Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells
Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and s...
Saved in:
Published in | Advanced energy materials Vol. 7; no. 19 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
11.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells.
Cesium doping of NiOx enhances the conductivity of the oxide film and the hole extraction from the perovskite film in inverted planar perovskite solar cells. Significantly improved photovoltaic performance is obtained with the best efficiencies of 16.04% and 19.35% for NiOx and Cs:NiOx, respectively. The devices exhibit negligible hysteresis and good stability. |
---|---|
AbstractList | Organic-inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution-based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx-based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells. Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells. Cesium doping of NiOx enhances the conductivity of the oxide film and the hole extraction from the perovskite film in inverted planar perovskite solar cells. Significantly improved photovoltaic performance is obtained with the best efficiencies of 16.04% and 19.35% for NiOx and Cs:NiOx, respectively. The devices exhibit negligible hysteresis and good stability. |
Author | Chen, Wei Chan, Wai Kin He, Zhu‐Bing Djurišić, Aleksandra B. Liu, Fang‐Zhou Feng, Xi‐Yuan |
Author_xml | – sequence: 1 givenname: Wei surname: Chen fullname: Chen, Wei organization: Southern University of Science and Technology – sequence: 2 givenname: Fang‐Zhou surname: Liu fullname: Liu, Fang‐Zhou organization: The University of Hong Kong – sequence: 3 givenname: Xi‐Yuan surname: Feng fullname: Feng, Xi‐Yuan organization: Southern University of Science and Technology – sequence: 4 givenname: Aleksandra B. surname: Djurišić fullname: Djurišić, Aleksandra B. email: dalek@hku.hk organization: The University of Hong Kong – sequence: 5 givenname: Wai Kin surname: Chan fullname: Chan, Wai Kin organization: The University of Hong Kong – sequence: 6 givenname: Zhu‐Bing surname: He fullname: He, Zhu‐Bing email: hezb@sustc.edu.cn organization: Southern University of Science and Technology |
BookMark | eNo9kMFPwjAUxhuDiYhcPTfxPGy7dl2PZE4hQSBRz03XtclwtNgOhP_eEQzv8r338r3vJb97MHDeGQAeMZpghMizMm47IQhzhDghN2CIM0yTLKdocO1TcgfGMW5QX1RglKZDUBUmNvstfPE7U8NlszpCFaFysLS20Y1xHZz51sDy2AWlu8Y7uFAnE6D1Ac7dwYSuv1u3yqkA1yb4Q_xuOgM_fNsvCtO28QHcWtVGM_7XEfh6LT-LWbJYvc2L6SLZECFIohDnuTCsMpjVjPGqqhEjSnORW8w41toiaknGM0upqoXOea01Eyllqa5slY7A0yV3F_zP3sRObvw-uP6lxIIKlgtESe8SF9dv05qT3IVmq8JJYiTPHOWZo7xylNNy-X6d0j-8J2pZ |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.201700722 |
DatabaseName | Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | AENM201700722 |
Genre | article |
GrantInformation_xml | – fundername: Shenzhen Key Laboratory Project funderid: ZDSYS201602261933302 – fundername: Natural Science Foundation of Shenzhen Innovation Committee funderid: JCYJ20150529152146471 – fundername: Seed Fund for Basic Research of the University of Hong Kong – fundername: University Development Fund – fundername: Strategic Research Theme |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS EJD G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 7SP 7TB 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-j2992-a07789e5be15d557bbd052ac798f1571ccf04f2676f44ad9c87dcc593453cbfb3 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 12:11:00 EDT 2025 Wed Jan 22 17:06:58 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 19 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2992-a07789e5be15d557bbd052ac798f1571ccf04f2676f44ad9c87dcc593453cbfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1949589042 |
PQPubID | 886389 |
PageCount | 8 |
ParticipantIDs | proquest_journals_1949589042 wiley_primary_10_1002_aenm_201700722_AENM201700722 |
PublicationCentury | 2000 |
PublicationDate | October 11, 2017 |
PublicationDateYYYYMMDD | 2017-10-11 |
PublicationDate_xml | – month: 10 year: 2017 text: October 11, 2017 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2015; 17 2015; 5 2017; 2 1997; 119 2015; 3 2016; 329 2016; 109 2013; 23 2013; 501 2015; 11 2016; 10 2013; 342 2014; 26 2013; 100 2017; 29 1967; 47 2009; 131 2016; 1–2 2007; 75 2015; 8 2017; 355 2015; 7 2016; 120 2016; 11 2016; 55 2014; 1 2015; 350 2016; 6 2016; 7 2014; 5 2015; 27 2016; 1 2015; 132 2013; 499 2014; 13 2016; 116 2016; 28 2012; 4 2014; 6 2012; 338 2016; 8 2014; 104 2016; 24 2014; 53 2016; 22 |
References_xml | – volume: 109 start-page: 171103 year: 2016 publication-title: Appl. Phys. Lett. – volume: 116 start-page: 4558 year: 2016 publication-title: Chem. Rev. – volume: 6 start-page: 1600474 year: 2016 publication-title: Adv. Energy Mater. – volume: 355 start-page: 722 year: 2017 publication-title: Science – volume: 5 start-page: 1748 year: 2014 publication-title: J. Phys. Chem. Lett. – volume: 6 start-page: 1502101 year: 2016 publication-title: Adv. Energy Mater. – volume: 13 start-page: 897 year: 2014 publication-title: Nat. Mater. – volume: 11 start-page: 5528 year: 2015 publication-title: Small – volume: 119 start-page: 77 year: 1997 publication-title: J. Mol. Catal. A: Chem. – volume: 5 start-page: 1401855 year: 2015 publication-title: Adv. Energy Mater. – volume: 329 start-page: 398 year: 2016 publication-title: J. Power Sources – volume: 132 start-page: 492 year: 2015 publication-title: Sol. Energy Mater. Sol. Cells – volume: 338 start-page: 643 year: 2012 publication-title: Science – volume: 7 start-page: 1121 year: 2016 publication-title: Chem. Sci. – volume: 499 start-page: 316 year: 2013 publication-title: Nature – volume: 53 start-page: 2812 year: 2014 publication-title: Angew. Chem., Int. Ed. Engl. – volume: 6 start-page: 11851 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 342 start-page: 344 year: 2013 publication-title: Science – volume: 55 start-page: 088003 year: 2016 publication-title: Jpn. J. Appl. Phys. – volume: 2 start-page: 279 year: 2017 publication-title: ACS Energy Lett. – volume: 3 start-page: 9011 year: 2015 publication-title: J. Mater. Chem. A – volume: 17 start-page: 171 year: 2015 publication-title: Nano Energy – volume: 131 start-page: 6050 year: 2009 publication-title: J. Am. Chem. Soc. – volume: 1 start-page: 547 year: 2014 publication-title: ACS Photonics – volume: 8 start-page: 297 year: 2015 publication-title: Energy Environ. Sci. – volume: 120 start-page: 16568 year: 2016 publication-title: J. Phys. Chem. C – volume: 24 start-page: A1349 year: 2016 publication-title: Opt. Express – volume: 7 start-page: 1602333 year: 2017 publication-title: Adv. Energy Mater. – volume: 10 start-page: 3630 year: 2016 publication-title: ACS Nano – volume: 5 start-page: 1501066 year: 2015 publication-title: Adv. Energy Mater. – volume: 29 start-page: 1603923 year: 2017 publication-title: Adv. Mater. – volume: 28 start-page: 383002 year: 2016 publication-title: J. Phys.: Condens. Matter – volume: 104 start-page: 063302 year: 2014 publication-title: Appl. Phys. Lett. – volume: 4 start-page: 5922 year: 2012 publication-title: ACS Appl. Mater. Interfaces – volume: 6 start-page: 1600664 year: 2016 publication-title: Adv. Energy Mater. – volume: 8 start-page: 11403 year: 2016 publication-title: Nanoscale – volume: 28 start-page: 5112 year: 2016 publication-title: Adv. Mater. – volume: 28 start-page: 4879 year: 2016 publication-title: Chem. Mater. – volume: 27 start-page: 7874 year: 2015 publication-title: Adv. Mater. – volume: 100 start-page: 115 year: 2013 publication-title: Mater. Lett. – volume: 23 start-page: 2993 year: 2013 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 1601660 year: 2017 publication-title: Adv. Energy Mater. – volume: 75 start-page: 241203 year: 2007 publication-title: Phys. Rev. B – volume: 26 start-page: 4107 year: 2014 publication-title: Adv. Mater. – volume: 27 start-page: 4013 year: 2015 publication-title: Adv. Mater. – volume: 5 start-page: 1401692 year: 2015 publication-title: Adv. Energy Mater. – volume: 6 start-page: 30759 year: 2016 publication-title: Sci. Rep. – volume: 3 start-page: 24121 year: 2015 publication-title: J. Mater. Chem. A – volume: 7 start-page: 1602120 year: 2017 publication-title: Adv. Energy Mater. – volume: 1–2 start-page: 1 year: 2016 publication-title: Mater. Today Energy – volume: 350 start-page: 944 year: 2015 publication-title: Science – volume: 22 start-page: 328 year: 2016 publication-title: Nano Energy – volume: 7 start-page: 1096 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 1 start-page: 16177 year: 2016 publication-title: Nat. Energy – volume: 47 start-page: 1300 year: 1967 publication-title: J. Chem. Phys. – volume: 6 start-page: 22862 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 7 start-page: 995 year: 2016 publication-title: J. Phys. Chem. Lett. – volume: 10 start-page: 1503 year: 2016 publication-title: ACS Nano – volume: 7 start-page: 4283 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 75 year: 2016 publication-title: Nat. Nanotechnol. – volume: 501 start-page: 395 year: 2013 publication-title: Nature |
SSID | ssj0000491033 |
Score | 2.6445386 |
Snippet | Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency... Organic-inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Alignment Cesium cesium doping Devices Efficiency Electron conductivity Extraction nickel oxide Optoelectronics organometallic halide perovskite Photovoltaic cells Solar cells |
Title | Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201700722 https://www.proquest.com/docview/1949589042 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHiqcoLcgHelqlOA-v4-OyXbRC7XJoKxYukZ3YIqVkq2SDKv4T_5GxndcKhKCXaOVkE8XzeeabycwYoddCx0CGOPWU0oEXRYx4UnLf00xrUJgETL7NtlhOFpfR-xVdjUY_B1lL9UYepz_-WFdyF6nCGMjVVMn-h2S7m8IA_Ab5whEkDMd_kvFMVXn9DUjwDdDGZf7h1uwaAwt2bvtCmK_8C5M8OL_dlM2W4KcCKLZNLTQNNkpDN822RaI0qfDr75WJ5Y7Pjbs7nqnr62rIXadtuoBy9YLAdd1L9ikCTod9VHmX55PXlh6bqHSbVvH5y7ruGajTNau8O_2p7gF7clWX-dGMHk393NJe1hTlfK1EkZVi_PZ4GLYAU2iyQPyBpgVe4E3iJriphmOuf1OrntkQhXxgqDsz9psVcF1lhSpMqwHTgJAFQW_v2m_83ZX079e67sDz5Vl3_h7aDcArAbW6Oz05Oz3vgnrgbvkktEUd7eu1jUJJ8Gb7IVsuzdAxsszm4iHaa1wSPHX4eoRGqniMHgwaVT5B0iENW6RhgzQsKiwK3CENG6ThHmnYIg0D0nCLNOyQhnukYYs0bJH2FF2-m1_MFl6zO4d3FZiUZUEYi7miUvk0o5RJmcHKFinjsfYp89NUk0gHEzbRUSQynsYsS1PKw4iGqdQyfIZ2inWhniPMZcZ9uEcsMgIOAuEmzBDF2UQSlsmQ7KPDdqqSZvlVic_Bt485GJ19FNjpS25cg5bEteIOEjPhSTfhyZYMX9zlTwfofo_lQ7SzKWv1EkjpRr5qoPALXOCBuQ |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cesium+Doped+NiOx+as+an+Efficient+Hole+Extraction+Layer+for+Inverted+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Wei&rft.au=Liu%2C+Fang%E2%80%90Zhou&rft.au=Feng%2C+Xi%E2%80%90Yuan&rft.au=Djuri%C5%A1i%C4%87%2C+Aleksandra+B.&rft.date=2017-10-11&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201700722&rft.externalDBID=10.1002%252Faenm.201700722&rft.externalDocID=AENM201700722 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |