Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction

Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily ad...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie International Edition Vol. 58; no. 11; pp. 3433 - 3437
Main Authors Zhang, Guigang, Li, Guosheng, Heil, Tobias, Zafeiratos, Spiros, Lai, Feili, Savateev, Aleksandr, Antonietti, Markus, Wang, Xinchen
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 11.03.2019
EditionInternational ed. in English
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5‐aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high‐temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction. Polymeric carbon nitride with enhanced optical absorption and photocatalytic activities is synthesized via a one‐pot ionothermal polymerization of 5‐aminotetrazole in eutectic NaCl/KCl. This approach allows control of the polymerization process and tailoring of the grain boundary structure and catalytic properties.
AbstractList Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5-aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high-temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2 HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction.Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5-aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high-temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2 HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction.
Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5‐aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high‐temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction.
Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5‐aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high‐temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction. Polymeric carbon nitride with enhanced optical absorption and photocatalytic activities is synthesized via a one‐pot ionothermal polymerization of 5‐aminotetrazole in eutectic NaCl/KCl. This approach allows control of the polymerization process and tailoring of the grain boundary structure and catalytic properties.
Author Lai, Feili
Zafeiratos, Spiros
Heil, Tobias
Zhang, Guigang
Li, Guosheng
Wang, Xinchen
Antonietti, Markus
Savateev, Aleksandr
Author_xml – sequence: 1
  givenname: Guigang
  orcidid: 0000-0002-9913-488X
  surname: Zhang
  fullname: Zhang, Guigang
  email: guigang.zhang@mpikg.mpg.de
  organization: Max Planck Institute of Colloids and Interfaces
– sequence: 2
  givenname: Guosheng
  surname: Li
  fullname: Li, Guosheng
  organization: Fuzhou University
– sequence: 3
  givenname: Tobias
  surname: Heil
  fullname: Heil, Tobias
  organization: Max Planck Institute of Colloids and Interfaces
– sequence: 4
  givenname: Spiros
  surname: Zafeiratos
  fullname: Zafeiratos, Spiros
  organization: UMR 7515 CNRS/Université de Strasbourg
– sequence: 5
  givenname: Feili
  surname: Lai
  fullname: Lai, Feili
  organization: Max Planck Institute of Colloids and Interfaces
– sequence: 6
  givenname: Aleksandr
  surname: Savateev
  fullname: Savateev, Aleksandr
  organization: Max Planck Institute of Colloids and Interfaces
– sequence: 7
  givenname: Markus
  surname: Antonietti
  fullname: Antonietti, Markus
  organization: Max Planck Institute of Colloids and Interfaces
– sequence: 8
  givenname: Xinchen
  surname: Wang
  fullname: Wang, Xinchen
  email: xcwang@fzu.edu.cn
  organization: Fuzhou University
BookMark eNpdkb1PwzAQxS1UJGhhZbbEwhLwxY7tjCUqpVLVIj7myI0d6iq1i5MIRfzzuAIxML2700-nd_fGaOS8MwhdAbkFQtI75ay5TQlIgJzKE3QOWQoJFYKOYs0oTYTM4AyN23YXeSkJP0dfr8o2Plj3jrutwfOgrMP3vndahQEXW7O3bRcrX-Mn3wx7E2yFCxU23uGV7YLVBtc-4JnbKlcZjV98owJ-HHTw78bhp-B1X3U24sppXKxT_Gx-JxfotFZNay5_dYLeHmavxWOyXM8XxXSZ7Gi0mShQXNRcCcIIpIyZDKisONNVVMh5thGK0JpqTRjjIPnGCClolmcbklYipxN087P3EPxHb9qujEdVpmmUM75vyxREzoBxDhG9_ofufB9cdBcpKeJOnh2p_If6tI0ZykOw-_itEkh5DKI8BlH-BVFOV4vZX0e_Af7Of2c
ContentType Journal Article
Copyright 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7TM
K9.
7X8
DOI 10.1002/anie.201811938
DatabaseName Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle ProQuest Health & Medical Complete (Alumni)
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3773
Edition International ed. in English
EndPage 3437
ExternalDocumentID ANIE201811938
Genre shortCommunication
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2018YFA0209301
– fundername: National Natural Science Foundation of China
  funderid: 21425309 and 21761132002
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ABPPZ
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BTSUX
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M53
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
UQL
V2E
VQA
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XSW
XV2
YZZ
ZZTAW
~IA
~KM
~WT
7TM
ABDBF
ABJNI
AEYWJ
AGHNM
AGYGG
K9.
