Single Semi‐Metallic Selenium Atoms on Ti3C2 MXene Nanosheets as Excellent Cathode for Lithium–Oxygen Batteries
Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challen...
Saved in:
Published in | Advanced functional materials Vol. 31; no. 29 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc
01.07.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challenge and importance. Herein, a CO2‐assisted thermal‐reaction strategy is developed to fabricate isolated semi‐metallic selenium single‐atom‐doped Ti3C2 MXene catalyst (SASe‐Ti3C2) as cathodes for high‐performance Li–O2 batteries. The isolated moieties of single Se atom catalysis centers can function as active catalytic centers to drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide (Li2O2) discharge product, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Theoretical simulations reveal that the interaction between Se‐involved moieties and Ti3C2 substrate greatly enhances the intrinsic LiO2‐absorption ability and fundamentally promotes the charge transfer between electrode and Li2O2 product, deeply ameliorating the round‐trip overpotential. The well‐designed SASe–Ti3C2 electrode exhibits decreased charge/discharge polarization (1.10 V vs Li/Li+), ultrahigh discharge capacity (17 260 mAh g−1 at 100 mA g−1), and superior durability (170 cycles at 200 mA g−1) as cathode for Li–O2 batteries. The promising results will shed light on the design of highly efficient catalysts for oxygen‐involved systems of future investigation.
Ti3C2 MXene confining isolated semi‐metallic selenium atom (SASe–Ti3C2) catalysts, which are synthesized via a CO2‐assisted thermal‐reaction strategy, are first published in Li–O2 batteries as high‐performance cathodes. The SASe–Ti3C2 catalysts can drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide discharge product, which could further demonstrate greatly enhanced redox kinetics and efficiently ameliorated overpotentials. |
---|---|
AbstractList | Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challenge and importance. Herein, a CO2‐assisted thermal‐reaction strategy is developed to fabricate isolated semi‐metallic selenium single‐atom‐doped Ti3C2 MXene catalyst (SASe‐Ti3C2) as cathodes for high‐performance Li–O2 batteries. The isolated moieties of single Se atom catalysis centers can function as active catalytic centers to drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide (Li2O2) discharge product, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Theoretical simulations reveal that the interaction between Se‐involved moieties and Ti3C2 substrate greatly enhances the intrinsic LiO2‐absorption ability and fundamentally promotes the charge transfer between electrode and Li2O2 product, deeply ameliorating the round‐trip overpotential. The well‐designed SASe–Ti3C2 electrode exhibits decreased charge/discharge polarization (1.10 V vs Li/Li+), ultrahigh discharge capacity (17 260 mAh g−1 at 100 mA g−1), and superior durability (170 cycles at 200 mA g−1) as cathode for Li–O2 batteries. The promising results will shed light on the design of highly efficient catalysts for oxygen‐involved systems of future investigation.
Ti3C2 MXene confining isolated semi‐metallic selenium atom (SASe–Ti3C2) catalysts, which are synthesized via a CO2‐assisted thermal‐reaction strategy, are first published in Li–O2 batteries as high‐performance cathodes. The SASe–Ti3C2 catalysts can drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide discharge product, which could further demonstrate greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challenge and importance. Herein, a CO2‐assisted thermal‐reaction strategy is developed to fabricate isolated semi‐metallic selenium single‐atom‐doped Ti3C2 MXene catalyst (SASe‐Ti3C2) as cathodes for high‐performance Li–O2 batteries. The isolated moieties of single Se atom catalysis centers can function as active catalytic centers to drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide (Li2O2) discharge product, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Theoretical simulations reveal that the interaction between Se‐involved moieties and Ti3C2 substrate greatly enhances the intrinsic LiO2‐absorption ability and fundamentally promotes the charge transfer between electrode and Li2O2 product, deeply ameliorating the round‐trip overpotential. The well‐designed SASe–Ti3C2 electrode exhibits decreased charge/discharge polarization (1.10 V vs Li/Li+), ultrahigh discharge capacity (17 260 mAh g−1 at 100 mA g−1), and superior durability (170 cycles at 200 mA g−1) as cathode for Li–O2 batteries. The promising results will shed light on the design of highly efficient catalysts for oxygen‐involved systems of future investigation. |
Author | Hui, Xiaobin Wang, Peng Zhang, Peng Zhao, Danyang Yin, Longwei Di, Haoxiang |
Author_xml | – sequence: 1 givenname: Danyang surname: Zhao fullname: Zhao, Danyang organization: Shandong University – sequence: 2 givenname: Peng surname: Wang fullname: Wang, Peng organization: Shandong University – sequence: 3 givenname: Haoxiang surname: Di fullname: Di, Haoxiang organization: Shandong University – sequence: 4 givenname: Peng surname: Zhang fullname: Zhang, Peng organization: Shandong University – sequence: 5 givenname: Xiaobin surname: Hui fullname: Hui, Xiaobin organization: Shandong University – sequence: 6 givenname: Longwei orcidid: 0000-0003-3768-6846 surname: Yin fullname: Yin, Longwei email: yinlw@sdu.edu.cn organization: Shandong University |
BookMark | eNo9kE9rwjAYxsPYYOp23Tmwc12SNv1zdJ1uA50HHXgrafNWI23imsj05kcY7Bv6SVZxeHqfB348L_y66FobDQg9UNKnhLAnIcu6zwgjlPAguEIdGtLQ8wmLry-ZLm5R19o1ITSK_KCD7EzpZQV4BrU6Hn4m4ERVqaLtFWi1rfHAmdpio_Fc-SnDkwVowB9CG7sCcBYLi4e7AqoWdzgVbmUk4NI0eKzcqh04Hn6nu_0SNH4WzkGjwN6hm1JUFu7_bw99jobz9M0bT1_f08HYW7MkCbxEQAkFzaWEIMyjUpYFoTKKGEAQiEgwLikHnouS-4L4Oad5FMdcFn6YJGHC_B56PO9uGvO1Beuytdk2un2ZMc5Zq4nHpKWSM_WtKthnm0bVotlnlGQnq9nJanaxmg1eRpNL8_8A1q1yZA |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.202010544 |
DatabaseName | Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | n/a |
ExternalDocumentID | ADFM202010544 |
Genre | article |
GrantInformation_xml | – fundername: Project of “20 items of University” of Jinan funderid: 2019GXRC010 – fundername: State Key Program of National Natural Science of China funderid: 51532005 – fundername: National Nature Science Foundation of China funderid: 51802175 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OC 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ~IA ~WT 7SP 7SR 7U5 8BQ 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M |
ID | FETCH-LOGICAL-j2994-9aefec1bdde46b7fdfc01d772ee44a7a25d15e5baf53a03b51b7885dc36996923 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Sun Jul 13 03:46:39 EDT 2025 Wed Jan 22 16:28:40 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 29 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j2994-9aefec1bdde46b7fdfc01d772ee44a7a25d15e5baf53a03b51b7885dc36996923 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3768-6846 |
PQID | 2552105580 |
PQPubID | 2045204 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2552105580 wiley_primary_10_1002_adfm_202010544_ADFM202010544 |
PublicationCentury | 2000 |
PublicationDate | 2021-07-01 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken |
PublicationTitle | Advanced functional materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 7 2017; 7 2019; 9 2014; 516 2019; 31 2019; 30 2020; 120 2019; 11 2019; 1 2019; 57 2019; 12 2019; 58 2014; 26 2020; 59 2020; 14 2020; 13 2017; 29 2013; 341 2020; 11 2020; 10 2019; 141 2017; 9 2019; 123 2020; 8 2021; 35 2016; 6 2018; 8 2016; 7 2018; 2 2016; 1 2015; 27 2020; 30 2018; 119 2018; 1 2017; 13 2020; 28 2020; 49 2018; 30 2018; 12 2016; 28 2018; 11 |
References_xml | – volume: 10 year: 2020 publication-title: Adv. Energy Mater. – volume: 8 start-page: 5622 year: 2020 publication-title: J. Mater. Chem. A – volume: 28 start-page: 235 year: 2020 publication-title: Energy Storage Mater. – volume: 2 start-page: 1242 year: 2018 publication-title: Joule – volume: 11 start-page: 4251 year: 2020 publication-title: Nat. Commun. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 35 start-page: 669 year: 2021 publication-title: Energy Storage Mater. – volume: 11 start-page: 50 year: 2019 publication-title: Nanoscale – volume: 7 start-page: 7737 year: 2017 publication-title: ACS Catal. – volume: 49 start-page: 2215 year: 2020 publication-title: Chem. Soc. Rev. – volume: 1 start-page: 432 year: 2019 publication-title: ACS Mater. Lett. – volume: 120 start-page: 6626 year: 2020 publication-title: Chem. Rev. – volume: 141 start-page: 4086 year: 2019 publication-title: J. Am. Chem. Soc. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 12 start-page: 3578 year: 2018 publication-title: ACS Nano – volume: 27 start-page: 6137 year: 2015 publication-title: Adv. Mater. – volume: 516 start-page: 78 year: 2014 publication-title: Nature – volume: 14 start-page: 891 year: 2020 publication-title: ACS Nano – volume: 1 start-page: 589 year: 2016 publication-title: ACS Energy Lett. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 31 year: 2019 publication-title: Adv. Mater. – volume: 341 start-page: 1502 year: 2013 publication-title: Science – volume: 8 start-page: 7983 year: 2018 publication-title: ACS Catal. – volume: 9 year: 2019 publication-title: Adv. Energy Mater. – volume: 119 start-page: 1806 year: 2018 publication-title: Chem. Rev. – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 9 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 11 start-page: 1576 year: 2020 publication-title: Nat. Commun. – volume: 6 year: 2016 publication-title: Adv. Energy Mater. – volume: 58 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 26 start-page: 2952 year: 2014 publication-title: Chem. Mater. – volume: 28 start-page: 9620 year: 2016 publication-title: Adv. Mater. – volume: 12 start-page: 2422 year: 2019 publication-title: Energy Environ. Sci. – volume: 30 year: 2019 publication-title: Adv. Funct. Mater. – volume: 1 start-page: 985 year: 2018 publication-title: Nat. Catal. – volume: 11 start-page: 1911 year: 2018 publication-title: ChemSusChem – volume: 57 start-page: 166 year: 2019 publication-title: Nano Energy – volume: 120 year: 2020 publication-title: Chem. Rev. – volume: 123 year: 2019 publication-title: J. Phys. Chem. C – volume: 11 start-page: 2191 year: 2020 publication-title: Nat. Commun. – volume: 13 start-page: 246 year: 2020 publication-title: Energy Environ. Sci. – volume: 13 year: 2017 publication-title: Small |
SSID | ssj0017734 |
Score | 2.626423 |
Snippet | Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Absorption Catalysis Catalysts Catalytic activity Cathodes Charge transfer Discharge electrochemical catalytic activities Electrode polarization Flux density Kinetics Lithium lithium–oxygen batteries Materials science MXenes Nanosheets Oxidation Oxygen oxygen evolution kinetics oxygen reduction kinetics Reaction kinetics Rechargeable batteries Selenium single atom Substrates |
Title | Single Semi‐Metallic Selenium Atoms on Ti3C2 MXene Nanosheets as Excellent Cathode for Lithium–Oxygen Batteries |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010544 https://www.proquest.com/docview/2552105580 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YvOjBfyOKZA9egXa7S9sj4SfEUE0EEm7NbrsNVWiNLQl64hFMfEOexNkWEDzqqdnDNu3szOw3OzPfInQHIEAIxQBg-xavUHWGbxOLqUsEuGVD9Caz_grnod4d0vsRG2118ef8EJsDN2UZmb9WBs5FUvshDeV-oDrJVTaXUUUIqgq2FCp62vBH6aaZp5Xruirw0kdr1kaN1Han7-DLbZSabTOdY8TXH5hXl7xUZ6moeh-_uBv_8wcn6GiFQXEjV5pTtCejM3S4xUx4jpI-PCYS9-U0XC4-HQkYfRJ6MIZdKpxNcSONpwmOIzwIjSbBzgh8JgZXHSdjKdME8wS351lWIEqxajOMfYkBIONemI7hBcvF1-P8HbQX5wyfELBfoGGnPWh2K6v7GSrPRDEK21wG0tMFeEhaF2bgB56m-wDXpaSUm5wwX2eSCR4wg2uGYLqAgJv5nlGHKAuQ5SUqRHEkrxCmDIRhBwYxbEGZrXHDgriKciLB4QjmF1FpvT7uysgSF6Ihou73tLQiIpmg3decosPNyZiJq0TsbkTsNlodZzO6_sukG3RAVFVLVrBbQoX0bSZvAZakooz2Gy2n1y9nKvgNDC7dtw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagDMDAP6L8emAtJI7dJmMFVAWaIkGRukV24qiBNkEklQoTj4DEG_Ik3CVtKYwwRR4cJWff-bvz3XeEHAMIUAoZAJzAlhWOMXyH2QKbCEjbAe9N5_UVbrvavOdXXTHJJsRamIIfYhpwQ83I7TUqOAakT79ZQ2UQYik5XucKzufJArb1Rvr889spg5RZqxUXy1UTU7zM7oS30WCnP-f_QJizODU_aBqrRE0-scgveTwZZurEf_3F3vivf1gjK2MYSuvFvlknczreIMsz5ISbJL2DR1_TOz2IPt_eXQ0wvR_5MIaDKhoOaD1LBilNYtqJrDNG3S6YTQrWOkl7WmcplSm9GOUXA3FGsdIwCTQFjExbUdaDF3y-fdyMXmAD04LkE3z2LXLfuOicNSvjFg2VB4akwo7UofZNBUaSV1UtDELfMANA7FpzLmuSicAUWigZCksalhKmAp9bBL5VBUcLwOU2KcVJrHcI5QKE4YQWsxzFhWNIywbXikumweYoEZTJ_mSBvLGepR44RAxbfNpGmbBc0t5TwdLhFXzMzEMRe1MRe_Xzhjsd7f5l0hFZbHbclte6bF_vkSWGSS55_u4-KWXPQ30AKCVTh_k-_ALxueA_ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdkShgA9cC4ljp8mx6iK2AoJW6i2yY0cNtElFUqlw4hOQ-MN-CeOkLYUjnCIfHCXj8fiNZ-YNQqcAAoTQDACudHiJ6jt8lzhMNxHgjgvem8rqK5q39kWbXnVYZ66KP-eHmF246Z2R2Wu9wQcyOP8mDeUy0JXkOprLKF1Ey9Q2XN28ofYwI5Ayy-U8rmybOsPL7ExpGw1y_nP-D4A5D1Ozc6axgfj0C_P0kuezYSrO_Ldf5I3_-YVNtD4BobiSa80WWlDRNlqboybcQckjPHoKP6p-OH7_aCoA6b3QhzEcU-Gwjytp3E9wHOFWaFUJbnbAaGKw1XHSVSpNME9wfZSFBaIU6zrDWCoMCBnfhGkXXjB-_7wbvYL64pziEzz2XdRu1FvVi9KkQUPpiWhKYZerQPmmABNJbVEOZOAbpgS8rhSlvMwJkyZTTPCAWdywBDMFeNxM-pYNbhZAyz20FMWR2keYMhCGG1jEcgVlrsEtBxwryokCiyOYLKDidH28yS5LPHCHiG7w6RgFRDJBe4Oco8PL2ZiJp0XszUTsVWqN5mx08JdJJ2jlvtbwbi5vrw_RKtEZLlnybhEtpS9DdQQQJRXHmRZ-AW3_3u4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Semi%E2%80%90Metallic+Selenium+Atoms+on+Ti3C2+MXene+Nanosheets+as+Excellent+Cathode+for+Lithium%E2%80%93Oxygen+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Danyang&rft.au=Wang%2C+Peng&rft.au=Haoxiang+Di&rft.au=Zhang%2C+Peng&rft.date=2021-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.202010544&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |