Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction
Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily ad...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 58; no. 11; pp. 3433 - 3437 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
11.03.2019
|
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5‐aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high‐temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction.
Polymeric carbon nitride with enhanced optical absorption and photocatalytic activities is synthesized via a one‐pot ionothermal polymerization of 5‐aminotetrazole in eutectic NaCl/KCl. This approach allows control of the polymerization process and tailoring of the grain boundary structure and catalytic properties. |
---|---|
AbstractList | Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5-aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high-temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2 HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction.Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5-aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high-temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2 HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction. Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5‐aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high‐temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction. Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and optical absorption in the relevant range are necessary steps to approach practicality. Herein, we reported that these issues can be readily addressed when 5‐aminotetrazole, a monomer with high nitrogen content, is used for the synthesis of carbon nitride. The molten salt mixture NaCl/KCl is used as a high‐temperature solvent to tailor the grain boundary structure and chemistry. Visible light quantum efficiency for H2 production of 0.65 could be obtained in the presence of K2HPO4 as a double layer modifier. This value is very high, considering that this number depends on light to charge couple conversion, charge localization, as well as a successful oxidation and reduction reaction. Polymeric carbon nitride with enhanced optical absorption and photocatalytic activities is synthesized via a one‐pot ionothermal polymerization of 5‐aminotetrazole in eutectic NaCl/KCl. This approach allows control of the polymerization process and tailoring of the grain boundary structure and catalytic properties. |
Author | Lai, Feili Zafeiratos, Spiros Heil, Tobias Zhang, Guigang Li, Guosheng Wang, Xinchen Antonietti, Markus Savateev, Aleksandr |
Author_xml | – sequence: 1 givenname: Guigang orcidid: 0000-0002-9913-488X surname: Zhang fullname: Zhang, Guigang email: guigang.zhang@mpikg.mpg.de organization: Max Planck Institute of Colloids and Interfaces – sequence: 2 givenname: Guosheng surname: Li fullname: Li, Guosheng organization: Fuzhou University – sequence: 3 givenname: Tobias surname: Heil fullname: Heil, Tobias organization: Max Planck Institute of Colloids and Interfaces – sequence: 4 givenname: Spiros surname: Zafeiratos fullname: Zafeiratos, Spiros organization: UMR 7515 CNRS/Université de Strasbourg – sequence: 5 givenname: Feili surname: Lai fullname: Lai, Feili organization: Max Planck Institute of Colloids and Interfaces – sequence: 6 givenname: Aleksandr surname: Savateev fullname: Savateev, Aleksandr organization: Max Planck Institute of Colloids and Interfaces – sequence: 7 givenname: Markus surname: Antonietti fullname: Antonietti, Markus organization: Max Planck Institute of Colloids and Interfaces – sequence: 8 givenname: Xinchen surname: Wang fullname: Wang, Xinchen email: xcwang@fzu.edu.cn organization: Fuzhou University |
BookMark | eNpdkb1PwzAQxS1UJGhhZbbEwhLwxY7tjCUqpVLVIj7myI0d6iq1i5MIRfzzuAIxML2700-nd_fGaOS8MwhdAbkFQtI75ay5TQlIgJzKE3QOWQoJFYKOYs0oTYTM4AyN23YXeSkJP0dfr8o2Plj3jrutwfOgrMP3vndahQEXW7O3bRcrX-Mn3wx7E2yFCxU23uGV7YLVBtc-4JnbKlcZjV98owJ-HHTw78bhp-B1X3U24sppXKxT_Gx-JxfotFZNay5_dYLeHmavxWOyXM8XxXSZ7Gi0mShQXNRcCcIIpIyZDKisONNVVMh5thGK0JpqTRjjIPnGCClolmcbklYipxN087P3EPxHb9qujEdVpmmUM75vyxREzoBxDhG9_ofufB9cdBcpKeJOnh2p_If6tI0ZykOw-_itEkh5DKI8BlH-BVFOV4vZX0e_Af7Of2c |
ContentType | Journal Article |
Copyright | 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7TM K9. 7X8 |
DOI | 10.1002/anie.201811938 |
DatabaseName | Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
EndPage | 3437 |
ExternalDocumentID | ANIE201811938 |
Genre | shortCommunication |
GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2018YFA0209301 – fundername: National Natural Science Foundation of China funderid: 21425309 and 21761132002 |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E VQA W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT 7TM ABDBF ABJNI AEYWJ AGHNM AGYGG K9. 7X8 |
ID | FETCH-LOGICAL-j3028-a1a67f6a70401244e5138c64dc1381965b7a03f3dd0446186be7873595b02c793 |
IEDL.DBID | DR2 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Thu Jul 10 19:03:28 EDT 2025 Sun Jul 13 05:36:16 EDT 2025 Wed Jan 22 16:31:06 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j3028-a1a67f6a70401244e5138c64dc1381965b7a03f3dd0446186be7873595b02c793 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9913-488X |
OpenAccessLink | http://hdl.handle.net/21.11116/0000-0002-EB54-7 |
PQID | 2187595651 |
PQPubID | 946352 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_2179414661 proquest_journals_2187595651 wiley_primary_10_1002_anie_201811938_ANIE201811938 |
PublicationCentury | 2000 |
PublicationDate | March 11, 2019 |
PublicationDateYYYYMMDD | 2019-03-11 |
PublicationDate_xml | – month: 03 year: 2019 text: March 11, 2019 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014 2014; 53 126 2013; 42 2008; 14 2014; 26 2017 2017; 56 129 2011; 17 2013; 8 2016; 15 2013; 6 2014; 136 2017; 9 2014; 43 2013 2013; 52 125 2017; 53 2016; 6 2018; 9 2018; 1 2015; 179 2012 2012; 51 124 2018 2018; 57 130 2010; 110 2015 2015; 54 127 2009; 8 2018; 30 2015; 119 2016; 138 |
References_xml | – volume: 42 start-page: 2357 year: 2013 publication-title: Chem. Soc. Rev. – volume: 6 start-page: 3921 year: 2016 publication-title: ACS Catal. – volume: 26 start-page: 805 year: 2014 publication-title: Adv. Mater. – volume: 136 start-page: 12568 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 8177 year: 2008 publication-title: Chem. Eur. J. – volume: 138 start-page: 6292 year: 2016 publication-title: J. Am. Chem. Soc. – volume: 54 127 start-page: 13561 13765 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 start-page: 5854 year: 2017 publication-title: Chem. Commun. – volume: 54 127 start-page: 11433 11595 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 53 126 start-page: 11001 11181 year: 2014 2014 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 76 year: 2009 publication-title: Nat. Mater. – volume: 52 125 start-page: 11083 11289 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 57 130 start-page: 17135 17381 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 51 124 start-page: 3183 3237 year: 2012 2012 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 8 start-page: 218 year: 2013 publication-title: Chem. Asian J. – volume: 52 125 start-page: 2435 2495 year: 2013 2013 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 56 129 start-page: 13445 13630 year: 2017 2017 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 1 start-page: 756 year: 2018 publication-title: Nat. Catal. – volume: 43 start-page: 7520 year: 2014 publication-title: Chem. Soc. Rev. – volume: 15 start-page: 611 year: 2016 publication-title: Nat. Mater. – volume: 179 start-page: 1 year: 2015 publication-title: Appl. Catal. B – volume: 110 start-page: 6446 year: 2010 publication-title: Chem. Rev. – volume: 57 130 start-page: 9372 9516 year: 2018 2018 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 6 start-page: 1983 year: 2013 publication-title: Energy Environ. Sci. – volume: 9 start-page: 167 year: 2017 publication-title: ChemCatChem – volume: 9 start-page: 3584 year: 2018 publication-title: Chem. Sci. – volume: 17 start-page: 3213 year: 2011 publication-title: Chem. Eur. J. – volume: 30 start-page: 1706836 year: 2018 publication-title: Adv. Mater. – volume: 6 start-page: 2462 year: 2016 publication-title: ACS Catal. – volume: 54 127 start-page: 2406 2436 year: 2015 2015 publication-title: Angew. Chem. Int. Ed. Angew. Chem. – volume: 119 start-page: 14938 year: 2015 publication-title: J. Phys. Chem. C |
