Large‐Area 2D Layered MoTe2 by Physical Vapor Deposition and Solid‐Phase Crystallization in a Tellurium‐Free Atmosphere

Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field‐effect mobility, large spin–orbit‐coupling splitting, and tunable 1T′/2H phases. However, synthesizing large‐are...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials interfaces Vol. 4; no. 17
Main Authors Huang, Jyun‐Hong, Deng, Kuang‐Ying, Liu, Pang‐Shiuan, Wu, Chien‐Ting, Chou, Cheng‐Tung, Chang, Wen‐Hao, Lee, Yao‐Jen, Hou, Tuo‐Hung
Format Journal Article
LanguageEnglish
Published Weinheim John Wiley & Sons, Inc 08.09.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field‐effect mobility, large spin–orbit‐coupling splitting, and tunable 1T′/2H phases. However, synthesizing large‐area, high‐quality MoTe2 remains challenging. The complicated design of gas‐phase reactant transport and reaction for chemical vapor deposition or tellurization is nontrivial because of the weak bonding energy between Mo and Te. This study reports a new method for depositing MoTe2 that entails using physical vapor deposition followed by a postannealing process in a Te‐free atmosphere. Both Mo and Te are physically deposited onto the substrate by sputtering a MoTe2 target. A composite SiO2 capping layer is designed to prevent Te sublimation during the postannealing process. The postannealing process facilitates 1T′‐to‐2H phase transition and solid‐phase crystallization, leading to the formation of high‐crystallinity few‐layer 2H‐MoTe2 with a field‐effect mobility of ≈10 cm2 V−1 s−1, the highest among all nonexfoliated 2H‐MoTe2 currently reported. Furthermore, 2H‐MoS2 and Td‐WTe2 can be deposited using similar methods. Requiring no transfer or chemical reaction of metal and chalcogen reactants in the gas phase, the proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures. Physical vapor deposition followed by a postannealing process in a Te‐free atmosphere is developed to deposit high‐crystallinity 2H‐molybdenum ditelluride with a high field‐effect mobility. The proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures.
AbstractList Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field-effect mobility, large spin-orbit-coupling splitting, and tunable 1T'/2H phases. However, synthesizing large-area, high-quality MoTe2 remains challenging. The complicated design of gas-phase reactant transport and reaction for chemical vapor deposition or tellurization is nontrivial because of the weak bonding energy between Mo and Te. This study reports a new method for depositing MoTe2 that entails using physical vapor deposition followed by a postannealing process in a Te-free atmosphere. Both Mo and Te are physically deposited onto the substrate by sputtering a MoTe2 target. A composite SiO2 capping layer is designed to prevent Te sublimation during the postannealing process. The postannealing process facilitates 1T'-to-2H phase transition and solid-phase crystallization, leading to the formation of high-crystallinity few-layer 2H-MoTe2 with a field-effect mobility of [asymp]10 cm2 V-1 s-1, the highest among all nonexfoliated 2H-MoTe2 currently reported. Furthermore, 2H-MoS2 and Td-WTe2 can be deposited using similar methods. Requiring no transfer or chemical reaction of metal and chalcogen reactants in the gas phase, the proposed method is potentially a general yet simple approach for depositing a wide variety of large-area, high-quality, 2D layered structures.
Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its modest band gap, high field‐effect mobility, large spin–orbit‐coupling splitting, and tunable 1T′/2H phases. However, synthesizing large‐area, high‐quality MoTe2 remains challenging. The complicated design of gas‐phase reactant transport and reaction for chemical vapor deposition or tellurization is nontrivial because of the weak bonding energy between Mo and Te. This study reports a new method for depositing MoTe2 that entails using physical vapor deposition followed by a postannealing process in a Te‐free atmosphere. Both Mo and Te are physically deposited onto the substrate by sputtering a MoTe2 target. A composite SiO2 capping layer is designed to prevent Te sublimation during the postannealing process. The postannealing process facilitates 1T′‐to‐2H phase transition and solid‐phase crystallization, leading to the formation of high‐crystallinity few‐layer 2H‐MoTe2 with a field‐effect mobility of ≈10 cm2 V−1 s−1, the highest among all nonexfoliated 2H‐MoTe2 currently reported. Furthermore, 2H‐MoS2 and Td‐WTe2 can be deposited using similar methods. Requiring no transfer or chemical reaction of metal and chalcogen reactants in the gas phase, the proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures. Physical vapor deposition followed by a postannealing process in a Te‐free atmosphere is developed to deposit high‐crystallinity 2H‐molybdenum ditelluride with a high field‐effect mobility. The proposed method is potentially a general yet simple approach for depositing a wide variety of large‐area, high‐quality, 2D layered structures.
Author Liu, Pang‐Shiuan
Chou, Cheng‐Tung
Lee, Yao‐Jen
Huang, Jyun‐Hong
Wu, Chien‐Ting
Chang, Wen‐Hao
Hou, Tuo‐Hung
Deng, Kuang‐Ying
Author_xml – sequence: 1
  givenname: Jyun‐Hong
  surname: Huang
  fullname: Huang, Jyun‐Hong
  organization: National Chiao Tung University
– sequence: 2
  givenname: Kuang‐Ying
  surname: Deng
  fullname: Deng, Kuang‐Ying
  organization: National Central University
– sequence: 3
  givenname: Pang‐Shiuan
  surname: Liu
  fullname: Liu, Pang‐Shiuan
  organization: National Chiao Tung University
– sequence: 4
  givenname: Chien‐Ting
  surname: Wu
  fullname: Wu, Chien‐Ting
  organization: National Nano Device Laboratories
– sequence: 5
  givenname: Cheng‐Tung
  surname: Chou
  fullname: Chou, Cheng‐Tung
  organization: National Central University
– sequence: 6
  givenname: Wen‐Hao
  surname: Chang
  fullname: Chang, Wen‐Hao
  organization: Ministry of Science and Technology
– sequence: 7
  givenname: Yao‐Jen
  surname: Lee
  fullname: Lee, Yao‐Jen
  organization: National Chung Hsing University
– sequence: 8
  givenname: Tuo‐Hung
  surname: Hou
  fullname: Hou, Tuo‐Hung
  email: thhou@mail.nctu.edu.tw
  organization: Ministry of Science and Technology
BookMark eNpN0M1Kw0AQB_BFFKy1V88LnlP3o9ltjqG1WkixYPW6bJOp3ZJk426CRBB8BJ_RJzG1UjzNDPxmBv4X6LS0JSB0RcmQEsJudFaYISNUEkJDeYJ6jEYikDwkp__6czTwfkc6QxllY95DH4l2L_D9-RU70JhNcaJbcJDhhV0Bw-sWL7etN6nO8bOurMNTqKw3tbEl1mWGH21usm59udUe8MS1vtZ5bt71rzAdwivI88aZpujYzAHguC6sr7bdm0t0ttG5h8Ff7aOn2e1qch8kD3fzSZwEOxZFMkilHHORrQnljJFwJFPNdZYKEYowhSwiI5EyIvcEUtjwDRUZ16EgFJgWa8n76Ppwt3L2tQFfq51tXNm9VDTiYiRZNGadig7qzeTQqsqZQrtWUaL2Eat9xOoYsYqni_lx4j_w43aa
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/admi.201700157
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2196-7350
EndPage n/a
ExternalDocumentID ADMI201700157
Genre article
GrantInformation_xml – fundername: NCTU‐UCB I‐RiCE program
  funderid: MOST 105‐2911‐I‐009‐301
– fundername: Asian Office of Aerospace Research and Development
  funderid: 16IOA013
– fundername: Ministry of Science and Technology of Taiwan
  funderid: MOST 103‐2221‐E‐009‐221‐MY3; NSC 102‐2119‐M‐009‐002‐MY3; MOST 105‐2119‐M‐009‐014‐MY3
– fundername: Office of Naval Research Global
  funderid: N62909‐17‐1‐2022
GroupedDBID 0R~
1OC
24P
33P
AAESR
AAHHS
AAIHA
AAXRX
AAZKR
ABCUV
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AENEX
AEQDE
AFBPY
AIACR
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ARCSS
AVUZU
AZVAB
BMXJE
BRXPI
DCZOG
DPXWK
EBS
EJD
G-S
GODZA
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY~
M~E
O9-
P2W
R.K
ROL
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
7SR
7U5
8BQ
8FD
AAFWJ
AAMMB
ABJNI
ADMLS
AEFGJ
AFPKN
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-j2997-c77836db013220547ca3adc66565ced9046c20736dbecef3f16d3a5601e2a6b73
ISSN 2196-7350
IngestDate Fri Jul 25 12:01:01 EDT 2025
Sat Aug 24 00:54:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2997-c77836db013220547ca3adc66565ced9046c20736dbecef3f16d3a5601e2a6b73
Notes This article is part of the Special Section
in Advanced Materials Interfaces.
Chemical Vapor Deposition
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1936472982
PQPubID 2034582
PageCount 8
ParticipantIDs proquest_journals_1936472982
wiley_primary_10_1002_admi_201700157_ADMI201700157
PublicationCentury 2000
PublicationDate September 8, 2017
PublicationDateYYYYMMDD 2017-09-08
PublicationDate_xml – month: 09
  year: 2017
  text: September 8, 2017
  day: 08
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced materials interfaces
PublicationYear 2017
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2015; 6
2015; 92
2016; 108
2013; 24
2015; 11
2014; 26
2013; 102
2017; 29
2015; 349
2013; 7
2015; 9
2016; 16
2012; 108
2001; 64
2016; 7
1988; 3
2014; 5
2016; 3
2015; 137
2005; 102
2014; 14
2013; 113
2016; 117
1988; 63
2014; 9
2012; 7
2014; 8
2012; 24
2014; 7
2016; 26
2016; 8
1971; 4
References_xml – volume: 108
  start-page: 196802
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 923
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 065007
  year: 2016
  publication-title: Mater. Res. Express
– volume: 16
  start-page: 4297
  year: 2016
  publication-title: Nano Lett.
– volume: 14
  start-page: 6231
  year: 2014
  publication-title: Nano Lett.
– volume: 108
  start-page: 043503
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 113
  start-page: 3766
  year: 2013
  publication-title: Chem. Rev.
– volume: 5
  start-page: 4214
  year: 2014
  publication-title: Nat. Commun.
– volume: 63
  start-page: 2260
  year: 1988
  publication-title: J. Appl. Phys.
– volume: 7
  start-page: 2898
  year: 2013
  publication-title: ACS Nano
– volume: 7
  start-page: 699
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 1
  year: 1988
  publication-title: Mater. Sci. Rep.
– volume: 26
  start-page: 3263
  year: 2014
  publication-title: Adv. Mater.
– volume: 4
  start-page: 356
  year: 1971
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 2320
  year: 2012
  publication-title: Adv. Mater.
– volume: 8
  start-page: 3895
  year: 2014
  publication-title: ACS Nano
– volume: 9
  start-page: 4900
  year: 2015
  publication-title: ACS Nano
– volume: 117
  start-page: 056805
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 5911
  year: 2014
  publication-title: ACS Nano
– volume: 24
  start-page: 185705
  year: 2013
  publication-title: Nanotechnology
– volume: 8
  start-page: 7396
  year: 2016
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 6548
  year: 2015
  publication-title: ACS Nano
– volume: 26
  start-page: 3146
  year: 2016
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 11038
  year: 2016
  publication-title: Nat. Commun.
– volume: 349
  start-page: 625
  year: 2015
  publication-title: Science
– volume: 64
  start-page: 235305
  year: 2001
  publication-title: Phys. Rev. B
– volume: 92
  start-page: 161107
  year: 2015
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 482
  year: 2015
  publication-title: Nat. Phys.
– volume: 29
  start-page: 1603471
  year: 2017
  publication-title: Adv. Mater.
– volume: 7
  start-page: 490
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 102
  start-page: 132102
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 137
  start-page: 11892
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1731
  year: 2014
  publication-title: Nano Res.
– volume: 6
  start-page: 8948
  year: 2015
  publication-title: Nat. Commun.
– volume: 102
  start-page: 10451
  year: 2005
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 768
  year: 2014
  publication-title: Nat. Nanotechnol.
SSID ssj0001121283
Score 2.3635077
Snippet Molybdenum ditelluride (MoTe2) has attracted considerable interest for nanoelectronic, optoelectronic, spintronic, and valleytronic applications because of its...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Bonding strength
Chemical bonds
Chemical vapor deposition
Crystallization
Free atmosphere
Molybdenum disulfide
molybdenum ditelluride (MoTe2)
Optoelectronics
phase transition
Phase transitions
Physical vapor deposition
Silicon dioxide
solid‐phase crystallization
Sublimation
Tellurium
transition‐metal dichalcogenides (TMDs)
Title Large‐Area 2D Layered MoTe2 by Physical Vapor Deposition and Solid‐Phase Crystallization in a Tellurium‐Free Atmosphere
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadmi.201700157
https://www.proquest.com/docview/1936472982
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJyReEFcxNpAfeIsyGjuX5jFamcpU0CTSMXiJ7MTRMqXtlDYPRULiJ_AbeeFvcOw4TgoTgr1ElXPitj5fzsX-fIzQKycM2JhSYrvCzWyXe7nNxt7IDrmsT-cyiFAU2-K9P527pxfexWDws8daqjf8KP1y476S22gV2kCvcpfsf2jWdAoN8Bn0C1fQMFz_ScczSeM2dIUI4j-LTKwZ28oDOOF1jQWR4eVZq4tzBtE2mJiWqaV5myX88LaTs0twa9ZxtYWosSz1Jk05KcKsWJRlXRX1wgifVEJY0WaxWsviBDukoqjlFkBE3AyFqkxR5ZIC1mFJz1afbuul6XW60t5UxtdC2yIl2Up8KjqJWVE3kXDv_ofLou5Q_7FueAVgxIxE3PagJzzAicrlm56NBhvr2wFt6tUeiRvatGF3-_gNei7eOMA__EdTj5Zli0Ky_uSavBd0nrJlBxhJ7--yTV3hybu35v4dtEcgnyFDtBedzz_Pu-lAB2IIVTTW_JW2xOiIvN79kp1kqJ9SqZgofoDu62QGRw0yH6KBWD5Cdxu4rR-jrwqfP759l8jEZII1MrFCJuZb3CITK2TiDpkYkIkVMuFxhUn8GyZxAULYYBLEJBpxh8YnaH7yJj6e2vq4D_uKyJrAaSB3FGVcrf5BJhGkjLIs9SHj8ACv4cj1UwIeCUREKnKaO35GmZxREIT5PKBP0XC5WopnCLtEpJRySgXzXB6ykDKfOnyUB6nDvJDvo8N2BBP9Pq8TSGXkWQrhmOwjokY1uW4qviRNbW-SSD0kRg_Jjmqf3-ahA3Svg_ghGm6qWryAKHfDX2qE_ALWjZ2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4oxOjF-Iwo6h68NtDdPo8NSECBkNgS46XZ3S4RU8DwOHAw8Sf4G_0lzpQCevXYZraHmc7ut7PffEvInem7wuOcGZa2EsOS9sAQnl01fIn6dJYAhJKxLbpOM7Ienu01mxB7YVb6EJuCG2ZGNl9jgmNBurJVDRXJaIjcLDw5td1dUkRo4xVIMehHL9G20GLC7JzJcUJyOobL7epavLHKKn8_8gdm_gar2WrTOCKHOUykwSqux2RHj0_IXkbXVLNT8tFGAvf351cAmI-yOm2LJV66STuTUDMql7SX-5_2BSBsWtdrdhYV44Q-TdJhAsN7r7CI0dp0CRgxTfOWTDoEIxrqNF1Mh4sRmDWmWtNgPprMUIRAn5GocR_WmkZ-kYLxxlBtVbnYq5HI7FwFMJqrBBeJcgDL2UonPuyRFYNcBxOt9IAPTCfhAvdqmglHuvycFMaTsb4g1GJacS4518K2pC98LhxuyurAVaawfVki5bUH4zwbZjGARFSp9z1WIizzavy-0tKIV6rJLMY4xJs4xEG909o8Xf5n0C3Zb4addtxudR-vyAG-z6hhXpkU5tOFvgYsMZc3-d_yA72mw3M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTgIxFG0UonFjfEYUtQu3E5h2HsxyAk5AgZAIhLiZ9DURMzwywIKFiZ_gN_ol3g7Da-tyJrdd3NvbnrbnniL0ZHouq1BKDEtZ0rC4HRmsYpcNj2t9OosBQknZFm2n3rNeBvZgp4p_pQ-xOXDTmZHO1zrBpzIqbUVDmRwNNTVLX5za7iHKa6k8GNd5v997723PWUyYnFM1TshNx3CpXV5rN5ZJab-TPZS5i1XTxSY4Q6cZSsT-Kqzn6ECNL9BRytYUs0v01dT87d_vHx8gHyY13GRL_eYmbk26imC-xJ3M_bjPAGDjmlqTszAbS_w2iYcSmnc-YA3D1WQJEDGOs4pMPAQj3FVxvEiGixGYBYlS2J-PJjOtQaCuUC947lbrRvaOgvFJtNiqcHWphuTptQpANFcwyqRwAMrZQkkPtsiCQKqDiRIqopHpSMr0Vk0R5nCXXqPceDJWNwhbRAlKOaWK2Rb3mEeZQ01ejlxhMtvjBVRcezDMkmEWAkbUIvVehRQQSb0aTldSGuFKNJmEOg7hJg6hX2s1Nl-3_2n0iI47tSBsNtqvd-hE_06JYZUiys2ThboHJDHnD9lg-QO6BcKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large%E2%80%90Area+2D+Layered+MoTe2+by+Physical+Vapor+Deposition+and+Solid%E2%80%90Phase+Crystallization+in+a+Tellurium%E2%80%90Free+Atmosphere&rft.jtitle=Advanced+materials+interfaces&rft.au=Huang%2C+Jyun%E2%80%90Hong&rft.au=Deng%2C+Kuang%E2%80%90Ying&rft.au=Liu%2C+Pang%E2%80%90Shiuan&rft.au=Wu%2C+Chien%E2%80%90Ting&rft.date=2017-09-08&rft.issn=2196-7350&rft.eissn=2196-7350&rft.volume=4&rft.issue=17&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadmi.201700157&rft.externalDBID=10.1002%252Fadmi.201700157&rft.externalDocID=ADMI201700157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2196-7350&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2196-7350&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2196-7350&client=summon