Large‐Area 2D Layered MoTe2 by Physical Vapor Deposition and Solid‐Phase Crystallization in a Tellurium‐Free Atmosphere
Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field‐effect mobility, large spin–orbit‐coupling splitting, and tunable 1T′/2H phases. However, synthesizing large‐are...
Saved in:
Published in | Advanced materials interfaces Vol. 4; no. 17 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
08.09.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field‐effect mobility, large spin–orbit‐coupling splitting, and tunable 1T′/2H phases. However, synthesizing large‐area, high‐quality MoTe2 remains challenging. The complicated design of gas‐phase reactant transport and reaction for chemical vapor deposition or tellurization is nontrivial because of the weak bonding energy between Mo and Te. This study reports a new method for depositing MoTe2 that entails using physical vapor deposition followed by a postannealing process in a Te‐free atmosphere. Both Mo and Te are physically deposited onto the substrate by sputtering a MoTe2 target. A composite SiO2 capping layer is designed to prevent Te sublimation during the postannealing process. The postannealing process facilitates 1T′‐to‐2H phase transition and solid‐phase crystallization, leading to the formation of high‐crystallinity few‐layer 2H‐MoTe2 with a field‐effect mobility of ≈10 cm2 V−1 s−1, the highest among all nonexfoliated 2H‐MoTe2 currently reported. Furthermore, 2H‐MoS2 and Td‐WTe2 can be deposited using similar methods. Requiring no transfer or chemical reaction of metal and chalcogen reactants in the gas phase, the proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures.
Physical vapor deposition followed by a postannealing process in a Te‐free atmosphere is developed to deposit high‐crystallinity 2H‐molybdenum ditelluride with a high field‐effect mobility. The proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures. |
---|---|
AbstractList | Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field-effect mobility, large spin-orbit-coupling splitting, and tunable 1T'/2H phases. However, synthesizing large-area, high-quality MoTe2 remains challenging. The complicated design of gas-phase reactant transport and reaction for chemical vapor deposition or tellurization is nontrivial because of the weak bonding energy between Mo and Te. This study reports a new method for depositing MoTe2 that entails using physical vapor deposition followed by a postannealing process in a Te-free atmosphere. Both Mo and Te are physically deposited onto the substrate by sputtering a MoTe2 target. A composite SiO2 capping layer is designed to prevent Te sublimation during the postannealing process. The postannealing process facilitates 1T'-to-2H phase transition and solid-phase crystallization, leading to the formation of high-crystallinity few-layer 2H-MoTe2 with a field-effect mobility of [asymp]10 cm2 V-1 s-1, the highest among all nonexfoliated 2H-MoTe2 currently reported. Furthermore, 2H-MoS2 and Td-WTe2 can be deposited using similar methods. Requiring no transfer or chemical reaction of metal and chalcogen reactants in the gas phase, the proposed method is potentially a general yet simple approach for depositing a wide variety of large-area, high-quality, 2D layered structures. Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field‐effect mobility, large spin–orbit‐coupling splitting, and tunable 1T′/2H phases. However, synthesizing large‐area, high‐quality MoTe2 remains challenging. The complicated design of gas‐phase reactant transport and reaction for chemical vapor deposition or tellurization is nontrivial because of the weak bonding energy between Mo and Te. This study reports a new method for depositing MoTe2 that entails using physical vapor deposition followed by a postannealing process in a Te‐free atmosphere. Both Mo and Te are physically deposited onto the substrate by sputtering a MoTe2 target. A composite SiO2 capping layer is designed to prevent Te sublimation during the postannealing process. The postannealing process facilitates 1T′‐to‐2H phase transition and solid‐phase crystallization, leading to the formation of high‐crystallinity few‐layer 2H‐MoTe2 with a field‐effect mobility of ≈10 cm2 V−1 s−1, the highest among all nonexfoliated 2H‐MoTe2 currently reported. Furthermore, 2H‐MoS2 and Td‐WTe2 can be deposited using similar methods. Requiring no transfer or chemical reaction of metal and chalcogen reactants in the gas phase, the proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures. Physical vapor deposition followed by a postannealing process in a Te‐free atmosphere is developed to deposit high‐crystallinity 2H‐molybdenum ditelluride with a high field‐effect mobility. The proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures. |
Author | Liu, Pang‐Shiuan Chou, Cheng‐Tung Lee, Yao‐Jen Huang, Jyun‐Hong Wu, Chien‐Ting Chang, Wen‐Hao Hou, Tuo‐Hung Deng, Kuang‐Ying |
Author_xml | – sequence: 1 givenname: Jyun‐Hong surname: Huang fullname: Huang, Jyun‐Hong organization: National Chiao Tung University – sequence: 2 givenname: Kuang‐Ying surname: Deng fullname: Deng, Kuang‐Ying organization: National Central University – sequence: 3 givenname: Pang‐Shiuan surname: Liu fullname: Liu, Pang‐Shiuan organization: National Chiao Tung University – sequence: 4 givenname: Chien‐Ting surname: Wu fullname: Wu, Chien‐Ting organization: National Nano Device Laboratories – sequence: 5 givenname: Cheng‐Tung surname: Chou fullname: Chou, Cheng‐Tung organization: National Central University – sequence: 6 givenname: Wen‐Hao surname: Chang fullname: Chang, Wen‐Hao organization: Ministry of Science and Technology – sequence: 7 givenname: Yao‐Jen surname: Lee fullname: Lee, Yao‐Jen organization: National Chung Hsing University – sequence: 8 givenname: Tuo‐Hung surname: Hou fullname: Hou, Tuo‐Hung email: thhou@mail.nctu.edu.tw organization: Ministry of Science and Technology |
BookMark | eNpN0M1Kw0AQB_BFFKy1V88LnlP3o9ltjqG1WkixYPW6bJOp3ZJk426CRBB8BJ_RJzG1UjzNDPxmBv4X6LS0JSB0RcmQEsJudFaYISNUEkJDeYJ6jEYikDwkp__6czTwfkc6QxllY95DH4l2L_D9-RU70JhNcaJbcJDhhV0Bw-sWL7etN6nO8bOurMNTqKw3tbEl1mWGH21usm59udUe8MS1vtZ5bt71rzAdwivI88aZpujYzAHguC6sr7bdm0t0ttG5h8Ff7aOn2e1qch8kD3fzSZwEOxZFMkilHHORrQnljJFwJFPNdZYKEYowhSwiI5EyIvcEUtjwDRUZ16EgFJgWa8n76Ppwt3L2tQFfq51tXNm9VDTiYiRZNGadig7qzeTQqsqZQrtWUaL2Eat9xOoYsYqni_lx4j_w43aa |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/admi.201700157 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2196-7350 |
EndPage | n/a |
ExternalDocumentID | ADMI201700157 |
Genre | article |
GrantInformation_xml | – fundername: NCTU‐UCB I‐RiCE program funderid: MOST 105‐2911‐I‐009‐301 – fundername: Asian Office of Aerospace Research and Development funderid: 16IOA013 – fundername: Ministry of Science and Technology of Taiwan funderid: MOST 103‐2221‐E‐009‐221‐MY3; NSC 102‐2119‐M‐009‐002‐MY3; MOST 105‐2119‐M‐009‐014‐MY3 – fundername: Office of Naval Research Global funderid: N62909‐17‐1‐2022 |
GroupedDBID | 0R~ 1OC 24P 33P AAESR AAHHS AAIHA AAXRX AAZKR ABCUV ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AENEX AEQDE AFBPY AIACR AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ARCSS AVUZU AZVAB BMXJE BRXPI DCZOG DPXWK EBS EJD G-S GODZA LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ M~E O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 7SR 7U5 8BQ 8FD AAFWJ AAMMB ABJNI ADMLS AEFGJ AFPKN AGXDD AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-j2997-c77836db013220547ca3adc66565ced9046c20736dbecef3f16d3a5601e2a6b73 |
ISSN | 2196-7350 |
IngestDate | Fri Jul 25 12:01:01 EDT 2025 Sat Aug 24 00:54:16 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2997-c77836db013220547ca3adc66565ced9046c20736dbecef3f16d3a5601e2a6b73 |
Notes | This article is part of the Special Section in Advanced Materials Interfaces. Chemical Vapor Deposition ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1936472982 |
PQPubID | 2034582 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1936472982 wiley_primary_10_1002_admi_201700157_ADMI201700157 |
PublicationCentury | 2000 |
PublicationDate | September 8, 2017 |
PublicationDateYYYYMMDD | 2017-09-08 |
PublicationDate_xml | – month: 09 year: 2017 text: September 8, 2017 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced materials interfaces |
PublicationYear | 2017 |
Publisher | John Wiley & Sons, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc |
References | 2015; 6 2015; 92 2016; 108 2013; 24 2015; 11 2014; 26 2013; 102 2017; 29 2015; 349 2013; 7 2015; 9 2016; 16 2012; 108 2001; 64 2016; 7 1988; 3 2014; 5 2016; 3 2015; 137 2005; 102 2014; 14 2013; 113 2016; 117 1988; 63 2014; 9 2012; 7 2014; 8 2012; 24 2014; 7 2016; 26 2016; 8 1971; 4 |
References_xml | – volume: 108 start-page: 196802 year: 2012 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 923 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 065007 year: 2016 publication-title: Mater. Res. Express – volume: 16 start-page: 4297 year: 2016 publication-title: Nano Lett. – volume: 14 start-page: 6231 year: 2014 publication-title: Nano Lett. – volume: 108 start-page: 043503 year: 2016 publication-title: Appl. Phys. Lett. – volume: 113 start-page: 3766 year: 2013 publication-title: Chem. Rev. – volume: 5 start-page: 4214 year: 2014 publication-title: Nat. Commun. – volume: 63 start-page: 2260 year: 1988 publication-title: J. Appl. Phys. – volume: 7 start-page: 2898 year: 2013 publication-title: ACS Nano – volume: 7 start-page: 699 year: 2012 publication-title: Nat. Nanotechnol. – volume: 3 start-page: 1 year: 1988 publication-title: Mater. Sci. Rep. – volume: 26 start-page: 3263 year: 2014 publication-title: Adv. Mater. – volume: 4 start-page: 356 year: 1971 publication-title: Phys. Rev. B – volume: 24 start-page: 2320 year: 2012 publication-title: Adv. Mater. – volume: 8 start-page: 3895 year: 2014 publication-title: ACS Nano – volume: 9 start-page: 4900 year: 2015 publication-title: ACS Nano – volume: 117 start-page: 056805 year: 2016 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 5911 year: 2014 publication-title: ACS Nano – volume: 24 start-page: 185705 year: 2013 publication-title: Nanotechnology – volume: 8 start-page: 7396 year: 2016 publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 6548 year: 2015 publication-title: ACS Nano – volume: 26 start-page: 3146 year: 2016 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 11038 year: 2016 publication-title: Nat. Commun. – volume: 349 start-page: 625 year: 2015 publication-title: Science – volume: 64 start-page: 235305 year: 2001 publication-title: Phys. Rev. B – volume: 92 start-page: 161107 year: 2015 publication-title: Phys. Rev. B – volume: 11 start-page: 482 year: 2015 publication-title: Nat. Phys. – volume: 29 start-page: 1603471 year: 2017 publication-title: Adv. Mater. – volume: 7 start-page: 490 year: 2012 publication-title: Nat. Nanotechnol. – volume: 102 start-page: 132102 year: 2013 publication-title: Appl. Phys. Lett. – volume: 137 start-page: 11892 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1731 year: 2014 publication-title: Nano Res. – volume: 6 start-page: 8948 year: 2015 publication-title: Nat. Commun. – volume: 102 start-page: 10451 year: 2005 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 768 year: 2014 publication-title: Nat. Nanotechnol. |
SSID | ssj0001121283 |
Score | 2.3635077 |
Snippet | Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Bonding strength Chemical bonds Chemical vapor deposition Crystallization Free atmosphere Molybdenum disulfide molybdenum ditelluride (MoTe2) Optoelectronics phase transition Phase transitions Physical vapor deposition Silicon dioxide solid‐phase crystallization Sublimation Tellurium transition‐metal dichalcogenides (TMDs) |
Title | Large‐Area 2D Layered MoTe2 by Physical Vapor Deposition and Solid‐Phase Crystallization in a Tellurium‐Free Atmosphere |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201700157 https://www.proquest.com/docview/1936472982 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEFcxNpAfeIsyGjuX5jFamcpU0CTSMXiJ7MTRMqXtlDYPRULiJ_AbeeFvcOw4TgoTgr1ElXPitj5fzsX-fIzQKycM2JhSYrvCzWyXe7nNxt7IDrmsT-cyiFAU2-K9P527pxfexWDws8daqjf8KP1y476S22gV2kCvcpfsf2jWdAoN8Bn0C1fQMFz_ScczSeM2dIUI4j-LTKwZ28oDOOF1jQWR4eVZq4tzBtE2mJiWqaV5myX88LaTs0twa9ZxtYWosSz1Jk05KcKsWJRlXRX1wgifVEJY0WaxWsviBDukoqjlFkBE3AyFqkxR5ZIC1mFJz1afbuul6XW60t5UxtdC2yIl2Up8KjqJWVE3kXDv_ofLou5Q_7FueAVgxIxE3PagJzzAicrlm56NBhvr2wFt6tUeiRvatGF3-_gNei7eOMA__EdTj5Zli0Ky_uSavBd0nrJlBxhJ7--yTV3hybu35v4dtEcgnyFDtBedzz_Pu-lAB2IIVTTW_JW2xOiIvN79kp1kqJ9SqZgofoDu62QGRw0yH6KBWD5Cdxu4rR-jrwqfP759l8jEZII1MrFCJuZb3CITK2TiDpkYkIkVMuFxhUn8GyZxAULYYBLEJBpxh8YnaH7yJj6e2vq4D_uKyJrAaSB3FGVcrf5BJhGkjLIs9SHj8ACv4cj1UwIeCUREKnKaO35GmZxREIT5PKBP0XC5WopnCLtEpJRySgXzXB6ykDKfOnyUB6nDvJDvo8N2BBP9Pq8TSGXkWQrhmOwjokY1uW4qviRNbW-SSD0kRg_Jjmqf3-ahA3Svg_ghGm6qWryAKHfDX2qE_ALWjZ2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oxOjF-Iwo6h68NtDdPo8NSECBkNgS46XZ3S4RU8DwOHAw8Sf4G_0lzpQCevXYZraHmc7ut7PffEvInem7wuOcGZa2EsOS9sAQnl01fIn6dJYAhJKxLbpOM7Ienu01mxB7YVb6EJuCG2ZGNl9jgmNBurJVDRXJaIjcLDw5td1dUkRo4xVIMehHL9G20GLC7JzJcUJyOobL7epavLHKKn8_8gdm_gar2WrTOCKHOUykwSqux2RHj0_IXkbXVLNT8tFGAvf351cAmI-yOm2LJV66STuTUDMql7SX-5_2BSBsWtdrdhYV44Q-TdJhAsN7r7CI0dp0CRgxTfOWTDoEIxrqNF1Mh4sRmDWmWtNgPprMUIRAn5GocR_WmkZ-kYLxxlBtVbnYq5HI7FwFMJqrBBeJcgDL2UonPuyRFYNcBxOt9IAPTCfhAvdqmglHuvycFMaTsb4g1GJacS4518K2pC98LhxuyurAVaawfVki5bUH4zwbZjGARFSp9z1WIizzavy-0tKIV6rJLMY4xJs4xEG909o8Xf5n0C3Zb4addtxudR-vyAG-z6hhXpkU5tOFvgYsMZc3-d_yA72mw3M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFG0UonFjfEYUtQu3E5h2HsxyAk5AgZAIhLiZ9DURMzwywIKFiZ_gN_ol3g7Da-tyJrdd3NvbnrbnniL0ZHouq1BKDEtZ0rC4HRmsYpcNj2t9OosBQknZFm2n3rNeBvZgp4p_pQ-xOXDTmZHO1zrBpzIqbUVDmRwNNTVLX5za7iHKa6k8GNd5v997723PWUyYnFM1TshNx3CpXV5rN5ZJab-TPZS5i1XTxSY4Q6cZSsT-Kqzn6ECNL9BRytYUs0v01dT87d_vHx8gHyY13GRL_eYmbk26imC-xJ3M_bjPAGDjmlqTszAbS_w2iYcSmnc-YA3D1WQJEDGOs4pMPAQj3FVxvEiGixGYBYlS2J-PJjOtQaCuUC947lbrRvaOgvFJtNiqcHWphuTptQpANFcwyqRwAMrZQkkPtsiCQKqDiRIqopHpSMr0Vk0R5nCXXqPceDJWNwhbRAlKOaWK2Rb3mEeZQ01ejlxhMtvjBVRcezDMkmEWAkbUIvVehRQQSb0aTldSGuFKNJmEOg7hJg6hX2s1Nl-3_2n0iI47tSBsNtqvd-hE_06JYZUiys2ThboHJDHnD9lg-QO6BcKc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Area+2D+Layered+MoTe2+by+Physical+Vapor+Deposition+and+Solid%E2%80%90Phase+Crystallization+in+a+Tellurium%E2%80%90Free+Atmosphere&rft.jtitle=Advanced+materials+interfaces&rft.au=Huang%2C+Jyun%E2%80%90Hong&rft.au=Deng%2C+Kuang%E2%80%90Ying&rft.au=Liu%2C+Pang%E2%80%90Shiuan&rft.au=Wu%2C+Chien%E2%80%90Ting&rft.date=2017-09-08&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=4&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201700157&rft.externalDBID=10.1002%252Fadmi.201700157&rft.externalDocID=ADMI201700157 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon |