Passivated Perovskite Crystallization via g‐C3N4 for High‐Performance Solar Cells
Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perov...
Saved in:
Published in | Advanced functional materials Vol. 28; no. 7 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
14.02.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.
Graphitic carbon nitride (g‐C3N4) is incorporated into the perovskite precursor solution to modify the perovskite film by controlling the perovskite crystallization, reducing the intrinsic defect density, and improving the film conductivity. As a result, a champion device with a maximum power conversion efficiency of 19.49% is approached. |
---|---|
AbstractList | Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution‐processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g‐C3N4) into the perovskite layer. The addition of g‐C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g‐C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light‐absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density.
Graphitic carbon nitride (g‐C3N4) is incorporated into the perovskite precursor solution to modify the perovskite film by controlling the perovskite crystallization, reducing the intrinsic defect density, and improving the film conductivity. As a result, a champion device with a maximum power conversion efficiency of 19.49% is approached. Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high-performance photovoltaic devices. However, defects and related trap sites are generated inevitably at grain boundaries and on surfaces of solution-processed polycrystalline perovskite films. Seeking facial and efficient methods to passivate the perovskite film for minimizing defect density is necessary for further improving the photovoltaic performance. Here, a convenient strategy is developed to improve perovskite crystallization by incorporating a 2D polymeric material of graphitic carbon nitride (g-C3N4) into the perovskite layer. The addition of g-C3N4 results in improved crystalline quality of perovskite film with large grain size by retarding the crystallization rate, and reduced intrinsic defect density by passivating charge recombination centers around the grain boundaries. In addition, g-C3N4 doping increases the film conductivity of perovskite layer, which is beneficial for charge transport in perovskite light-absorption layer. Consequently, a champion device with a maximum power conversion efficiency of 19.49% is approached owing to a remarkable improvement in fill factor from 0.65 to 0.74. This finding demonstrates a simple method to passivate the perovskite film by controlling the crystallization and reducing the defect density. |
Author | Wang, Zhao‐Kui Jiang, Lu‐Lu Zhang, Cong‐Cong Liao, Liang‐Sheng Li, Meng Lu, Ding‐Ze Hu, Ke‐Hao Fang, Peng‐Fei Ye, Qing‐Qing |
Author_xml | – sequence: 1 givenname: Lu‐Lu surname: Jiang fullname: Jiang, Lu‐Lu organization: Wuhan University – sequence: 2 givenname: Zhao‐Kui orcidid: 0000-0003-1707-499X surname: Wang fullname: Wang, Zhao‐Kui email: zkwang@suda.edu.cn organization: Soochow University – sequence: 3 givenname: Meng surname: Li fullname: Li, Meng organization: Soochow University – sequence: 4 givenname: Cong‐Cong surname: Zhang fullname: Zhang, Cong‐Cong organization: Soochow University – sequence: 5 givenname: Qing‐Qing surname: Ye fullname: Ye, Qing‐Qing organization: Soochow University – sequence: 6 givenname: Ke‐Hao surname: Hu fullname: Hu, Ke‐Hao organization: Soochow University – sequence: 7 givenname: Ding‐Ze surname: Lu fullname: Lu, Ding‐Ze organization: Wuhan University – sequence: 8 givenname: Peng‐Fei surname: Fang fullname: Fang, Peng‐Fei email: fangpf@whu.edu.cn organization: Wuhan University – sequence: 9 givenname: Liang‐Sheng surname: Liao fullname: Liao, Liang‐Sheng email: lsliao@suda.edu.cn organization: Soochow University |
BookMark | eNo9kEFPwkAQhTcGEwG9et7Ec3G223bbI6kiJqgkSuJts22nuFi6uFtq8ORP8Df6SyzBcJr5kvdm8t6A9GpTIyGXDEYMwL9WRbke-cAEhLEIT0ifRSzyOPhx77iz1zMycG4FnUzwoE8Wc-WcblWDBZ2jNa171w3S1O5co6pKf6lGm5q2WtHl7_dPyh8DWhpLp3r51nFn6Wit6hzps6mUpSlWlTsnp6WqHF78zyFZTG5f0qk3e7q7T8czb-UnSej5ESDGEKtciExkmJV5LLgIiiIGFkIUZAECsrLMech95DwQHBNUEeQi5ljyIbk63N1Y87FF18iV2dq6eyn9LuI-JECnSg6qT13hTm6sXiu7kwzkvje5700ee5Pjm8nDkfgfUvtnWA |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201705875 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM201705875 |
Genre | article |
GrantInformation_xml | – fundername: Natural Science Foundation of Jiangsu Province funderid: BK20170059 – fundername: National Key R&D Program of China funderid: 2016YFA0202400 – fundername: Priority Academic Program Development of Jiangsu Higher Education Institutions – fundername: Natural Science Foundation of China funderid: 61674109 – fundername: Collaborative Innovation Center of Suzhou Nano Science and Technology |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-j2995-260ee808ac77b7bebfc87374dd8015064b4e0e1ffc3532e33473e9ea60c783ef3 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 05:23:42 EDT 2025 Wed Jan 22 16:54:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j2995-260ee808ac77b7bebfc87374dd8015064b4e0e1ffc3532e33473e9ea60c783ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1707-499X |
PQID | 2001017700 |
PQPubID | 2045204 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2001017700 wiley_primary_10_1002_adfm_201705875_ADFM201705875 |
PublicationCentury | 2000 |
PublicationDate | February 14, 2018 |
PublicationDateYYYYMMDD | 2018-02-14 |
PublicationDate_xml | – month: 02 year: 2018 text: February 14, 2018 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2014; 118 2017; 5 2017; 7 2015; 14 2017; 8 2015; 6 2015; 5 2015; 3 2015; 347 2016; 108 2015; 51 2017; 43 2015; 10 2016; 10 2013; 342 2013; 102 2017; 29 2015; 106 2015; 8 2014; 136 2017; 9 2016; 11 2016; 4 2016; 6 2014; 105 2016; 7 2015; 25 2016; 1 2013; 14 2016; 2 2016; 3 2015; 137 2017; 17 2017; 11 2017; 10 2003; 3 2013; 499 2015; 517 2009; 5 2016; 28 2016; 49 2014; 345 2014; 126 2016; 9 |
References_xml | – volume: 17 start-page: 3231 year: 2017 publication-title: Nano Lett. – volume: 342 start-page: 341 year: 2013 publication-title: Science – volume: 126 start-page: 10056 year: 2014 publication-title: Angew. Chem. – volume: 4 start-page: 15088 year: 2016 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1602017 year: 2017 publication-title: Adv. Energy Mater. – volume: 102 start-page: 113305 year: 2013 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 964 year: 2015 publication-title: Nat. Mater. – volume: 7 start-page: 1701503 year: 2017 publication-title: Adv. Energy Mater. – volume: 345 start-page: 542 year: 2014 publication-title: Science – volume: 49 start-page: 1429 year: 2016 publication-title: Acc. Chem. Res. – volume: 9 start-page: 1486 year: 2016 publication-title: Energy Environ. Sci. – volume: 29 start-page: 1604758 year: 2017 publication-title: Adv. Mater. – volume: 43 start-page: 4 year: 2017 publication-title: Nano Energy – volume: 1 start-page: 15001 year: 2016 publication-title: Nat. Energy – volume: 9 start-page: 2892 year: 2016 publication-title: Energy Environ. Sci. – volume: 9 start-page: 13240 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 9176 year: 2017 publication-title: ACS Nano – volume: 8 start-page: 15688 year: 2017 publication-title: Nat. Commun. – volume: 5 start-page: 68 year: 2009 publication-title: Nat. Phys. – volume: 28 start-page: 8681 year: 2016 publication-title: Adv. Mater. – volume: 9 start-page: 3231 year: 2017 publication-title: Nanoscale – volume: 347 start-page: 522 year: 2015 publication-title: Science – volume: 136 start-page: 13249 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 106 start-page: 033901 year: 2015 publication-title: Appl. Phys. Lett. – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 2 start-page: 1501170 year: 2016 publication-title: Sci. Adv. – volume: 4 start-page: 1326 year: 2016 publication-title: J. Mater. Chem. A – volume: 5 start-page: 1436 year: 2017 publication-title: ACS Sustainable Chem. Eng. – volume: 5 start-page: 2572 year: 2017 publication-title: J. Mater. Chem. A – volume: 137 start-page: 11445 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 686 year: 2016 publication-title: Adv. Mater. – volume: 105 start-page: 113301 year: 2014 publication-title: Appl. Phys. Lett. – volume: 29 start-page: 1606774 year: 2017 publication-title: Adv. Mater. – volume: 9 start-page: 47 year: 2017 publication-title: Nano‐Micro Lett. – volume: 8 start-page: 2725 year: 2015 publication-title: Energy Environ. Sci. – volume: 3 start-page: 1500324 year: 2016 publication-title: Adv. Sci. – volume: 3 start-page: 125 year: 2003 publication-title: Cryst. Growth Des. – volume: 14 start-page: 2698 year: 2013 publication-title: Org. Electron. – volume: 29 start-page: 462 year: 2017 publication-title: Chem. Mater. – volume: 29 start-page: 1700183 year: 2017 publication-title: Adv. Mater. – volume: 108 start-page: 053301 year: 2016 publication-title: Appl. Phys. Lett. – volume: 7 start-page: 10228 year: 2016 publication-title: Nat. Commun. – volume: 10 start-page: 808 year: 2017 publication-title: Energy Environ. Sci. – volume: 51 start-page: 9659 year: 2015 publication-title: Chem. Commun. – volume: 10 start-page: 2328 year: 2017 publication-title: Energy Environ. Sci. – volume: 25 start-page: 6671 year: 2015 publication-title: Adv. Funct. Mater. – volume: 28 start-page: 6695 year: 2016 publication-title: Adv. Mater. – volume: 3 start-page: 19123 year: 2015 publication-title: J. Mater. Chem. A – volume: 118 start-page: 5615 year: 2014 publication-title: J. Phys. Chem. C – volume: 6 start-page: 7081 year: 2015 publication-title: Nat. Commun. – volume: 10 start-page: 355 year: 2015 publication-title: Nanotoday – volume: 6 start-page: 1601156 year: 2016 publication-title: Adv. Energy Mater. – volume: 10 start-page: 5479 year: 2016 publication-title: ACS Nano – volume: 29 start-page: 1604545 year: 2017 publication-title: Adv. Mater. – volume: 517 start-page: 476 year: 2015 publication-title: Nature – volume: 5 start-page: 1400960 year: 2015 publication-title: Adv. Energy Mater. – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 345 start-page: 295 year: 2014 publication-title: Science |
SSID | ssj0017734 |
Score | 2.6278777 |
Snippet | Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high‐performance photovoltaic devices.... Organometallic halide perovskite films with good surface morphology and large grain size are desirable for obtaining high-performance photovoltaic devices.... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Carbon nitride Charge density Charge transport Crystal defects Crystallization Defects Energy conversion efficiency Grain boundaries Grain size Materials science passivation perovskite crystallization perovskite solar cells Photovoltaic cells Solar cells |
Title | Passivated Perovskite Crystallization via g‐C3N4 for High‐Performance Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201705875 https://www.proquest.com/docview/2001017700 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YvOjBfyOKZA9eC2136S5HUiTECCEiCbdmd7s1agOGAomefASf0Sdxpy0FPOqte9imnc7MfjOd-QahG9dEXEYRIisUHrfMCdG0pDT2yBWlYdNzKYsgUOz1ve6I3o0b440u_owfoki4gWWk_hoMXMikviYNFWEEneRAB2Mwt3HCULAFqOih4I9yGMt-K3sOFHg54xVro-3Wt7dv4ctNlJoeM51DJFYPmFWXvNYWc1lTH7-4G__zBkfoIMeguJUpzTHa0ZMTtL_BTHiKRgMDqmHwmQ7xQM-mywSyvNifvRs0Gcd58yZePgv89P355ZM-xQb-YigbMevBuh0BDyF4xr6O4-QMjTq3j37XyicwWC8utG6bYEdrbnOhGJNMahkpzgijYchTakIqqba1E0WKNIirCaGM6KYWnq0YJzoi56g0mU70BcJp4oQ0pRC2MjGrFA0h4M7AxyYV9cqosvoCQW5GCczIBJfBbLuM3FSUwVtGwhFkdMtuAEIMCiEGrXanV6wu_7LpCu2Zaw6V2Q6toNJ8ttDXBnjMZRXtttq9-2E1VbIfBmjTHQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTsMwEB2VsgAW_BF_vIBlILHdOF2wQC1VC7SqgErdBTtxEFAV1B8qK47AVbgKR-AkeJK0fJZILFg6UqzEM2O_Gc-8AdilxuMyihBZoXQ9y5wQeUspY49ewHmYdykXETqK1ZpbbvCTZq6ZgddRLUzCDzEOuKFlxPs1GjgGpA8-WUNlGGEpOfLBGNCd5lWe6uGj8dq6h5WiEfEepaXjy0LZShsLWLcUK5INhtfasz0ZCKGE0ioKPMEED0MvZtzjimtbO1EUsByjmjEumM5r6dqB8JiOmJl3AiaxjTjS9RfPx4xVjhDJRbbrYEqZ0xzxRNr04Pv3fkO0X3FxfLCV5uBttCRJPsvdfr-n9oOnH2yR_2rN5mE2hdnkKLGLBcjo9iLMfCFfXIJG3fgN2NtNh6SuO_eDLgaySaEzNIC51UrrU8ngRpLr9-eXAqtxYhA-wcwYM65_VlyQC4wPkIJutbrL0PiT_1qBbPu-rVeBxLEhlldS2oFxy5XMSYkzI-WcCri7BpsjkfvpTtHFNqC4KwrbXgMay85_SHhG_IRRmvooNH8sNP-oWKqOR-u_eWkHpsqX1TP_rFI73YBp89zDRHSHb0K21-nrLYOzemo71mwCV3-tFh_1GS-q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTsMwEB3xkRAs-CP-eAHLlMR242TBomqp-LWqgErdBTtxEFAV1BZQWXEEjsJVuAInwZOkhbJE6oKlI8VKPDP2m_HMG4BdajwuowixFUnXs8wJ4VtKGXv0Qs4j36VcxOgoVqruUZ2fNPKNMXjv18Kk_BCDgBtaRrJfo4E_RPH-N2mojGKsJEc6GIO5s7TKU917Nk5b5-C4ZCS8R2n58LJ4ZGV9BaxbigXJBsJr7dmeDIVQQmkVh55ggkeRlxDuccW1rZ04DlmeUc0YF0z7Wrp2KDymY2bmHYdJ7to-NosonQ8Iqxwh0nts18GMMqfRp4m06f7w9w4B2p-wODnXynPw0V-RNJ3lLvfYVbnw5RdZ5H9asnmYzUA2KaRWsQBjurUIMz-oF5egXjNeA3Z20xGp6fb9UwfD2KTY7hm43Gxm1ank6UaS68_XtyKrcmLwPcG8GDOufddbkAuMDpCibjY7y1AfyX-twETrvqVXgSSRIeYrKe3QOOVK5qXEmZFwToXcXYPNvsSDbJ_oYBNQ3BOFba8BTUQXPKQsI0HKJ00DFFowEFpQKJUrg9H6X17agalaqRycHVdPN2DaPPYwC93hmzDRbT_qLQOyumo70WsCV6PWii8UXC5Z |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passivated+Perovskite+Crystallization+via+g-C3N4+for+High-Performance+Solar+Cells&rft.jtitle=Advanced+functional+materials&rft.au=Jiang%2C+Lu-Lu&rft.au=Wang%2C+Zhao-Kui&rft.au=Li%2C+Meng&rft.au=Zhang%2C+Cong-Cong&rft.date=2018-02-14&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=28&rft.issue=7&rft_id=info:doi/10.1002%2Fadfm.201705875&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |