Single Semi‐Metallic Selenium Atoms on Ti3C2 MXene Nanosheets as Excellent Cathode for Lithium–Oxygen Batteries

Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challen...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 31; no. 29
Main Authors Zhao, Danyang, Wang, Peng, Di, Haoxiang, Zhang, Peng, Hui, Xiaobin, Yin, Longwei
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challenge and importance. Herein, a CO2‐assisted thermal‐reaction strategy is developed to fabricate isolated semi‐metallic selenium single‐atom‐doped Ti3C2 MXene catalyst (SASe‐Ti3C2) as cathodes for high‐performance Li–O2 batteries. The isolated moieties of single Se atom catalysis centers can function as active catalytic centers to drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide (Li2O2) discharge product, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Theoretical simulations reveal that the interaction between Se‐involved moieties and Ti3C2 substrate greatly enhances the intrinsic LiO2‐absorption ability and fundamentally promotes the charge transfer between electrode and Li2O2 product, deeply ameliorating the round‐trip overpotential. The well‐designed SASe–Ti3C2 electrode exhibits decreased charge/discharge polarization (1.10 V vs Li/Li+), ultrahigh discharge capacity (17 260 mAh g−1 at 100 mA g−1), and superior durability (170 cycles at 200 mA g−1) as cathode for Li–O2 batteries. The promising results will shed light on the design of highly efficient catalysts for oxygen‐involved systems of future investigation. Ti3C2 MXene confining isolated semi‐metallic selenium atom (SASe–Ti3C2) catalysts, which are synthesized via a CO2‐assisted thermal‐reaction strategy, are first published in Li–O2 batteries as high‐performance cathodes. The SASe–Ti3C2 catalysts can drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide discharge product, which could further demonstrate greatly enhanced redox kinetics and efficiently ameliorated overpotentials.
AbstractList Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challenge and importance. Herein, a CO2‐assisted thermal‐reaction strategy is developed to fabricate isolated semi‐metallic selenium single‐atom‐doped Ti3C2 MXene catalyst (SASe‐Ti3C2) as cathodes for high‐performance Li–O2 batteries. The isolated moieties of single Se atom catalysis centers can function as active catalytic centers to drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide (Li2O2) discharge product, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Theoretical simulations reveal that the interaction between Se‐involved moieties and Ti3C2 substrate greatly enhances the intrinsic LiO2‐absorption ability and fundamentally promotes the charge transfer between electrode and Li2O2 product, deeply ameliorating the round‐trip overpotential. The well‐designed SASe–Ti3C2 electrode exhibits decreased charge/discharge polarization (1.10 V vs Li/Li+), ultrahigh discharge capacity (17 260 mAh g−1 at 100 mA g−1), and superior durability (170 cycles at 200 mA g−1) as cathode for Li–O2 batteries. The promising results will shed light on the design of highly efficient catalysts for oxygen‐involved systems of future investigation. Ti3C2 MXene confining isolated semi‐metallic selenium atom (SASe–Ti3C2) catalysts, which are synthesized via a CO2‐assisted thermal‐reaction strategy, are first published in Li–O2 batteries as high‐performance cathodes. The SASe–Ti3C2 catalysts can drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide discharge product, which could further demonstrate greatly enhanced redox kinetics and efficiently ameliorated overpotentials.
Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing highly efficient catalysts to improve catalytic activity and alleviate oxidation–reduction overpotential of Li–O2 batteries is of great challenge and importance. Herein, a CO2‐assisted thermal‐reaction strategy is developed to fabricate isolated semi‐metallic selenium single‐atom‐doped Ti3C2 MXene catalyst (SASe‐Ti3C2) as cathodes for high‐performance Li–O2 batteries. The isolated moieties of single Se atom catalysis centers can function as active catalytic centers to drastically enhance the intrinsic LiO2‐absorption ability and thus fundamentally modulate the formation/decomposition mechanism of lithium peroxide (Li2O2) discharge product, thus demonstrating greatly enhanced redox kinetics and efficiently ameliorated overpotentials. Theoretical simulations reveal that the interaction between Se‐involved moieties and Ti3C2 substrate greatly enhances the intrinsic LiO2‐absorption ability and fundamentally promotes the charge transfer between electrode and Li2O2 product, deeply ameliorating the round‐trip overpotential. The well‐designed SASe–Ti3C2 electrode exhibits decreased charge/discharge polarization (1.10 V vs Li/Li+), ultrahigh discharge capacity (17 260 mAh g−1 at 100 mA g−1), and superior durability (170 cycles at 200 mA g−1) as cathode for Li–O2 batteries. The promising results will shed light on the design of highly efficient catalysts for oxygen‐involved systems of future investigation.
Author Hui, Xiaobin
Wang, Peng
Zhang, Peng
Zhao, Danyang
Yin, Longwei
Di, Haoxiang
Author_xml – sequence: 1
  givenname: Danyang
  surname: Zhao
  fullname: Zhao, Danyang
  organization: Shandong University
– sequence: 2
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: Shandong University
– sequence: 3
  givenname: Haoxiang
  surname: Di
  fullname: Di, Haoxiang
  organization: Shandong University
– sequence: 4
  givenname: Peng
  surname: Zhang
  fullname: Zhang, Peng
  organization: Shandong University
– sequence: 5
  givenname: Xiaobin
  surname: Hui
  fullname: Hui, Xiaobin
  organization: Shandong University
– sequence: 6
  givenname: Longwei
  orcidid: 0000-0003-3768-6846
  surname: Yin
  fullname: Yin, Longwei
  email: yinlw@sdu.edu.cn
  organization: Shandong University
BookMark eNo9kE9rwjAYxsPYYOp23Tmwc12SNv1zdJ1uA50HHXgrafNWI23imsj05kcY7Bv6SVZxeHqfB348L_y66FobDQg9UNKnhLAnIcu6zwgjlPAguEIdGtLQ8wmLry-ZLm5R19o1ITSK_KCD7EzpZQV4BrU6Hn4m4ERVqaLtFWi1rfHAmdpio_Fc-SnDkwVowB9CG7sCcBYLi4e7AqoWdzgVbmUk4NI0eKzcqh04Hn6nu_0SNH4WzkGjwN6hm1JUFu7_bw99jobz9M0bT1_f08HYW7MkCbxEQAkFzaWEIMyjUpYFoTKKGEAQiEgwLikHnouS-4L4Oad5FMdcFn6YJGHC_B56PO9uGvO1Beuytdk2un2ZMc5Zq4nHpKWSM_WtKthnm0bVotlnlGQnq9nJanaxmg1eRpNL8_8A1q1yZA
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID 7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.202010544
DatabaseName Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage n/a
ExternalDocumentID ADFM202010544
Genre article
GrantInformation_xml – fundername: Project of “20 items of University” of Jinan
  funderid: 2019GXRC010
– fundername: State Key Program of National Natural Science of China
  funderid: 51532005
– fundername: National Nature Science Foundation of China
  funderid: 51802175
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OC
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
7SP
7SR
7U5
8BQ
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-j2994-9aefec1bdde46b7fdfc01d772ee44a7a25d15e5baf53a03b51b7885dc36996923
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Sun Jul 13 03:46:39 EDT 2025
Wed Jan 22 16:28:40 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j2994-9aefec1bdde46b7fdfc01d772ee44a7a25d15e5baf53a03b51b7885dc36996923
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3768-6846
PQID 2552105580
PQPubID 2045204
PageCount 11
ParticipantIDs proquest_journals_2552105580
wiley_primary_10_1002_adfm_202010544_ADFM202010544
PublicationCentury 2000
PublicationDate 2021-07-01
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Advanced functional materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 7
2019; 9
2014; 516
2019; 31
2019; 30
2020; 120
2019; 11
2019; 1
2019; 57
2019; 12
2019; 58
2014; 26
2020; 59
2020; 14
2020; 13
2017; 29
2013; 341
2020; 11
2020; 10
2019; 141
2017; 9
2019; 123
2020; 8
2021; 35
2016; 6
2018; 8
2016; 7
2018; 2
2016; 1
2015; 27
2020; 30
2018; 119
2018; 1
2017; 13
2020; 28
2020; 49
2018; 30
2018; 12
2016; 28
2018; 11
References_xml – volume: 10
  year: 2020
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 5622
  year: 2020
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 235
  year: 2020
  publication-title: Energy Storage Mater.
– volume: 2
  start-page: 1242
  year: 2018
  publication-title: Joule
– volume: 11
  start-page: 4251
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  year: 2019
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 35
  start-page: 669
  year: 2021
  publication-title: Energy Storage Mater.
– volume: 11
  start-page: 50
  year: 2019
  publication-title: Nanoscale
– volume: 7
  start-page: 7737
  year: 2017
  publication-title: ACS Catal.
– volume: 49
  start-page: 2215
  year: 2020
  publication-title: Chem. Soc. Rev.
– volume: 1
  start-page: 432
  year: 2019
  publication-title: ACS Mater. Lett.
– volume: 120
  start-page: 6626
  year: 2020
  publication-title: Chem. Rev.
– volume: 141
  start-page: 4086
  year: 2019
  publication-title: J. Am. Chem. Soc.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 12
  start-page: 3578
  year: 2018
  publication-title: ACS Nano
– volume: 27
  start-page: 6137
  year: 2015
  publication-title: Adv. Mater.
– volume: 516
  start-page: 78
  year: 2014
  publication-title: Nature
– volume: 14
  start-page: 891
  year: 2020
  publication-title: ACS Nano
– volume: 1
  start-page: 589
  year: 2016
  publication-title: ACS Energy Lett.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  year: 2019
  publication-title: Adv. Mater.
– volume: 341
  start-page: 1502
  year: 2013
  publication-title: Science
– volume: 8
  start-page: 7983
  year: 2018
  publication-title: ACS Catal.
– volume: 9
  year: 2019
  publication-title: Adv. Energy Mater.
– volume: 119
  start-page: 1806
  year: 2018
  publication-title: Chem. Rev.
– volume: 11
  year: 2019
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  year: 2020
  publication-title: Adv. Funct. Mater.
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 11
  start-page: 1576
  year: 2020
  publication-title: Nat. Commun.
– volume: 6
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 58
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 26
  start-page: 2952
  year: 2014
  publication-title: Chem. Mater.
– volume: 28
  start-page: 9620
  year: 2016
  publication-title: Adv. Mater.
– volume: 12
  start-page: 2422
  year: 2019
  publication-title: Energy Environ. Sci.
– volume: 30
  year: 2019
  publication-title: Adv. Funct. Mater.
– volume: 1
  start-page: 985
  year: 2018
  publication-title: Nat. Catal.
– volume: 11
  start-page: 1911
  year: 2018
  publication-title: ChemSusChem
– volume: 57
  start-page: 166
  year: 2019
  publication-title: Nano Energy
– volume: 120
  year: 2020
  publication-title: Chem. Rev.
– volume: 123
  year: 2019
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 2191
  year: 2020
  publication-title: Nat. Commun.
– volume: 13
  start-page: 246
  year: 2020
  publication-title: Energy Environ. Sci.
– volume: 13
  year: 2017
  publication-title: Small
SSID ssj0017734
Score 2.626423
Snippet Rechargeable Li–O2 batteries are promising due to their superior high energy density but subject to sluggish oxygen reduction/evolution kinetics. Developing...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Absorption
Catalysis
Catalysts
Catalytic activity
Cathodes
Charge transfer
Discharge
electrochemical catalytic activities
Electrode polarization
Flux density
Kinetics
Lithium
lithium–oxygen batteries
Materials science
MXenes
Nanosheets
Oxidation
Oxygen
oxygen evolution kinetics
oxygen reduction kinetics
Reaction kinetics
Rechargeable batteries
Selenium
single atom
Substrates
Title Single Semi‐Metallic Selenium Atoms on Ti3C2 MXene Nanosheets as Excellent Cathode for Lithium–Oxygen Batteries
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.202010544
https://www.proquest.com/docview/2552105580
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTsJAEN4YvOjBfyOKZA9egXa7S9sj4SfEUE0EEm7NbrsNVWiNLQl64hFMfEOexNkWEDzqqdnDNu3szOw3OzPfInQHIEAIxQBg-xavUHWGbxOLqUsEuGVD9Caz_grnod4d0vsRG2118ef8EJsDN2UZmb9WBs5FUvshDeV-oDrJVTaXUUUIqgq2FCp62vBH6aaZp5Xruirw0kdr1kaN1Han7-DLbZSabTOdY8TXH5hXl7xUZ6moeh-_uBv_8wcn6GiFQXEjV5pTtCejM3S4xUx4jpI-PCYS9-U0XC4-HQkYfRJ6MIZdKpxNcSONpwmOIzwIjSbBzgh8JgZXHSdjKdME8wS351lWIEqxajOMfYkBIONemI7hBcvF1-P8HbQX5wyfELBfoGGnPWh2K6v7GSrPRDEK21wG0tMFeEhaF2bgB56m-wDXpaSUm5wwX2eSCR4wg2uGYLqAgJv5nlGHKAuQ5SUqRHEkrxCmDIRhBwYxbEGZrXHDgriKciLB4QjmF1FpvT7uysgSF6Ihou73tLQiIpmg3decosPNyZiJq0TsbkTsNlodZzO6_sukG3RAVFVLVrBbQoX0bSZvAZakooz2Gy2n1y9nKvgNDC7dtw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV29TsMwELagDMDAP6L8emAtJI7dJmMFVAWaIkGRukV24qiBNkEklQoTj4DEG_Ik3CVtKYwwRR4cJWff-bvz3XeEHAMIUAoZAJzAlhWOMXyH2QKbCEjbAe9N5_UVbrvavOdXXTHJJsRamIIfYhpwQ83I7TUqOAakT79ZQ2UQYik5XucKzufJArb1Rvr889spg5RZqxUXy1UTU7zM7oS30WCnP-f_QJizODU_aBqrRE0-scgveTwZZurEf_3F3vivf1gjK2MYSuvFvlknczreIMsz5ISbJL2DR1_TOz2IPt_eXQ0wvR_5MIaDKhoOaD1LBilNYtqJrDNG3S6YTQrWOkl7WmcplSm9GOUXA3FGsdIwCTQFjExbUdaDF3y-fdyMXmAD04LkE3z2LXLfuOicNSvjFg2VB4akwo7UofZNBUaSV1UtDELfMANA7FpzLmuSicAUWigZCksalhKmAp9bBL5VBUcLwOU2KcVJrHcI5QKE4YQWsxzFhWNIywbXikumweYoEZTJ_mSBvLGepR44RAxbfNpGmbBc0t5TwdLhFXzMzEMRe1MRe_Xzhjsd7f5l0hFZbHbclte6bF_vkSWGSS55_u4-KWXPQ30AKCVTh_k-_ALxueA_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYJAQHdkShgA9cC4ljp8mx6iK2AoJW6i2yY0cNtElFUqlw4hOQ-MN-CeOkLYUjnCIfHCXj8fiNZ-YNQqcAAoTQDACudHiJ6jt8lzhMNxHgjgvem8rqK5q39kWbXnVYZ66KP-eHmF246Z2R2Wu9wQcyOP8mDeUy0JXkOprLKF1Ey9Q2XN28ofYwI5Ayy-U8rmybOsPL7ExpGw1y_nP-D4A5D1Ozc6axgfj0C_P0kuezYSrO_Ldf5I3_-YVNtD4BobiSa80WWlDRNlqboybcQckjPHoKP6p-OH7_aCoA6b3QhzEcU-Gwjytp3E9wHOFWaFUJbnbAaGKw1XHSVSpNME9wfZSFBaIU6zrDWCoMCBnfhGkXXjB-_7wbvYL64pziEzz2XdRu1FvVi9KkQUPpiWhKYZerQPmmABNJbVEOZOAbpgS8rhSlvMwJkyZTTPCAWdywBDMFeNxM-pYNbhZAyz20FMWR2keYMhCGG1jEcgVlrsEtBxwryokCiyOYLKDidH28yS5LPHCHiG7w6RgFRDJBe4Oco8PL2ZiJp0XszUTsVWqN5mx08JdJJ2jlvtbwbi5vrw_RKtEZLlnybhEtpS9DdQQQJRXHmRZ-AW3_3u4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single+Semi%E2%80%90Metallic+Selenium+Atoms+on+Ti3C2+MXene+Nanosheets+as+Excellent+Cathode+for+Lithium%E2%80%93Oxygen+Batteries&rft.jtitle=Advanced+functional+materials&rft.au=Zhao%2C+Danyang&rft.au=Wang%2C+Peng&rft.au=Haoxiang+Di&rft.au=Zhang%2C+Peng&rft.date=2021-07-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=31&rft.issue=29&rft_id=info:doi/10.1002%2Fadfm.202010544&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon