Template Assembled Large‐Size CsPbBr3 Nanocomposite Films toward Flexible, Stable, and High‐Performance X‐Ray Scintillators

Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impede...

Full description

Saved in:
Bibliographic Details
Published inLaser & photonics reviews Vol. 16; no. 7
Main Authors Wang, Baiqian, Peng, Jiali, Yang, Xin, Cai, Wensi, Xiao, Hongbin, Zhao, Shuangyi, Lin, Qianqian, Zang, Zhigang
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impedes their further wide applications. Herein, a template assembled method to prepare large‐size, flexible, and stable CsPbBr3@Polymethyl methacrylate composite films in ambient conditions is developed and their detection performance is studied. The composite films can maintain 94% and 81% of the initial PL intensity after 2000 cycles bending and storing in water over 2520 h, respectively. In addition, the prepared scintillators exhibit not only a low detection limit of 40.1 nGyair s−1 and a high spatial resolution of 8.0 lp mm−1, but also an excellent tolerance against radiation (108 h). Thus, this simple but yet effective method would not doubt pave the way for further development of scintillators and might be well applicable to other metal halides. X‐ray flexible scintillators of perovksites have emerged as one of the most favorable candidates in medical radiography, security inspection, nuclear radiation monitoring, and space exploration. Coating perovskite nanocrystals with polymer is an effective strategy to improve their stability and reduce heavy metal leakage. Herein, the flexible scintillators of CsPbBr3@Polymethyl methacrylate films exhibit low detection limit and high spatial resolution.
AbstractList Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impedes their further wide applications. Herein, a template assembled method to prepare large‐size, flexible, and stable CsPbBr3@Polymethyl methacrylate composite films in ambient conditions is developed and their detection performance is studied. The composite films can maintain 94% and 81% of the initial PL intensity after 2000 cycles bending and storing in water over 2520 h, respectively. In addition, the prepared scintillators exhibit not only a low detection limit of 40.1 nGyair s−1 and a high spatial resolution of 8.0 lp mm−1, but also an excellent tolerance against radiation (108 h). Thus, this simple but yet effective method would not doubt pave the way for further development of scintillators and might be well applicable to other metal halides. X‐ray flexible scintillators of perovksites have emerged as one of the most favorable candidates in medical radiography, security inspection, nuclear radiation monitoring, and space exploration. Coating perovskite nanocrystals with polymer is an effective strategy to improve their stability and reduce heavy metal leakage. Herein, the flexible scintillators of CsPbBr3@Polymethyl methacrylate films exhibit low detection limit and high spatial resolution.
Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impedes their further wide applications. Herein, a template assembled method to prepare large‐size, flexible, and stable CsPbBr3@Polymethyl methacrylate composite films in ambient conditions is developed and their detection performance is studied. The composite films can maintain 94% and 81% of the initial PL intensity after 2000 cycles bending and storing in water over 2520 h, respectively. In addition, the prepared scintillators exhibit not only a low detection limit of 40.1 nGyair s−1 and a high spatial resolution of 8.0 lp mm−1, but also an excellent tolerance against radiation (108 h). Thus, this simple but yet effective method would not doubt pave the way for further development of scintillators and might be well applicable to other metal halides.
Author Zang, Zhigang
Yang, Xin
Lin, Qianqian
Wang, Baiqian
Xiao, Hongbin
Peng, Jiali
Cai, Wensi
Zhao, Shuangyi
Author_xml – sequence: 1
  givenname: Baiqian
  surname: Wang
  fullname: Wang, Baiqian
  organization: Chongqing University
– sequence: 2
  givenname: Jiali
  surname: Peng
  fullname: Peng, Jiali
  organization: Wuhan University
– sequence: 3
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: Chongqing University
– sequence: 4
  givenname: Wensi
  surname: Cai
  fullname: Cai, Wensi
  organization: Chongqing University
– sequence: 5
  givenname: Hongbin
  surname: Xiao
  fullname: Xiao, Hongbin
  organization: Chongqing University
– sequence: 6
  givenname: Shuangyi
  surname: Zhao
  fullname: Zhao, Shuangyi
  email: shyzhao@cqu.edu.cn
  organization: Chongqing University
– sequence: 7
  givenname: Qianqian
  surname: Lin
  fullname: Lin, Qianqian
  email: q.lin@whu.edu.cn
  organization: Wuhan University
– sequence: 8
  givenname: Zhigang
  orcidid: 0000-0003-1632-503X
  surname: Zang
  fullname: Zang, Zhigang
  email: zangzg@cqu.edu.cn
  organization: Chongqing University
BookMark eNo9kFFPwjAUhRuDiYC--tzEV8Gu3dr1EYmIySIEePBt6bYOS7p1tiOIT_oP_I3-EosY7su5Jzn3nuTrgU5tagnAdYCGAUL4TjfGDjHC3jBCz0A3iCkZxDHnndMeowvQc26DUOSHdsHXSlaNFq2EI-dklWlZwETYtfz5_F6qDwnHbp7dWwKfRW1yUzXGKR-eKF052JqdsAWcaPmu_OUtXLbiT0VdwKlav_onc2lLYytR5xK-eL8Qe7jMVd0q7WuNdZfgvBTayat_7YPV5GE1ng6S2ePTeJQMNphzOiglKXGOcRGGcZBjllPCRMYIjyLMaJ7LrOCElkVAghBHNOaZyOJIiCAMGS5D0gc3x7eNNW9b6dp0Y7a29o0ppjGljDOPrQ_4MbVTWu7TxqpK2H0aoPSAOD0gTk-I02Q-W5wc-QVv43fO
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
DBID 7SP
7U5
8FD
L7M
DOI 10.1002/lpor.202100736
DatabaseName Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1863-8899
EndPage n/a
ExternalDocumentID LPOR202100736
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 61904023; 11974063
– fundername: Natural Science Foundation of Chongqing
  funderid: cstc2020jcyj‐jqX0028
GroupedDBID 05W
0R~
1OC
31~
33P
3SF
3WU
4.4
52U
66C
8-1
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
IX1
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OIG
P2P
P2W
ROL
SUPJJ
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
XV2
ZZTAW
~S-
7SP
7U5
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
L7M
ID FETCH-LOGICAL-j2996-fe3f2c22d4481c27c637ab73955276ccebd936fd131425689bab85aa14472f43
IEDL.DBID DR2
ISSN 1863-8880
IngestDate Tue Jul 15 09:40:31 EDT 2025
Wed Jun 11 08:25:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j2996-fe3f2c22d4481c27c637ab73955276ccebd936fd131425689bab85aa14472f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1632-503X
PQID 2686679707
PQPubID 1016358
PageCount 9
ParticipantIDs proquest_journals_2686679707
wiley_primary_10_1002_lpor_202100736_LPOR202100736
PublicationCentury 2000
PublicationDate July 2022
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Laser & photonics reviews
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2021; 9
2021; 8
2021; 6
2018; 561
2021; 5
2021; 21
2021; 4
2021; 3
2021; 2
2020; 20
2019; 31
2019; 13
2019; 15
2016; 10
2020; 16
2020; 401
2020; 15
2020; 56
2021; 240
2020; 10
2021; 121
2020; 8
2020; 7
2021; 13
2021; 15
2020; 5
2021; 419
2021; 54
2021; 31
2020; 2
2021; 12
2021; 33
2020; 31
2022; 4
2013; 13
2022; 5
2021; 18
2020; 9
2018; 30
2020; 67
2022; 10
2018; 10
References_xml – volume: 6
  start-page: 1453
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 401
  year: 2020
  publication-title: Chem. Eng. J.
– volume: 13
  year: 2021
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 3275
  year: 2021
  publication-title: ACS Energy Lett.
– volume: 15
  start-page: 379
  year: 2021
  publication-title: Nat. Photonics
– volume: 18
  year: 2021
  publication-title: Mater. Today Phys.
– volume: 5
  start-page: 881
  year: 2022
  publication-title: ACS Appl. Nano Mater.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 31
  start-page: 3917
  year: 2019
  publication-title: Chem. Mater.
– volume: 21
  start-page: 1392
  year: 2021
  publication-title: Nano Lett.
– volume: 2
  year: 2021
  publication-title: Cell Rep. Phys. Sci.
– volume: 15
  year: 2021
  publication-title: Laser Photonics Rev.
– volume: 4
  year: 2022
  publication-title: EcoMat
– volume: 10
  start-page: 710
  year: 2020
  publication-title: Nanomaterials
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 561
  start-page: 88
  year: 2018
  publication-title: Nature
– volume: 10
  start-page: 8601
  year: 2020
  publication-title: Sci. Rep.
– volume: 16
  year: 2020
  publication-title: Small
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 3
  year: 2021
  publication-title: EcoMat
– volume: 7
  year: 2020
  publication-title: Adv. Mater. Interfaces
– volume: 121
  year: 2021
  publication-title: Chem. Rev.
– volume: 54
  year: 2021
  publication-title: J. Phys. D: Appl. Phys.
– volume: 5
  start-page: 2131
  year: 2020
  publication-title: ACS Energy Lett.
– volume: 240
  year: 2021
  publication-title: J. Lumin.
– volume: 8
  year: 2020
  publication-title: J. Mater. Chem. C
– volume: 9
  start-page: 156
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 9
  year: 2021
  publication-title: J. Mater. Chem. A
– volume: 15
  start-page: 462
  year: 2020
  publication-title: Nat. Nanotechnol.
– volume: 419
  year: 2021
  publication-title: Chem. Eng. J.
– volume: 8
  year: 2021
  publication-title: Adv. Sci.
– volume: 56
  start-page: 5811
  year: 2020
  publication-title: Chem. Commun.
– volume: 13
  start-page: 5366
  year: 2019
  publication-title: ACS Nano
– volume: 4
  year: 2021
  publication-title: Opto‐Electron. Adv.
– volume: 10
  start-page: 333
  year: 2016
  publication-title: Nat. Photonics
– volume: 12
  start-page: 1531
  year: 2021
  publication-title: Nat. Commun.
– volume: 15
  year: 2019
  publication-title: Small
– volume: 5
  year: 2022
  publication-title: Opto‐Electronic Adv.
– volume: 5
  start-page: 4796
  year: 2021
  publication-title: Mater. Chem. Front.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 5
  year: 2021
  publication-title: Small Methods
– volume: 31
  year: 2021
  publication-title: Adv. Funct. Mater.
– volume: 13
  start-page: 2722
  year: 2013
  publication-title: Crystal Growth Design
– volume: 2
  year: 2020
  publication-title: EcoMat
– volume: 12
  start-page: 6919
  year: 2021
  publication-title: J. Phys. Chem. Lett.
– volume: 9
  start-page: 112
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 31
  year: 2020
  publication-title: Nanotechnology
– volume: 20
  start-page: 3568
  year: 2020
  publication-title: Nano Lett.
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 10
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 1605
  year: 2020
  publication-title: Photonics Res.
SSID ssj0055556
Score 2.6052728
Snippet Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine,...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms CsPbBr3 nanocrystals
detection limit
flexible films
Metal halides
Nanocomposites
Perovskites
Polymethyl methacrylate
Scintillation counters
Spatial resolution
stable X‐ray scintillators
Title Template Assembled Large‐Size CsPbBr3 Nanocomposite Films toward Flexible, Stable, and High‐Performance X‐Ray Scintillators
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100736
https://www.proquest.com/docview/2686679707
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJy_iZ0TR9ODRwdbSbjsqkRCDShATbku7tQkKg7BxkJP-A3-jv8S-2_jyqLsszdKta_t2z7v3eZ8idOUxAPlKg_QltxqhYpYklFo-86gOG9T2NTiKD4-8_dK4H7DBRhZ_rg-x-uEGlpGt12DgQib1tWjoyOBT498RCPNT0NwGwhagot5KP4qZI0sv8ji1jKtnL1UbbVLfrr6FLzdRavaZaZWRWDYwZ5e81eaprIWLX9qN_3mDfbRXYFB8k0-aA7Sj4kNULvAoLqw9OUKffTWejgwYxRAaHsuRudoB5vj3x9fzcKFwM-nK2xnFZomeADcdCGAKt4ajcYLTjI-LWyC4aWpeYwNrs7OIIwzsEnOT7jprAQ9MuSfe4fFxClshwTZAx6jfuus321axZYP1SoDOrBXVJCQkMl6fExI35NQVEoKBjLg8DJWMfMp15FDHLBbc86WQHhPCuHUu0Q16gkrxJFanCHMtHCZcR4DP5HlKaA1K_WaMKYPoUAVVlyMWFGaXBIR7nLu-a7sVRLKuD6a5aEeQyzOTADo9WHV60Ok-9Vals79UOke7BFIiMgpvFZXS2VxdGKCSystsMv4A8RXjYA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RemgvpQWq0tLiQ7kR2NhrJzn0UH5WCyywWrbS3iw7a0u0uwGRoApO8AZ9FF6lr9An6UySXaDHShzIJYoiO5HHP994Pn8D8DmWBPKdJ-lLFTRTJwPLhQgSGQufNkUj8eQoHhyq9rfm3kAOZuB2cham0oeYbrjRyCjnaxrgtCG9cacaOkKAig4epzi_UDWvct9d_kSvLf-yu40mXuW8tdPfagd1YoHgOyfSrXfC85TzIfomYcqjVInIWApZSR6pNHV2mAjlh6EIsUurOLHGxtIYdD4i7psCq30GzymLOKn1b_emglUSr_I8U6xEgL5lYyIT2eAbD3_3AaC9D4vLda01B78nLVLRWX6sXxR2Pb36RyzyKTXZa3hVg2z2tRoVb2DGZfMwVwNuVk9n-QLc9N34bIRom1Hse2xH-LZD1Pg_17-OT64c28q7dvNcMFyDTol8Tww3x1ono3HOipJwzFqkKIol1xji9vJusiEj-gxW0r07lsEG-Nwzl_T5rKBcT5TnaBH6j9EOb2E2O83cO2DKm1CaKDTkFMaxM95TKgKhpJAU_lqC5UkP0fW8kmuuYqWiJGpES8BLU-uzSpVEV_rTXJON9dTGutM96k2f3v9PoRV40e4fdHRn93D_A7zkdP6j5Csvw2xxfuE-Iior7KdyIDDQj9yL_gLGYz8p
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiEutOVHLRTqA9xIm9ixkxw4QJeopUtZLYu0t8hObKmwm66aVKg9wRvwJrxKn6FP0pkku6UckXogl8iK7ES2x_4m_uYbgJexJJBvHUlfKi_MrfQMF8JLZCxcHgo_ceQofjxUe1_CD2M5XoLf81iYVh9i8cONLKNZr8nAZ4XbuRYNnSA-Rf-O0zG_UB2t8sCefUenrXqz38MRfsV5-n60u-d1eQW8r5w4t84Kx3POC3RNgpxHuRKRNnRiJXmk8tyaIhHKFYEIcEarODHaxFJr9D0i7kKBzd6Bu6HyE8oV0Rsu9KokXk04U6yEh66lP1eJ9PnOzc-9gWf_RMXNtpauwMW8Q1o2y7ft09ps5-d_aUX-Rz22Cg86iM3etjaxBku2fAgrHdxm3WJWPYKfIzudTRBrMzr5npoJPu0TMf7yx6_PR-eW7VYD8-5EMNyBjol6T_w2y9KjybRidUM3ZinpiWLN1wxRe3PXZcGIPIONDK6DMtgYy0N9Rq8va8r0RFmOHsPoNvrhCSyXx6VdB6acDqSOAk0uYRxb7RwlIhBKCkmHXxuwOZ8gWbeqVBlXsVJREvnRBvBmpLNZq0mSterTPKMxzhZjnPUHn4aL0tN_qbQF9wa9NOvvHx48g_ucgj8asvImLNcnp_Y5QrLavGjMgEF2y5PoCqrsPdg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template+Assembled+Large%E2%80%90Size+CsPbBr3+Nanocomposite+Films+toward+Flexible%2C+Stable%2C+and+High%E2%80%90Performance+X%E2%80%90Ray+Scintillators&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Wang%2C+Baiqian&rft.au=Peng%2C+Jiali&rft.au=Yang%2C+Xin&rft.au=Cai%2C+Wensi&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=7&rft_id=info:doi/10.1002%2Flpor.202100736&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon