ByteTrack: Multi-object Tracking by Associating Every Detection Box

Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which bring...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision - ECCV 2022 Vol. 13682; pp. 1 - 21
Main Authors Zhang, Yifu, Sun, Peize, Jiang, Yi, Yu, Dongdong, Weng, Fucheng, Yuan, Zehuan, Luo, Ping, Liu, Wenyu, Wang, Xinggang
Format Book Chapter
LanguageEnglish
Published Switzerland Springer 01.01.2022
Springer Nature Switzerland
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783031200465
3031200462
ISSN0302-9743
1611-3349
DOI10.1007/978-3-031-20047-2_1

Cover

Loading…
Abstract Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which brings non-negligible true object missing and fragmented trajectories. To solve this problem, we present a simple, effective and generic association method, tracking by associating almost every detection box instead of only the high score ones. For the low score detection boxes, we utilize their similarities with tracklets to recover true objects and filter out the background detections. When applied to 9 different state-of-the-art trackers, our method achieves consistent improvement on IDF1 score ranging from 1 to 10 points. To put forwards the state-of-the-art performance of MOT, we design a simple and strong tracker, named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU. ByteTrack also achieves state-of-the-art performance on MOT20, HiEve and BDD100K tracking benchmarks. The source code, pre-trained models with deploy versions and tutorials of applying to other trackers are released at https://github.com/ifzhang/ByteTrack.
AbstractList Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection boxes whose scores are higher than a threshold. The objects with low detection scores, e.g. occluded objects, are simply thrown away, which brings non-negligible true object missing and fragmented trajectories. To solve this problem, we present a simple, effective and generic association method, tracking by associating almost every detection box instead of only the high score ones. For the low score detection boxes, we utilize their similarities with tracklets to recover true objects and filter out the background detections. When applied to 9 different state-of-the-art trackers, our method achieves consistent improvement on IDF1 score ranging from 1 to 10 points. To put forwards the state-of-the-art performance of MOT, we design a simple and strong tracker, named ByteTrack. For the first time, we achieve 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU. ByteTrack also achieves state-of-the-art performance on MOT20, HiEve and BDD100K tracking benchmarks. The source code, pre-trained models with deploy versions and tutorials of applying to other trackers are released at https://github.com/ifzhang/ByteTrack.
Author Yu, Dongdong
Luo, Ping
Yuan, Zehuan
Sun, Peize
Wang, Xinggang
Weng, Fucheng
Jiang, Yi
Zhang, Yifu
Liu, Wenyu
Author_xml – sequence: 1
  givenname: Yifu
  surname: Zhang
  fullname: Zhang, Yifu
– sequence: 2
  givenname: Peize
  surname: Sun
  fullname: Sun, Peize
– sequence: 3
  givenname: Yi
  surname: Jiang
  fullname: Jiang, Yi
– sequence: 4
  givenname: Dongdong
  surname: Yu
  fullname: Yu, Dongdong
– sequence: 5
  givenname: Fucheng
  surname: Weng
  fullname: Weng, Fucheng
– sequence: 6
  givenname: Zehuan
  surname: Yuan
  fullname: Yuan, Zehuan
– sequence: 7
  givenname: Ping
  surname: Luo
  fullname: Luo, Ping
– sequence: 8
  givenname: Wenyu
  surname: Liu
  fullname: Liu, Wenyu
– sequence: 9
  givenname: Xinggang
  surname: Wang
  fullname: Wang, Xinggang
  email: xgwang@hust.edu.cn
BookMark eNpVkM1OwzAQhA0URFv6BFzyAoZdbxwn3EopP1IRl3K2HMeFtFVSYhfRt8ctSIjTamd2VqNvwHpN2zjGLhGuEEBdFyrnxIGQC4BUcaHxiI2iSlE7SOKY9TFD5ERpcfLPy2SP9YFA8EKldMYGSBJFoVSan7OR90sAEIoQMe2zye0uuHln7Oomed6uQ83bculsSA5a3bwl5S4Ze9_a2oT9Ov103S65cyEe1W2T3LZfF-x0YdbejX7nkL3eT-eTRz57eXiajGd8SSADN7koDBghjSmdpArS1Fg0UEqHlEkR3QKUtVWWko2FcWEMgiwMKltVlNOQ4c9fv-liFdfpsm1XXiPoPTUdGWjSkYI-INKR2l9m07UfW-eDdvuQdU3ozNq-m01wndcqklMKdaalom-_YGqn
ContentType Book Chapter
Copyright The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Copyright_xml – notice: The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
DBID FFUUA
DEWEY 006.4
DOI 10.1007/978-3-031-20047-2_1
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783031200472
3031200470
EISSN 1611-3349
Editor Farinella, Giovanni Maria
Avidan, Shai
Cissé, Moustapha
Brostow, Gabriel
Hassner, Tal
Editor_xml – sequence: 1
  fullname: Avidan, Shai
– sequence: 2
  fullname: Cissé, Moustapha
– sequence: 3
  fullname: Farinella, Giovanni Maria
– sequence: 4
  fullname: Brostow, Gabriel
– sequence: 5
  fullname: Hassner, Tal
EndPage 21
ExternalDocumentID EBC7120771_6_57
GroupedDBID 38.
AABBV
AAZWU
ABSVR
ABTHU
ABVND
ACBPT
ACHZO
ACPMC
ADNVS
AEDXK
AEJLV
AEKFX
AHVRR
ALMA_UNASSIGNED_HOLDINGS
BBABE
CZZ
FFUUA
IEZ
SBO
TPJZQ
TSXQS
Z5O
Z7R
Z7S
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z84
Z85
Z87
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-j305t-a829a0a25aabe53d044ac1a0b5e1365229a907ccd643c1291faa1059a17cdd383
ISBN 9783031200465
3031200462
ISSN 0302-9743
IngestDate Tue Jul 29 20:34:50 EDT 2025
Tue Jul 22 07:44:20 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum TA1634
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j305t-a829a0a25aabe53d044ac1a0b5e1365229a907ccd643c1291faa1059a17cdd383
Notes Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1007/978-3-031-20047-2_1.
OCLC 1351297748
PQID EBC7120771_6_57
PageCount 21
ParticipantIDs springer_books_10_1007_978_3_031_20047_2_1
proquest_ebookcentralchapters_7120771_6_57
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXII
PublicationTitle Computer Vision - ECCV 2022
PublicationYear 2022
Publisher Springer
Springer Nature Switzerland
Publisher_xml – name: Springer
– name: Springer Nature Switzerland
RelatedPersons Hartmanis, Juris
Gao, Wen
Steffen, Bernhard
Bertino, Elisa
Goos, Gerhard
Yung, Moti
RelatedPersons_xml – sequence: 1
  givenname: Gerhard
  surname: Goos
  fullname: Goos, Gerhard
– sequence: 2
  givenname: Juris
  surname: Hartmanis
  fullname: Hartmanis, Juris
– sequence: 3
  givenname: Elisa
  surname: Bertino
  fullname: Bertino, Elisa
– sequence: 4
  givenname: Wen
  surname: Gao
  fullname: Gao, Wen
– sequence: 5
  givenname: Bernhard
  orcidid: 0000-0001-9619-1558
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 6
  givenname: Moti
  orcidid: 0000-0003-0848-0873
  surname: Yung
  fullname: Yung, Moti
SSID ssj0002731114
ssj0002792
Score 2.6926131
Snippet Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods obtain identities by associating detection...
SourceID springer
proquest
SourceType Publisher
StartPage 1
SubjectTerms Data association
Detection boxes
Multi-object tracking
Title ByteTrack: Multi-object Tracking by Associating Every Detection Box
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=7120771&ppg=57&c=UERG
http://link.springer.com/10.1007/978-3-031-20047-2_1
Volume 13682
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07j9QwELa4pUEUvMVbLqiIjGI7jnN0bBR0OgHV3eo6y46TgmJXYoPE8uv57Dw2G2iOJkomL2s-a_x57Jkh5F2rtPS2UKz1XLCMC82sL1IGZuBbaZua5yE4-eu3_OI6u7xRN8dsFjG6pHMf6t__jCv5H1QhA64hSvYWyE4fhQDnwBdHIIzjgvyeuln7vAJDPYZkE8PDE5ZUZblJRCrEvB-sD12DAQlWD3P_GG7Ldi44X5IoDZ4CMNAJJVxW0MMBhqhr-jLi692vuW9AiIVvYPQNnswZMWbxOC1WJ0ZQ5n0RoL9M6nwXBV6NAGgmDD-OIOOqeZ9qepG_ulqXGj_UmpvcKH1GznShVuTup-ryy2Zyh4FFweqGIlxT-0SfH-nY3ilpVJ8XeNGckynCYlU7koWrh-R-CCChIbIDLXxE7jTbx-TBQPfpYEz3EI0IjrInpJzQ-kjnWNERK-oOdIYVjVjRCSsKrJ6S68_VVXnBhjIX7DuMbcdsIc5taoWy1jVK-jTLbM1t6lQT9iAK3D1PdV17kMca9Iy31gZWbLmuvZeFfEZW2922eU6ok7aFSXZeCJtJ0TpVyDZ3SiowTaHVC_J-1JGJi_HDDuC618jezJHCw6MWTXh2b8YU19C-kQbaN1H7Btp_eZsvvyL3jr31NVl1P342b8DtOvd26Bd_AONXR4g
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+-+ECCV+2022&rft.atitle=ByteTrack%3A+Multi-object+Tracking+by+Associating+Every+Detection+Box&rft.date=2022-01-01&rft.pub=Springer&rft.isbn=9783031200465&rft.volume=13682&rft_id=info:doi/10.1007%2F978-3-031-20047-2_1&rft.externalDBID=57&rft.externalDocID=EBC7120771_6_57
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F7120771-l.jpg