7X8
ID FETCH-LOGICAL-j3028-a1a67f6a70401244e5138c64dc1381965b7a03f3dd0446186be7873595b02c793
IEDL.DBID DR2
ISSN 1433-7851
1521-3773
IngestDate Thu Jul 10 19:03:28 EDT 2025
Sun Jul 13 05:36:16 EDT 2025
Wed Jan 22 16:31:06 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j3028-a1a67f6a70401244e5138c64dc1381965b7a03f3dd0446186be7873595b02c793
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9913-488X
OpenAccessLink http://hdl.handle.net/21.11116/0000-0002-EB54-7
PQID 2187595651
PQPubID 946352
PageCount 5
ParticipantIDs proquest_miscellaneous_2179414661
proquest_journals_2187595651
wiley_primary_10_1002_anie_201811938_ANIE201811938
PublicationCentury 2000
PublicationDate March 11, 2019
PublicationDateYYYYMMDD 2019-03-11
PublicationDate_xml – month: 03
  year: 2019
  text: March 11, 2019
  day: 11
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie International Edition
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014 2014; 53 126
2013; 42
2008; 14
2014; 26
2017 2017; 56 129
2011; 17
2013; 8
2016; 15
2013; 6
2014; 136
2017; 9
2014; 43
2013 2013; 52 125
2017; 53
2016; 6
2018; 9
2018; 1
2015; 179
2012 2012; 51 124
2018 2018; 57 130
2010; 110
2015 2015; 54 127
2009; 8
2018; 30
2015; 119
2016; 138
References_xml – volume: 42
  start-page: 2357
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 6
  start-page: 3921
  year: 2016
  publication-title: ACS Catal.
– volume: 26
  start-page: 805
  year: 2014
  publication-title: Adv. Mater.
– volume: 136
  start-page: 12568
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 14
  start-page: 8177
  year: 2008
  publication-title: Chem. Eur. J.
– volume: 138
  start-page: 6292
  year: 2016
  publication-title: J. Am. Chem. Soc.
– volume: 54 127
  start-page: 13561 13765
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53
  start-page: 5854
  year: 2017
  publication-title: Chem. Commun.
– volume: 54 127
  start-page: 11433 11595
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 53 126
  start-page: 11001 11181
  year: 2014 2014
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 76
  year: 2009
  publication-title: Nat. Mater.
– volume: 52 125
  start-page: 11083 11289
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 57 130
  start-page: 17135 17381
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 51 124
  start-page: 3183 3237
  year: 2012 2012
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 8
  start-page: 218
  year: 2013
  publication-title: Chem. Asian J.
– volume: 52 125
  start-page: 2435 2495
  year: 2013 2013
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 56 129
  start-page: 13445 13630
  year: 2017 2017
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 1
  start-page: 756
  year: 2018
  publication-title: Nat. Catal.
– volume: 43
  start-page: 7520
  year: 2014
  publication-title: Chem. Soc. Rev.
– volume: 15
  start-page: 611
  year: 2016
  publication-title: Nat. Mater.
– volume: 179
  start-page: 1
  year: 2015
  publication-title: Appl. Catal. B
– volume: 110
  start-page: 6446
  year: 2010
  publication-title: Chem. Rev.
– volume: 57 130
  start-page: 9372 9516
  year: 2018 2018
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 6
  start-page: 1983
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 167
  year: 2017
  publication-title: ChemCatChem
– volume: 9
  start-page: 3584
  year: 2018
  publication-title: Chem. Sci.
– volume: 17
  start-page: 3213
  year: 2011
  publication-title: Chem. Eur. J.
– volume: 30
  start-page: 1706836
  year: 2018
  publication-title: Adv. Mater.
– volume: 6
  start-page: 2462
  year: 2016
  publication-title: ACS Catal.
– volume: 54 127
  start-page: 2406 2436
  year: 2015 2015
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 119
  start-page: 14938
  year: 2015
  publication-title: J. Phys. Chem. C
SSID ssj0028806
Score 2.6734397
Snippet Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
StartPage 3433
SubjectTerms Carbon
Carbon dioxide
carbon dioxide reduction
Carbon nitride
Chemical reduction
Grain boundaries
Hydrogen production
Localization
Molten salts
Organic chemistry
Oxidation
photocatalysis
Photosynthesis
polymeric carbon nitride
Potassium chloride
Potassium phosphate
Potassium phosphates
Quantum efficiency
Sodium chloride
Solar energy
Water splitting
Title Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811938
https://www.proquest.com/docview/2187595651
https://www.proquest.com/docview/2179414661
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QF7jwRjwGMhLXsiV9H8e0MZAYE2wStyppUjFALeq2w-DPY7db2TjCrW2Sqq0d93Nif2bsMkwc33YEtxArJJaTNBJLurFjoSeWhOgOiNBQovB9z-sOnbtn93kpi7_kh6gW3GhmFPaaJrhU4_oPaShlYFNoVsARg1C2LwVsESp6rPijBCpnmV5k2xZVoV-wNjZEfXX4Cr5cRqnFb6azzeTiAcvokrer6URdxZ-_uBv_8wY7bGuOQaFZKs0uWzPpHttoLUq_7bOvgRyVkXmA-BBuqIwEXBcFmPIZVB0hS6Cfvc-KTR9oyVxlKfRGk3ykDSAYhnb6UgQYwBM50NCd6TxDhYV-STOLKgEy1dB6EPBo5lcO2LDTHrS61rxKg_Vq09Kc5NLzE0_6aA4ILBiX20HsOTrm5A16rvJlw05srWnvmAeeMmgkKB9YNUSM5uGQradZao4YSN-NRaBjVxntGKXCWLgahxiJdllqfsxqCylF86k2jhCj-Hgzz8Xmi6oZvwPtfMjUZFPqg2YH_wke9hGFSKKPkswjKmmbRUTCiCphRM3ebbs6O_nLoFO2icchxatxXmPrk3xqzhDATNR5oaTf-7noYg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HODCGzGeRuJaWNL3EcZgvAaCIXGrkiYVA9Sish0Gfx67XcvjCMemSdXWjvM5sT8zthcmjm87gluIFRLLSZqJJd3YsdATS0J0B0RoKFH4qut17p3zB7eKJqRcmJIfot5wo5lR2Gua4LQhffDFGkop2BSbFXAEIcEkm6ay3kSff3xbM0gJVM8ywci2LapDX_E2NsXBz_E_EOZ3nFosNCfzTFWvWMaXPO8PB2o_fv_F3vivb1hgc2MYCoel3iyyCZMusZlWVf1tmX30ZL8MzgOEiHBKlSTgqKjBlI-g7ghZAjfZy6g494GWzFWWQrc_yPvaAOJhaKePRYwB3JEPDZ2RzjPUWbgpmWZRK0CmGlrXAm7NuGWF3Z-0e62ONS7UYD3ZtDsnufT8xJM-WgTCC8bldhB7jo45OYSeq3zZtBNbazo-5oGnDNoJSglWTRGjhVhlU2mWmjUG0ndjEejYVUY7RqkwFq7GIUaiaZaaN9hmJaZoPNveIoQpPj4Mxd9gu_Vt_A90-CFTkw2pD1oeXBY87CMKmUSvJZ9HVDI3i4iEEdXCiA67Z-36av0vg3bYTKd3dRldnnUvNtgstocUvsb5Jpsa5EOzhXhmoLYLjf0EkEvsfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYYk7a9jI0NjdGNQ-I1EDuJkzxCf6ywrVQMJN4iO7ZFASVVaB-6_fPcJW0GexyPcewoyZ3P39l33zG2n7owDkLBPcQKzgud7zwV5aGHnphL0R0QqaVE4Z8jObwMT6-iq0dZ_A0_RLvhRjOjttc0wafGHf4lDaUMbArNSjhikOQFexlKP6XiDb3zlkBKoHY2-UVB4FEZ-hVtoy8On45_AjAfw9R6nRlsMLV6wya85PZgPtMH-e9_yBuf8wnv2NslCIWjRmveszVbbLLX3VXttw_sz4WaNKF5gAARvlEdCTiuKzBVC2g7QulgXN4t6lMf6KpKlwWMJrNqYiwgGoZ-cV1HGMAv8qBhuDBViRoL44ZnFnUCVGGgeybg3C5bPrLLQf-iO_SWZRq8m4D25hRXMnZSxWgPCC3YiAdJLkOTc3IHZaRj5QcuMIYOj3kitUUrQQnB2hc52octtl6Uhf3EQMVRLhKTR9qa0Gqd5iIyOMQqNMzK8G3WWUkpW861-wxBSowPkxHe3mtv43-gow9V2HJOfdDu4KIgsY-oRZJNGzaPrOFtFhkJI2uFkR2NTvrt1ef_GbTLXo17g-zHyej7DnuDzSnFrnHeYeuzam6_IJiZ6a-1vj4A12vrLQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+Grain+Boundary+Chemistry+of+Polymeric+Carbon+Nitride+for+Enhanced+Solar+Hydrogen+Production+and+CO2+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Guigang&rft.au=Li%2C+Guosheng&rft.au=Heil%2C+Tobias&rft.au=Zafeiratos%2C+Spiros&rft.date=2019-03-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=11&rft.spage=3433&rft.epage=3437&rft_id=info:doi/10.1002%2Fanie.201811938&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon