Template Assembled Large‐Size CsPbBr3 Nanocomposite Films toward Flexible, Stable, and High‐Performance X‐Ray Scintillators
Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impede...
Saved in:
Published in | Laser & photonics reviews Vol. 16; no. 7 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impedes their further wide applications. Herein, a template assembled method to prepare large‐size, flexible, and stable CsPbBr3@Polymethyl methacrylate composite films in ambient conditions is developed and their detection performance is studied. The composite films can maintain 94% and 81% of the initial PL intensity after 2000 cycles bending and storing in water over 2520 h, respectively. In addition, the prepared scintillators exhibit not only a low detection limit of 40.1 nGyair s−1 and a high spatial resolution of 8.0 lp mm−1, but also an excellent tolerance against radiation (108 h). Thus, this simple but yet effective method would not doubt pave the way for further development of scintillators and might be well applicable to other metal halides.
X‐ray flexible scintillators of perovksites have emerged as one of the most favorable candidates in medical radiography, security inspection, nuclear radiation monitoring, and space exploration. Coating perovskite nanocrystals with polymer is an effective strategy to improve their stability and reduce heavy metal leakage. Herein, the flexible scintillators of CsPbBr3@Polymethyl methacrylate films exhibit low detection limit and high spatial resolution. |
---|---|
AbstractList | Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impedes their further wide applications. Herein, a template assembled method to prepare large‐size, flexible, and stable CsPbBr3@Polymethyl methacrylate composite films in ambient conditions is developed and their detection performance is studied. The composite films can maintain 94% and 81% of the initial PL intensity after 2000 cycles bending and storing in water over 2520 h, respectively. In addition, the prepared scintillators exhibit not only a low detection limit of 40.1 nGyair s−1 and a high spatial resolution of 8.0 lp mm−1, but also an excellent tolerance against radiation (108 h). Thus, this simple but yet effective method would not doubt pave the way for further development of scintillators and might be well applicable to other metal halides.
X‐ray flexible scintillators of perovksites have emerged as one of the most favorable candidates in medical radiography, security inspection, nuclear radiation monitoring, and space exploration. Coating perovskite nanocrystals with polymer is an effective strategy to improve their stability and reduce heavy metal leakage. Herein, the flexible scintillators of CsPbBr3@Polymethyl methacrylate films exhibit low detection limit and high spatial resolution. Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine, industry, and science. However, the current X‐ray scilltillators based on perovskites still suffer from the issue of poor stability, which impedes their further wide applications. Herein, a template assembled method to prepare large‐size, flexible, and stable CsPbBr3@Polymethyl methacrylate composite films in ambient conditions is developed and their detection performance is studied. The composite films can maintain 94% and 81% of the initial PL intensity after 2000 cycles bending and storing in water over 2520 h, respectively. In addition, the prepared scintillators exhibit not only a low detection limit of 40.1 nGyair s−1 and a high spatial resolution of 8.0 lp mm−1, but also an excellent tolerance against radiation (108 h). Thus, this simple but yet effective method would not doubt pave the way for further development of scintillators and might be well applicable to other metal halides. |
Author | Zang, Zhigang Yang, Xin Lin, Qianqian Wang, Baiqian Xiao, Hongbin Peng, Jiali Cai, Wensi Zhao, Shuangyi |
Author_xml | – sequence: 1 givenname: Baiqian surname: Wang fullname: Wang, Baiqian organization: Chongqing University – sequence: 2 givenname: Jiali surname: Peng fullname: Peng, Jiali organization: Wuhan University – sequence: 3 givenname: Xin surname: Yang fullname: Yang, Xin organization: Chongqing University – sequence: 4 givenname: Wensi surname: Cai fullname: Cai, Wensi organization: Chongqing University – sequence: 5 givenname: Hongbin surname: Xiao fullname: Xiao, Hongbin organization: Chongqing University – sequence: 6 givenname: Shuangyi surname: Zhao fullname: Zhao, Shuangyi email: shyzhao@cqu.edu.cn organization: Chongqing University – sequence: 7 givenname: Qianqian surname: Lin fullname: Lin, Qianqian email: q.lin@whu.edu.cn organization: Wuhan University – sequence: 8 givenname: Zhigang orcidid: 0000-0003-1632-503X surname: Zang fullname: Zang, Zhigang email: zangzg@cqu.edu.cn organization: Chongqing University |
BookMark | eNo9kFFPwjAUhRuDiYC--tzEV8Gu3dr1EYmIySIEePBt6bYOS7p1tiOIT_oP_I3-EosY7su5Jzn3nuTrgU5tagnAdYCGAUL4TjfGDjHC3jBCz0A3iCkZxDHnndMeowvQc26DUOSHdsHXSlaNFq2EI-dklWlZwETYtfz5_F6qDwnHbp7dWwKfRW1yUzXGKR-eKF052JqdsAWcaPmu_OUtXLbiT0VdwKlav_onc2lLYytR5xK-eL8Qe7jMVd0q7WuNdZfgvBTayat_7YPV5GE1ng6S2ePTeJQMNphzOiglKXGOcRGGcZBjllPCRMYIjyLMaJ7LrOCElkVAghBHNOaZyOJIiCAMGS5D0gc3x7eNNW9b6dp0Y7a29o0ppjGljDOPrQ_4MbVTWu7TxqpK2H0aoPSAOD0gTk-I02Q-W5wc-QVv43fO |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH |
DBID | 7SP 7U5 8FD L7M |
DOI | 10.1002/lpor.202100736 |
DatabaseName | Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1863-8899 |
EndPage | n/a |
ExternalDocumentID | LPOR202100736 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 61904023; 11974063 – fundername: Natural Science Foundation of Chongqing funderid: cstc2020jcyj‐jqX0028 |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 3SF 3WU 4.4 52U 66C 8-1 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GODZA HGLYW HVGLF HZ~ IX1 LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O9- OIG P2P P2W ROL SUPJJ W99 WBKPD WIH WIK WOHZO WXSBR XV2 ZZTAW ~S- 7SP 7U5 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY L7M |
ID | FETCH-LOGICAL-j2996-fe3f2c22d4481c27c637ab73955276ccebd936fd131425689bab85aa14472f43 |
IEDL.DBID | DR2 |
ISSN | 1863-8880 |
IngestDate | Tue Jul 15 09:40:31 EDT 2025 Wed Jun 11 08:25:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j2996-fe3f2c22d4481c27c637ab73955276ccebd936fd131425689bab85aa14472f43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1632-503X |
PQID | 2686679707 |
PQPubID | 1016358 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2686679707 wiley_primary_10_1002_lpor_202100736_LPOR202100736 |
PublicationCentury | 2000 |
PublicationDate | July 2022 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Laser & photonics reviews |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2021; 9 2021; 8 2021; 6 2018; 561 2021; 5 2021; 21 2021; 4 2021; 3 2021; 2 2020; 20 2019; 31 2019; 13 2019; 15 2016; 10 2020; 16 2020; 401 2020; 15 2020; 56 2021; 240 2020; 10 2021; 121 2020; 8 2020; 7 2021; 13 2021; 15 2020; 5 2021; 419 2021; 54 2021; 31 2020; 2 2021; 12 2021; 33 2020; 31 2022; 4 2013; 13 2022; 5 2021; 18 2020; 9 2018; 30 2020; 67 2022; 10 2018; 10 |
References_xml | – volume: 6 start-page: 1453 year: 2021 publication-title: ACS Energy Lett. – volume: 401 year: 2020 publication-title: Chem. Eng. J. – volume: 13 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 3275 year: 2021 publication-title: ACS Energy Lett. – volume: 15 start-page: 379 year: 2021 publication-title: Nat. Photonics – volume: 18 year: 2021 publication-title: Mater. Today Phys. – volume: 5 start-page: 881 year: 2022 publication-title: ACS Appl. Nano Mater. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 31 start-page: 3917 year: 2019 publication-title: Chem. Mater. – volume: 21 start-page: 1392 year: 2021 publication-title: Nano Lett. – volume: 2 year: 2021 publication-title: Cell Rep. Phys. Sci. – volume: 15 year: 2021 publication-title: Laser Photonics Rev. – volume: 4 year: 2022 publication-title: EcoMat – volume: 10 start-page: 710 year: 2020 publication-title: Nanomaterials – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 561 start-page: 88 year: 2018 publication-title: Nature – volume: 10 start-page: 8601 year: 2020 publication-title: Sci. Rep. – volume: 16 year: 2020 publication-title: Small – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 3 year: 2021 publication-title: EcoMat – volume: 7 year: 2020 publication-title: Adv. Mater. Interfaces – volume: 121 year: 2021 publication-title: Chem. Rev. – volume: 54 year: 2021 publication-title: J. Phys. D: Appl. Phys. – volume: 5 start-page: 2131 year: 2020 publication-title: ACS Energy Lett. – volume: 240 year: 2021 publication-title: J. Lumin. – volume: 8 year: 2020 publication-title: J. Mater. Chem. C – volume: 9 start-page: 156 year: 2020 publication-title: Light: Sci. Appl. – volume: 9 year: 2021 publication-title: J. Mater. Chem. A – volume: 15 start-page: 462 year: 2020 publication-title: Nat. Nanotechnol. – volume: 419 year: 2021 publication-title: Chem. Eng. J. – volume: 8 year: 2021 publication-title: Adv. Sci. – volume: 56 start-page: 5811 year: 2020 publication-title: Chem. Commun. – volume: 13 start-page: 5366 year: 2019 publication-title: ACS Nano – volume: 4 year: 2021 publication-title: Opto‐Electron. Adv. – volume: 10 start-page: 333 year: 2016 publication-title: Nat. Photonics – volume: 12 start-page: 1531 year: 2021 publication-title: Nat. Commun. – volume: 15 year: 2019 publication-title: Small – volume: 5 year: 2022 publication-title: Opto‐Electronic Adv. – volume: 5 start-page: 4796 year: 2021 publication-title: Mater. Chem. Front. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 5 year: 2021 publication-title: Small Methods – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 13 start-page: 2722 year: 2013 publication-title: Crystal Growth Design – volume: 2 year: 2020 publication-title: EcoMat – volume: 12 start-page: 6919 year: 2021 publication-title: J. Phys. Chem. Lett. – volume: 9 start-page: 112 year: 2020 publication-title: Light: Sci. Appl. – volume: 31 year: 2020 publication-title: Nanotechnology – volume: 20 start-page: 3568 year: 2020 publication-title: Nano Lett. – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 1605 year: 2020 publication-title: Photonics Res. |
SSID | ssj0055556 |
Score | 2.6052728 |
Snippet | Metal halide perovskite‐based high‐performance X‐ray scintillator is considered as one of the most favorable candidates applied in the fields of medicine,... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | CsPbBr3 nanocrystals detection limit flexible films Metal halides Nanocomposites Perovskites Polymethyl methacrylate Scintillation counters Spatial resolution stable X‐ray scintillators |
Title | Template Assembled Large‐Size CsPbBr3 Nanocomposite Films toward Flexible, Stable, and High‐Performance X‐Ray Scintillators |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Flpor.202100736 https://www.proquest.com/docview/2686679707 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4MJy_iZ0TR9ODRwdbSbjsqkRCDShATbku7tQkKg7BxkJP-A3-jv8S-2_jyqLsszdKta_t2z7v3eZ8idOUxAPlKg_QltxqhYpYklFo-86gOG9T2NTiKD4-8_dK4H7DBRhZ_rg-x-uEGlpGt12DgQib1tWjoyOBT498RCPNT0NwGwhagot5KP4qZI0sv8ji1jKtnL1UbbVLfrr6FLzdRavaZaZWRWDYwZ5e81eaprIWLX9qN_3mDfbRXYFB8k0-aA7Sj4kNULvAoLqw9OUKffTWejgwYxRAaHsuRudoB5vj3x9fzcKFwM-nK2xnFZomeADcdCGAKt4ajcYLTjI-LWyC4aWpeYwNrs7OIIwzsEnOT7jprAQ9MuSfe4fFxClshwTZAx6jfuus321axZYP1SoDOrBXVJCQkMl6fExI35NQVEoKBjLg8DJWMfMp15FDHLBbc86WQHhPCuHUu0Q16gkrxJFanCHMtHCZcR4DP5HlKaA1K_WaMKYPoUAVVlyMWFGaXBIR7nLu-a7sVRLKuD6a5aEeQyzOTADo9WHV60Ok-9Vals79UOke7BFIiMgpvFZXS2VxdGKCSystsMv4A8RXjYA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5RemgvpQWq0tLiQ7kR2NhrJzn0UH5WCyywWrbS3iw7a0u0uwGRoApO8AZ9FF6lr9An6UySXaDHShzIJYoiO5HHP994Pn8D8DmWBPKdJ-lLFTRTJwPLhQgSGQufNkUj8eQoHhyq9rfm3kAOZuB2cham0oeYbrjRyCjnaxrgtCG9cacaOkKAig4epzi_UDWvct9d_kSvLf-yu40mXuW8tdPfagd1YoHgOyfSrXfC85TzIfomYcqjVInIWApZSR6pNHV2mAjlh6EIsUurOLHGxtIYdD4i7psCq30GzymLOKn1b_emglUSr_I8U6xEgL5lYyIT2eAbD3_3AaC9D4vLda01B78nLVLRWX6sXxR2Pb36RyzyKTXZa3hVg2z2tRoVb2DGZfMwVwNuVk9n-QLc9N34bIRom1Hse2xH-LZD1Pg_17-OT64c28q7dvNcMFyDTol8Tww3x1ono3HOipJwzFqkKIol1xji9vJusiEj-gxW0r07lsEG-Nwzl_T5rKBcT5TnaBH6j9EOb2E2O83cO2DKm1CaKDTkFMaxM95TKgKhpJAU_lqC5UkP0fW8kmuuYqWiJGpES8BLU-uzSpVEV_rTXJON9dTGutM96k2f3v9PoRV40e4fdHRn93D_A7zkdP6j5Csvw2xxfuE-Iior7KdyIDDQj9yL_gLGYz8p |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiEutOVHLRTqA9xIm9ixkxw4QJeopUtZLYu0t8hObKmwm66aVKg9wRvwJrxKn6FP0pkku6UckXogl8iK7ES2x_4m_uYbgJexJJBvHUlfKi_MrfQMF8JLZCxcHgo_ceQofjxUe1_CD2M5XoLf81iYVh9i8cONLKNZr8nAZ4XbuRYNnSA-Rf-O0zG_UB2t8sCefUenrXqz38MRfsV5-n60u-d1eQW8r5w4t84Kx3POC3RNgpxHuRKRNnRiJXmk8tyaIhHKFYEIcEarODHaxFJr9D0i7kKBzd6Bu6HyE8oV0Rsu9KokXk04U6yEh66lP1eJ9PnOzc-9gWf_RMXNtpauwMW8Q1o2y7ft09ps5-d_aUX-Rz22Cg86iM3etjaxBku2fAgrHdxm3WJWPYKfIzudTRBrMzr5npoJPu0TMf7yx6_PR-eW7VYD8-5EMNyBjol6T_w2y9KjybRidUM3ZinpiWLN1wxRe3PXZcGIPIONDK6DMtgYy0N9Rq8va8r0RFmOHsPoNvrhCSyXx6VdB6acDqSOAk0uYRxb7RwlIhBKCkmHXxuwOZ8gWbeqVBlXsVJREvnRBvBmpLNZq0mSterTPKMxzhZjnPUHn4aL0tN_qbQF9wa9NOvvHx48g_ucgj8asvImLNcnp_Y5QrLavGjMgEF2y5PoCqrsPdg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Template+Assembled+Large%E2%80%90Size+CsPbBr3+Nanocomposite+Films+toward+Flexible%2C+Stable%2C+and+High%E2%80%90Performance+X%E2%80%90Ray+Scintillators&rft.jtitle=Laser+%26+photonics+reviews&rft.au=Wang%2C+Baiqian&rft.au=Peng%2C+Jiali&rft.au=Yang%2C+Xin&rft.au=Cai%2C+Wensi&rft.date=2022-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1863-8880&rft.eissn=1863-8899&rft.volume=16&rft.issue=7&rft_id=info:doi/10.1002%2Flpor.202100736&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-8880&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-8880&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-8880&client=summon |