Passivated Perovskite Crystallization via g‐C3N4 for High‐Performance Solar Cells

Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perov...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 28; no. 7
Main Authors Jiang, Lu‐Lu, Wang, Zhao‐Kui, Li, Meng, Zhang, Cong‐Cong, Ye, Qing‐Qing, Hu, Ke‐Hao, Lu, Ding‐Ze, Fang, Peng‐Fei, Liao, Liang‐Sheng
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 14.02.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density. Graphitic carbon nitride (g‐C3N4) is incorporated into the perovskite precursor solution to modify the perovskite film by controlling the perovskite crystallization, reducing the intrinsic defect density, and improving the film conductivity. As a result, a champion device with a maximum power conversion efficiency of 19.49% is approached.
AbstractList Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density. Graphitic carbon nitride (g‐C3N4) is incorporated into the perovskite precursor solution to modify the perovskite film by controlling the perovskite crystallization, reducing the intrinsic defect density, and improving the film conductivity. As a result, a champion device with a maximum power conversion efficiency of 19.49% is approached.
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high-performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution-processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g-C3N4) into the perovskite layer. The addition of g-C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g-C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light-absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.
Author Wang, Zhao‐Kui
Jiang, Lu‐Lu
Zhang, Cong‐Cong
Liao, Liang‐Sheng
Li, Meng
Lu, Ding‐Ze
Hu, Ke‐Hao
Fang, Peng‐Fei
Ye, Qing‐Qing
Author_xml – sequence: 1
  givenname: Lu‐Lu
  surname: Jiang
  fullname: Jiang, Lu‐Lu
  organization: Wuhan University
– sequence: 2
  givenname: Zhao‐Kui
  orcidid: 0000-0003-1707-499X
  surname: Wang
  fullname: Wang, Zhao‐Kui
  email: zkwang@suda.edu.cn
  organization: Soochow University
– sequence: 3
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: Soochow University
– sequence: 4
  givenname: Cong‐Cong
  surname: Zhang
  fullname: Zhang, Cong‐Cong
  organization: Soochow University
– sequence: 5
  givenname: Qing‐Qing
  surname: Ye
  fullname: Ye, Qing‐Qing
  organization: Soochow University
– sequence: 6
  givenname: Ke‐Hao
  surname: Hu
  fullname: Hu, Ke‐Hao
  organization: Soochow University
– sequence: 7
  givenname: Ding‐Ze
  surname: Lu
  fullname: Lu, Ding‐Ze
  organization: Wuhan University
– sequence: 8
  givenname: Peng‐Fei
  surname: Fang
  fullname: Fang, Peng‐Fei
  email: fangpf@whu.edu.cn
  organization: Wuhan University
– sequence: 9
  givenname: Liang‐Sheng
  surname: Liao
  fullname: Liao, Liang‐Sheng
  email: lsliao@suda.edu.cn
  organization: Soochow University
BookMark eNo9kEFPwkAQhTcGEwG9et7Ec3G223bbI6kiJqgkSuJts22nuFi6uFtq8ORP8Df6SyzBcJr5kvdm8t6A9GpTIyGXDEYMwL9WRbke-cAEhLEIT0ifRSzyOPhx77iz1zMycG4FnUzwoE8Wc-WcblWDBZ2jNa171w3S1O5co6pKf6lGm5q2WtHl7_dPyh8DWhpLp3r51nFn6Wit6hzps6mUpSlWlTsnp6WqHF78zyFZTG5f0qk3e7q7T8czb-UnSej5ESDGEKtciExkmJV5LLgIiiIGFkIUZAECsrLMech95DwQHBNUEeQi5ljyIbk63N1Y87FF18iV2dq6eyn9LuI-JECnSg6qT13hTm6sXiu7kwzkvje5700ee5Pjm8nDkfgfUvtnWA
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201705875
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM201705875
Genre article
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  funderid: BK20170059
– fundername: National Key R&D Program of China
  funderid: 2016YFA0202400
– fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions
– fundername: Natural Science Foundation of China
  funderid: 61674109
– fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-j2995-260ee808ac77b7bebfc87374dd8015064b4e0e1ffc3532e33473e9ea60c783ef3
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 05:23:42 EDT 2025
Wed Jan 22 16:54:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j2995-260ee808ac77b7bebfc87374dd8015064b4e0e1ffc3532e33473e9ea60c783ef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1707-499X
PQID 2001017700
PQPubID 2045204
PageCount 8
ParticipantIDs proquest_journals_2001017700
wiley_primary_10_1002_adfm_201705875_ADFM201705875
PublicationCentury 2000
PublicationDate February 14, 2018
PublicationDateYYYYMMDD 2018-02-14
PublicationDate_xml – month: 02
  year: 2018
  text: February 14, 2018
  day: 14
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 118
2017; 5
2017; 7
2015; 14
2017; 8
2015; 6
2015; 5
2015; 3
2015; 347
2016; 108
2015; 51
2017; 43
2015; 10
2016; 10
2013; 342
2013; 102
2017; 29
2015; 106
2015; 8
2014; 136
2017; 9
2016; 11
2016; 4
2016; 6
2014; 105
2016; 7
2015; 25
2016; 1
2013; 14
2016; 2
2016; 3
2015; 137
2017; 17
2017; 11
2017; 10
2003; 3
2013; 499
2015; 517
2009; 5
2016; 28
2016; 49
2014; 345
2014; 126
2016; 9
References_xml – volume: 17
  start-page: 3231
  year: 2017
  publication-title: Nano Lett.
– volume: 342
  start-page: 341
  year: 2013
  publication-title: Science
– volume: 126
  start-page: 10056
  year: 2014
  publication-title: Angew. Chem.
– volume: 4
  start-page: 15088
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1602017
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 102
  start-page: 113305
  year: 2013
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 964
  year: 2015
  publication-title: Nat. Mater.
– volume: 7
  start-page: 1701503
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 345
  start-page: 542
  year: 2014
  publication-title: Science
– volume: 49
  start-page: 1429
  year: 2016
  publication-title: Acc. Chem. Res.
– volume: 9
  start-page: 1486
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 29
  start-page: 1604758
  year: 2017
  publication-title: Adv. Mater.
– volume: 43
  start-page: 4
  year: 2017
  publication-title: Nano Energy
– volume: 1
  start-page: 15001
  year: 2016
  publication-title: Nat. Energy
– volume: 9
  start-page: 2892
  year: 2016
  publication-title: Energy Environ. Sci.
– volume: 9
  start-page: 13240
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 9176
  year: 2017
  publication-title: ACS Nano
– volume: 8
  start-page: 15688
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 68
  year: 2009
  publication-title: Nat. Phys.
– volume: 28
  start-page: 8681
  year: 2016
  publication-title: Adv. Mater.
– volume: 9
  start-page: 3231
  year: 2017
  publication-title: Nanoscale
– volume: 347
  start-page: 522
  year: 2015
  publication-title: Science
– volume: 136
  start-page: 13249
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 106
  start-page: 033901
  year: 2015
  publication-title: Appl. Phys. Lett.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 2
  start-page: 1501170
  year: 2016
  publication-title: Sci. Adv.
– volume: 4
  start-page: 1326
  year: 2016
  publication-title: J. Mater. Chem. A
– volume: 5
  start-page: 1436
  year: 2017
  publication-title: ACS Sustainable Chem. Eng.
– volume: 5
  start-page: 2572
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 137
  start-page: 11445
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 686
  year: 2016
  publication-title: Adv. Mater.
– volume: 105
  start-page: 113301
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 1606774
  year: 2017
  publication-title: Adv. Mater.
– volume: 9
  start-page: 47
  year: 2017
  publication-title: Nano‐Micro Lett.
– volume: 8
  start-page: 2725
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 3
  start-page: 1500324
  year: 2016
  publication-title: Adv. Sci.
– volume: 3
  start-page: 125
  year: 2003
  publication-title: Cryst. Growth Des.
– volume: 14
  start-page: 2698
  year: 2013
  publication-title: Org. Electron.
– volume: 29
  start-page: 462
  year: 2017
  publication-title: Chem. Mater.
– volume: 29
  start-page: 1700183
  year: 2017
  publication-title: Adv. Mater.
– volume: 108
  start-page: 053301
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 10228
  year: 2016
  publication-title: Nat. Commun.
– volume: 10
  start-page: 808
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 51
  start-page: 9659
  year: 2015
  publication-title: Chem. Commun.
– volume: 10
  start-page: 2328
  year: 2017
  publication-title: Energy Environ. Sci.
– volume: 25
  start-page: 6671
  year: 2015
  publication-title: Adv. Funct. Mater.
– volume: 28
  start-page: 6695
  year: 2016
  publication-title: Adv. Mater.
– volume: 3
  start-page: 19123
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 118
  start-page: 5615
  year: 2014
  publication-title: J. Phys. Chem. C
– volume: 6
  start-page: 7081
  year: 2015
  publication-title: Nat. Commun.
– volume: 10
  start-page: 355
  year: 2015
  publication-title: Nanotoday
– volume: 6
  start-page: 1601156
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 5479
  year: 2016
  publication-title: ACS Nano
– volume: 29
  start-page: 1604545
  year: 2017
  publication-title: Adv. Mater.
– volume: 517
  start-page: 476
  year: 2015
  publication-title: Nature
– volume: 5
  start-page: 1400960
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 345
  start-page: 295
  year: 2014
  publication-title: Science
SSID ssj0017734
Score 2.6278777
Snippet Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices....
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high-performance photovoltaic devices....
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Carbon nitride
Charge density
Charge transport
Crystal defects
Crystallization
Defects
Energy conversion efficiency
Grain boundaries
Grain size
Materials science
passivation
perovskite crystallization
perovskite solar cells
Photovoltaic cells
Solar cells
Title Passivated Perovskite Crystallization via g‐C3N4 for High‐Performance Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201705875
https://www.proquest.com/docview/2001017700
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YvOjBfyOKZA9eC2136S5HUiTECCEiCbdmd7s1agOGAomefASf0Sdxpy0FPOqte9imnc7MfjOd-QahG9dEXEYRIisUHrfMCdG0pDT2yBWlYdNzKYsgUOz1ve6I3o0b440u_owfoki4gWWk_hoMXMikviYNFWEEneRAB2Mwt3HCULAFqOih4I9yGMt-K3sOFHg54xVro-3Wt7dv4ctNlJoeM51DJFYPmFWXvNYWc1lTH7-4G__zBkfoIMeguJUpzTHa0ZMTtL_BTHiKRgMDqmHwmQ7xQM-mywSyvNifvRs0Gcd58yZePgv89P355ZM-xQb-YigbMevBuh0BDyF4xr6O4-QMjTq3j37XyicwWC8utG6bYEdrbnOhGJNMahkpzgijYchTakIqqba1E0WKNIirCaGM6KYWnq0YJzoi56g0mU70BcJp4oQ0pRC2MjGrFA0h4M7AxyYV9cqosvoCQW5GCczIBJfBbLuM3FSUwVtGwhFkdMtuAEIMCiEGrXanV6wu_7LpCu2Zaw6V2Q6toNJ8ttDXBnjMZRXtttq9-2E1VbIfBmjTHQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTsMwEB2VsgAW_BF_vIBlILHdOF2wQC1VC7SqgErdBTtxEFAV1B8qK47AVbgKR-AkeJK0fJZILFg6UqzEM2O_Gc-8AdilxuMyihBZoXQ9y5wQeUspY49ewHmYdykXETqK1ZpbbvCTZq6ZgddRLUzCDzEOuKFlxPs1GjgGpA8-WUNlGGEpOfLBGNCd5lWe6uGj8dq6h5WiEfEepaXjy0LZShsLWLcUK5INhtfasz0ZCKGE0ioKPMEED0MvZtzjimtbO1EUsByjmjEumM5r6dqB8JiOmJl3AiaxjTjS9RfPx4xVjhDJRbbrYEqZ0xzxRNr04Pv3fkO0X3FxfLCV5uBttCRJPsvdfr-n9oOnH2yR_2rN5mE2hdnkKLGLBcjo9iLMfCFfXIJG3fgN2NtNh6SuO_eDLgaySaEzNIC51UrrU8ngRpLr9-eXAqtxYhA-wcwYM65_VlyQC4wPkIJutbrL0PiT_1qBbPu-rVeBxLEhlldS2oFxy5XMSYkzI-WcCri7BpsjkfvpTtHFNqC4KwrbXgMay85_SHhG_IRRmvooNH8sNP-oWKqOR-u_eWkHpsqX1TP_rFI73YBp89zDRHSHb0K21-nrLYOzemo71mwCV3-tFh_1GS-q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTsMwEB3xkRAs-CP-eAHLlMR242TBomqp-LWqgErdBTtxEFAV1BZQWXEEjsJVuAInwZOkhbJE6oKlI8VKPDP2m_HMG4BdajwuowixFUnXs8wJ4VtKGXv0Qs4j36VcxOgoVqruUZ2fNPKNMXjv18Kk_BCDgBtaRrJfo4E_RPH-N2mojGKsJEc6GIO5s7TKU917Nk5b5-C4ZCS8R2n58LJ4ZGV9BaxbigXJBsJr7dmeDIVQQmkVh55ggkeRlxDuccW1rZ04DlmeUc0YF0z7Wrp2KDymY2bmHYdJ7to-NosonQ8Iqxwh0nts18GMMqfRp4m06f7w9w4B2p-wODnXynPw0V-RNJ3lLvfYVbnw5RdZ5H9asnmYzUA2KaRWsQBjurUIMz-oF5egXjNeA3Z20xGp6fb9UwfD2KTY7hm43Gxm1ank6UaS68_XtyKrcmLwPcG8GDOufddbkAuMDpCibjY7y1AfyX-twETrvqVXgSSRIeYrKe3QOOVK5qXEmZFwToXcXYPNvsSDbJ_oYBNQ3BOFba8BTUQXPKQsI0HKJ00DFFowEFpQKJUrg9H6X17agalaqRycHVdPN2DaPPYwC93hmzDRbT_qLQOyumo70WsCV6PWii8UXC5Z
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passivated+Perovskite+Crystallization+via+g-C3N4+for+High-Performance+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%2C+Lu-Lu&rft.au=Wang%2C+Zhao-Kui&rft.au=Li%2C+Meng&rft.au=Zhang%2C+Cong-Cong&rft.date=2018-02-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.201705875&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon