVET [9], Madkour et al. [1] introduced and studied the following graph partitioning problem. Given an edge weighted graph and an integer k, partition the vertex set of the graph into k connected components such th...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in Algorithmics Vol. 10823; pp. 29 - 42
Main Authors Vaishali, S., Atulya, M. S., Purohit, Nidhi
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2018
Springer International Publishing
SeriesLecture Notes in Computer Science
Online AccessGet full text
ISBN3319784544
9783319784540
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-78455-7_3

Cover

Abstract Motivated by an expensive computation performed by a computational topology software RIVET [9], Madkour et al. [1] introduced and studied the following graph partitioning problem. Given an edge weighted graph and an integer k, partition the vertex set of the graph into k connected components such that the weight of the heaviest component is as small as possible, where the weight of each component is the weight of a minimum spanning tree of the graph induced by the vertices in that component. They showed that the problem is NP-hard even for $$k=2$$ and provided some heuristic algorithms. They asked whether the problem is polynomial time solvable when the input is a tree. Our first result is an affirmative answer to their question. We give a polynomial time algorithm to provide such a partition in a tree. We also give an exact exponential algorithm taking $$O^*(2^n)$$ time on general graphs (improving on the naive $$O^*(k^n)$$ algorithm) ( $$O^*$$ notation ignores polynomial factors). We also prove that the problem remains NP-complete even when the weights on all the edges are the same and give a linear time algorithm for this version of the problem when the graph is a tree.
AbstractList Motivated by an expensive computation performed by a computational topology software RIVET [9], Madkour et al. [1] introduced and studied the following graph partitioning problem. Given an edge weighted graph and an integer k, partition the vertex set of the graph into k connected components such that the weight of the heaviest component is as small as possible, where the weight of each component is the weight of a minimum spanning tree of the graph induced by the vertices in that component. They showed that the problem is NP-hard even for $$k=2$$ and provided some heuristic algorithms. They asked whether the problem is polynomial time solvable when the input is a tree. Our first result is an affirmative answer to their question. We give a polynomial time algorithm to provide such a partition in a tree. We also give an exact exponential algorithm taking $$O^*(2^n)$$ time on general graphs (improving on the naive $$O^*(k^n)$$ algorithm) ( $$O^*$$ notation ignores polynomial factors). We also prove that the problem remains NP-complete even when the weights on all the edges are the same and give a linear time algorithm for this version of the problem when the graph is a tree.
Author Vaishali, S.
Purohit, Nidhi
Atulya, M. S.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-3091-3823
  surname: Vaishali
  fullname: Vaishali, S.
  email: svaishali.psg@gmail.com
– sequence: 2
  givenname: M. S.
  orcidid: 0000-0002-4231-0280
  surname: Atulya
  fullname: Atulya, M. S.
  email: atulyasusheal@gmail.com
– sequence: 3
  givenname: Nidhi
  surname: Purohit
  fullname: Purohit, Nidhi
  email: nidhipurohit95@gmail.com
BookMark eNo1kMFOAjEQhquiEZAn8LIvUJ3udLftkRBEExI56LnpdltYXHaxXd_fAnqa5Jt8M_n_CRl1fecIeWTwxADEsxKSIkWmqJC8KKjQeEVmiWJiZySuyZiVjFFErm7I5H_B-YiMASGnSnC8IxMGmCgTEu7JLMY9AOSAolD5mBRL7xvbuG7I5u22D82wO8TM9yEz2SqY4y7bmDA0Q9N3TbfNNqGvWnd4ILfetNHN_uaUfL4sPxavdP2-elvM13SPUA5Uem6MYiCls7UsVC2tw9r6glfcCyOwhrI2qHJZFmiM5bW3mDtktgLlpcQpYZe78RjSexd01fdfUTPQp5J0yqtRp9z63IhOJSUnvzjH0H__uDhod5JsihhMa3fmOLgQdZlLUIXQyUWJv6fsZpI
ContentType Book Chapter
Copyright Springer International Publishing AG, part of Springer Nature 2018
Copyright_xml – notice: Springer International Publishing AG, part of Springer Nature 2018
DBID FFUUA
DEWEY 5.0999999999999996
DOI 10.1007/978-3-319-78455-7_3
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783319784557
3319784552
EISSN 1611-3349
Editor Lu, Pinyan
Chen, Jianer
Editor_xml – sequence: 1
  fullname: Lu, Pinyan
– sequence: 2
  fullname: Chen, Jianer
EndPage 42
ExternalDocumentID EBC6280957_19_38
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
ALMA_UNASSIGNED_HOLDINGS
ANXHU
BBABE
BICGV
BJAWL
BUBNW
CVGDX
CZZ
EDOXC
FFUUA
FOYMO
I4C
IEZ
NQNQZ
OEBZI
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j306t-8f4aa91088ecd859d8ce3dcf54b4f7a73d06da3928653aac4dfc32e31cb09f883
ISBN 3319784544
9783319784540
ISSN 0302-9743
IngestDate Tue Jul 29 20:13:42 EDT 2025
Thu May 29 16:36:15 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j306t-8f4aa91088ecd859d8ce3dcf54b4f7a73d06da3928653aac4dfc32e31cb09f883
Notes Original Abstract: Motivated by an expensive computation performed by a computational topology software RIVET [9], Madkour et al. [1] introduced and studied the following graph partitioning problem. Given an edge weighted graph and an integer k, partition the vertex set of the graph into k connected components such that the weight of the heaviest component is as small as possible, where the weight of each component is the weight of a minimum spanning tree of the graph induced by the vertices in that component. They showed that the problem is NP-hard even for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=2$$\end{document} and provided some heuristic algorithms. They asked whether the problem is polynomial time solvable when the input is a tree. Our first result is an affirmative answer to their question. We give a polynomial time algorithm to provide such a partition in a tree. We also give an exact exponential algorithm taking \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*(2^n)$$\end{document} time on general graphs (improving on the naive \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*(k^n)$$\end{document} algorithm) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O^*$$\end{document} notation ignores polynomial factors). We also prove that the problem remains NP-complete even when the weights on all the edges are the same and give a linear time algorithm for this version of the problem when the graph is a tree.
Work done while the authors were visiting IMSc Chennai.
OCLC 1034541780
ORCID 0000-0002-4231-0280
0000-0003-3091-3823
PQID EBC6280957_19_38
PageCount 14
ParticipantIDs springer_books_10_1007_978_3_319_78455_7_3
proquest_ebookcentralchapters_6280957_19_38
PublicationCentury 2000
PublicationDate 2018
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th International Workshop, FAW 2018, Guangzhou, China, May 8-10, 2018, Proceedings
PublicationTitle Frontiers in Algorithmics
PublicationYear 2018
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0002037592
ssj0002792
Score 2.1276457
Snippet Motivated by an expensive computation performed by a computational topology software RIVET [9], Madkour et al. [1] introduced and studied the following graph...
SourceID springer
proquest
SourceType Publisher
StartPage 29
Title Efficient Algorithms for a Graph Partitioning Problem
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=6280957&ppg=38
http://link.springer.com/10.1007/978-3-319-78455-7_3
Volume 10823
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZYuSAO_BYDhnzgRJWqje3YOewwTYVp2qZJbNNulmM7dGi0Upse4K_n2Y4TN3AZh0aRFcXJ-5zX957f-x5Cn2wp1Cy3RUY1YRktcp6paWGyujbMEmGKnLra4fOL4uSant6y2z5P11eXNNVE__5nXcn_oApjgKurkn0Ast1NYQDOAV84AsJwHBi_u2HW0HfIUQ-4RtY-ZHH_fQVu_uJnkrx-4zsrh_Lnb5MO2WZ7_8tbjOeTZPhyu14t7pqwOMziLl1Kc08z4ZIGumk2Ifty_NXxXYMZug6cRy7ucBla1AR15WiUN4dn7UbFxarx-V_j2EsiqpY09jATg9hDjD0Oopd9AG3HWSXwtXPhGP8SHUdAIYNLE3ScDTq4cMyKJDCZRr1aJv_QgY7rL92fpnu40iw3F8u4JHtoD85H6PHR_PTspovA5a79b9mTjTkqxbDnFB7JVQLFRw4UkskrdARWgaN4MOOOuzLYYfeGy9Vz9NQVs2BXZQKye4Ee2eVL9CyKH7fif4VYhzHuMcaAMVbYY4xTjHGL8Wt0_WV-dXyStR01sh_gGjaZqKlSYCAKYbURrDRCW2J0zWhFa644MfCdKjCZRcGIUpqaWpPckpmupmUtBHmDRsvV0r5FmFoOpizoIfjRqmRCVDTXFZ9yzSwIbB-Nowik3_dvk411eOGNLHIB5j2Xs1ISsY8-RylJd_FGRjptkK4kEqQrvXQlSPfdQy5-j570K_cDGjXrrT0AO7KpPrYL4g9TW2pl
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Frontiers+in+Algorithmics&rft.au=Vaishali%2C+S.&rft.au=Atulya%2C+M.+S.&rft.au=Purohit%2C+Nidhi&rft.atitle=Efficient+Algorithms+for+a+Graph+Partitioning+Problem&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2018-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319784540&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=29&rft.epage=42&rft_id=info:doi/10.1007%2F978-3-319-78455-7_3
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F6280957-l.jpg