SSID | ssj0028806 |
Score | 2.6734397 |
Snippet | Photocatalytic water splitting is a promising and clean way to mimic plant photosynthesis in a sustainable manner. Improvements of the quantum efficiency and... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
StartPage | 3433 |
SubjectTerms | Carbon Carbon dioxide carbon dioxide reduction Carbon nitride Chemical reduction Grain boundaries Hydrogen production Localization Molten salts Organic chemistry Oxidation photocatalysis Photosynthesis polymeric carbon nitride Potassium chloride Potassium phosphate Potassium phosphates Quantum efficiency Sodium chloride Solar energy Water splitting |
Title | Tailoring the Grain Boundary Chemistry of Polymeric Carbon Nitride for Enhanced Solar Hydrogen Production and CO2 Reduction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fanie.201811938 https://www.proquest.com/docview/2187595651 https://www.proquest.com/docview/2179414661 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4QF7jwRjwGMhLXsiV9H8e0MZAYE2wStyppUjFALeq2w-DPY7db2TjCrW2Sqq0d93Nif2bsMkwc33YEtxArJJaTNBJLurFjoSeWhOgOiNBQovB9z-sOnbtn93kpi7_kh6gW3GhmFPaaJrhU4_oPaShlYFNoVsARg1C2LwVsESp6rPijBCpnmV5k2xZVoV-wNjZEfXX4Cr5cRqnFb6azzeTiAcvokrer6URdxZ-_uBv_8wY7bGuOQaFZKs0uWzPpHttoLUq_7bOvgRyVkXmA-BBuqIwEXBcFmPIZVB0hS6Cfvc-KTR9oyVxlKfRGk3ykDSAYhnb6UgQYwBM50NCd6TxDhYV-STOLKgEy1dB6EPBo5lcO2LDTHrS61rxKg_Vq09Kc5NLzE0_6aA4ILBiX20HsOTrm5A16rvJlw05srWnvmAeeMmgkKB9YNUSM5uGQradZao4YSN-NRaBjVxntGKXCWLgahxiJdllqfsxqCylF86k2jhCj-Hgzz8Xmi6oZvwPtfMjUZFPqg2YH_wke9hGFSKKPkswjKmmbRUTCiCphRM3ebbs6O_nLoFO2icchxatxXmPrk3xqzhDATNR5oaTf-7noYg |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI54HODCGzGeRuJaWNL3EcZgvAaCIXGrkiYVA9Sish0Gfx67XcvjCMemSdXWjvM5sT8zthcmjm87gluIFRLLSZqJJd3YsdATS0J0B0RoKFH4qut17p3zB7eKJqRcmJIfot5wo5lR2Gua4LQhffDFGkop2BSbFXAEIcEkm6ay3kSff3xbM0gJVM8ywci2LapDX_E2NsXBz_E_EOZ3nFosNCfzTFWvWMaXPO8PB2o_fv_F3vivb1hgc2MYCoel3iyyCZMusZlWVf1tmX30ZL8MzgOEiHBKlSTgqKjBlI-g7ghZAjfZy6g494GWzFWWQrc_yPvaAOJhaKePRYwB3JEPDZ2RzjPUWbgpmWZRK0CmGlrXAm7NuGWF3Z-0e62ONS7UYD3ZtDsnufT8xJM-WgTCC8bldhB7jo45OYSeq3zZtBNbazo-5oGnDNoJSglWTRGjhVhlU2mWmjUG0ndjEejYVUY7RqkwFq7GIUaiaZaaN9hmJaZoPNveIoQpPj4Mxd9gu_Vt_A90-CFTkw2pD1oeXBY87CMKmUSvJZ9HVDI3i4iEEdXCiA67Z-36av0vg3bYTKd3dRldnnUvNtgstocUvsb5Jpsa5EOzhXhmoLYLjf0EkEvsfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swELYYk7a9jI0NjdGNQ-I1EDuJkzxCf6ywrVQMJN4iO7ZFASVVaB-6_fPcJW0GexyPcewoyZ3P39l33zG2n7owDkLBPcQKzgud7zwV5aGHnphL0R0QqaVE4Z8jObwMT6-iq0dZ_A0_RLvhRjOjttc0wafGHf4lDaUMbArNSjhikOQFexlKP6XiDb3zlkBKoHY2-UVB4FEZ-hVtoy8On45_AjAfw9R6nRlsMLV6wya85PZgPtMH-e9_yBuf8wnv2NslCIWjRmveszVbbLLX3VXttw_sz4WaNKF5gAARvlEdCTiuKzBVC2g7QulgXN4t6lMf6KpKlwWMJrNqYiwgGoZ-cV1HGMAv8qBhuDBViRoL44ZnFnUCVGGgeybg3C5bPrLLQf-iO_SWZRq8m4D25hRXMnZSxWgPCC3YiAdJLkOTc3IHZaRj5QcuMIYOj3kitUUrQQnB2hc52octtl6Uhf3EQMVRLhKTR9qa0Gqd5iIyOMQqNMzK8G3WWUkpW861-wxBSowPkxHe3mtv43-gow9V2HJOfdDu4KIgsY-oRZJNGzaPrOFtFhkJI2uFkR2NTvrt1ef_GbTLXo17g-zHyej7DnuDzSnFrnHeYeuzam6_IJiZ6a-1vj4A12vrLQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tailoring+the+Grain+Boundary+Chemistry+of+Polymeric+Carbon+Nitride+for+Enhanced+Solar+Hydrogen+Production+and+CO2+Reduction&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Zhang%2C+Guigang&rft.au=Li%2C+Guosheng&rft.au=Heil%2C+Tobias&rft.au=Zafeiratos%2C+Spiros&rft.date=2019-03-11&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1433-7851&rft.eissn=1521-3773&rft.volume=58&rft.issue=11&rft.spage=3433&rft.epage=3437&rft_id=info:doi/10.1002%2Fanie.201811938&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |