Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells

Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and s...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 7; no. 19
Main Authors Chen, Wei, Liu, Fang‐Zhou, Feng, Xi‐Yuan, Djurišić, Aleksandra B., Chan, Wai Kin, He, Zhu‐Bing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 11.10.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells. Cesium doping of NiOx enhances the conductivity of the oxide film and the hole extraction from the perovskite film in inverted planar perovskite solar cells. Significantly improved photovoltaic performance is obtained with the best efficiencies of 16.04% and 19.35% for NiOx and Cs:NiOx, respectively. The devices exhibit negligible hysteresis and good stability.
AbstractList Organic-inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution-based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx-based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells.
Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency exceeding 22%. For inverted structure perovskite solar cells, the hole extraction layers play a significant role in achieving efficient and stable perovskite solar cell by modifying charge extraction, interfacial recombination losses, and band alignment. Here, cesium doped NiOx is selected as a hole extraction layer to study the impact of Cs dopant on the optoelectronic properties of NiOx and the photovoltaic performance. Cs doped NiOx films are prepared by a simple solution‐based method. Both doped and undoped NiOx films are smooth and highly transparent, while the Cs doped NiOx exhibits better electron conductivity and higher work function. Therefore, Cs doping results in a significant improvement in the performance of NiOx‐based inverted planar perovskite solar cells. The best efficiency of Cs doped NiOx devices is 19.35%, and those devices show high stability as well. The improved efficiency in devices with Cs:NiOx is attributed to a significant improvement in the hole extraction and better band alignment compared to undoped NiOx. This work reveals that Cs doped NiOx is very promising hole extraction material for high and stable inverted perovskite solar cells. Cesium doping of NiOx enhances the conductivity of the oxide film and the hole extraction from the perovskite film in inverted planar perovskite solar cells. Significantly improved photovoltaic performance is obtained with the best efficiencies of 16.04% and 19.35% for NiOx and Cs:NiOx, respectively. The devices exhibit negligible hysteresis and good stability.
Author Chen, Wei
Chan, Wai Kin
He, Zhu‐Bing
Djurišić, Aleksandra B.
Liu, Fang‐Zhou
Feng, Xi‐Yuan
Author_xml – sequence: 1
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Southern University of Science and Technology
– sequence: 2
  givenname: Fang‐Zhou
  surname: Liu
  fullname: Liu, Fang‐Zhou
  organization: The University of Hong Kong
– sequence: 3
  givenname: Xi‐Yuan
  surname: Feng
  fullname: Feng, Xi‐Yuan
  organization: Southern University of Science and Technology
– sequence: 4
  givenname: Aleksandra B.
  surname: Djurišić
  fullname: Djurišić, Aleksandra B.
  email: dalek@hku.hk
  organization: The University of Hong Kong
– sequence: 5
  givenname: Wai Kin
  surname: Chan
  fullname: Chan, Wai Kin
  organization: The University of Hong Kong
– sequence: 6
  givenname: Zhu‐Bing
  surname: He
  fullname: He, Zhu‐Bing
  email: hezb@sustc.edu.cn
  organization: Southern University of Science and Technology
BookMark eNo9kMFPwjAUxhuDiYhcPTfxPGy7dl2PZE4hQSBRz03XtclwtNgOhP_eEQzv8r338r3vJb97MHDeGQAeMZpghMizMm47IQhzhDghN2CIM0yTLKdocO1TcgfGMW5QX1RglKZDUBUmNvstfPE7U8NlszpCFaFysLS20Y1xHZz51sDy2AWlu8Y7uFAnE6D1Ac7dwYSuv1u3yqkA1yb4Q_xuOgM_fNsvCtO28QHcWtVGM_7XEfh6LT-LWbJYvc2L6SLZECFIohDnuTCsMpjVjPGqqhEjSnORW8w41toiaknGM0upqoXOea01Eyllqa5slY7A0yV3F_zP3sRObvw-uP6lxIIKlgtESe8SF9dv05qT3IVmq8JJYiTPHOWZo7xylNNy-X6d0j-8J2pZ
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID 7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.201700722
DatabaseName Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID AENM201700722
Genre article
GrantInformation_xml – fundername: Shenzhen Key Laboratory Project
  funderid: ZDSYS201602261933302
– fundername: Natural Science Foundation of Shenzhen Innovation Committee
  funderid: JCYJ20150529152146471
– fundername: Seed Fund for Basic Research of the University of Hong Kong
– fundername: University Development Fund
– fundername: Strategic Research Theme
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
EJD
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
7SP
7TB
8FD
AAMMB
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-j2992-a07789e5be15d557bbd052ac798f1571ccf04f2676f44ad9c87dcc593453cbfb3
ISSN 1614-6832
IngestDate Fri Jul 25 12:11:00 EDT 2025
Wed Jan 22 17:06:58 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2992-a07789e5be15d557bbd052ac798f1571ccf04f2676f44ad9c87dcc593453cbfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1949589042
PQPubID 886389
PageCount 8
ParticipantIDs proquest_journals_1949589042
wiley_primary_10_1002_aenm_201700722_AENM201700722
PublicationCentury 2000
PublicationDate October 11, 2017
PublicationDateYYYYMMDD 2017-10-11
PublicationDate_xml – month: 10
  year: 2017
  text: October 11, 2017
  day: 11
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 17
2015; 5
2017; 2
1997; 119
2015; 3
2016; 329
2016; 109
2013; 23
2013; 501
2015; 11
2016; 10
2013; 342
2014; 26
2013; 100
2017; 29
1967; 47
2009; 131
2016; 1–2
2007; 75
2015; 8
2017; 355
2015; 7
2016; 120
2016; 11
2016; 55
2014; 1
2015; 350
2016; 6
2016; 7
2014; 5
2015; 27
2016; 1
2015; 132
2013; 499
2014; 13
2016; 116
2016; 28
2012; 4
2014; 6
2012; 338
2016; 8
2014; 104
2016; 24
2014; 53
2016; 22
References_xml – volume: 109
  start-page: 171103
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 116
  start-page: 4558
  year: 2016
  publication-title: Chem. Rev.
– volume: 6
  start-page: 1600474
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 355
  start-page: 722
  year: 2017
  publication-title: Science
– volume: 5
  start-page: 1748
  year: 2014
  publication-title: J. Phys. Chem. Lett.
– volume: 6
  start-page: 1502101
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 13
  start-page: 897
  year: 2014
  publication-title: Nat. Mater.
– volume: 11
  start-page: 5528
  year: 2015
  publication-title: Small
– volume: 119
  start-page: 77
  year: 1997
  publication-title: J. Mol. Catal. A: Chem.
– volume: 5
  start-page: 1401855
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 329
  start-page: 398
  year: 2016
  publication-title: J. Power Sources
– volume: 132
  start-page: 492
  year: 2015
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 338
  start-page: 643
  year: 2012
  publication-title: Science
– volume: 7
  start-page: 1121
  year: 2016
  publication-title: Chem. Sci.
– volume: 499
  start-page: 316
  year: 2013
  publication-title: Nature
– volume: 53
  start-page: 2812
  year: 2014
  publication-title: Angew. Chem., Int. Ed. Engl.
– volume: 6
  start-page: 11851
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 342
  start-page: 344
  year: 2013
  publication-title: Science
– volume: 55
  start-page: 088003
  year: 2016
  publication-title: Jpn. J. Appl. Phys.
– volume: 2
  start-page: 279
  year: 2017
  publication-title: ACS Energy Lett.
– volume: 3
  start-page: 9011
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 17
  start-page: 171
  year: 2015
  publication-title: Nano Energy
– volume: 131
  start-page: 6050
  year: 2009
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 547
  year: 2014
  publication-title: ACS Photonics
– volume: 8
  start-page: 297
  year: 2015
  publication-title: Energy Environ. Sci.
– volume: 120
  start-page: 16568
  year: 2016
  publication-title: J. Phys. Chem. C
– volume: 24
  start-page: A1349
  year: 2016
  publication-title: Opt. Express
– volume: 7
  start-page: 1602333
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 10
  start-page: 3630
  year: 2016
  publication-title: ACS Nano
– volume: 5
  start-page: 1501066
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 29
  start-page: 1603923
  year: 2017
  publication-title: Adv. Mater.
– volume: 28
  start-page: 383002
  year: 2016
  publication-title: J. Phys.: Condens. Matter
– volume: 104
  start-page: 063302
  year: 2014
  publication-title: Appl. Phys. Lett.
– volume: 4
  start-page: 5922
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  start-page: 1600664
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 8
  start-page: 11403
  year: 2016
  publication-title: Nanoscale
– volume: 28
  start-page: 5112
  year: 2016
  publication-title: Adv. Mater.
– volume: 28
  start-page: 4879
  year: 2016
  publication-title: Chem. Mater.
– volume: 27
  start-page: 7874
  year: 2015
  publication-title: Adv. Mater.
– volume: 100
  start-page: 115
  year: 2013
  publication-title: Mater. Lett.
– volume: 23
  start-page: 2993
  year: 2013
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 1601660
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 75
  start-page: 241203
  year: 2007
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 4107
  year: 2014
  publication-title: Adv. Mater.
– volume: 27
  start-page: 4013
  year: 2015
  publication-title: Adv. Mater.
– volume: 5
  start-page: 1401692
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 6
  start-page: 30759
  year: 2016
  publication-title: Sci. Rep.
– volume: 3
  start-page: 24121
  year: 2015
  publication-title: J. Mater. Chem. A
– volume: 7
  start-page: 1602120
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 1–2
  start-page: 1
  year: 2016
  publication-title: Mater. Today Energy
– volume: 350
  start-page: 944
  year: 2015
  publication-title: Science
– volume: 22
  start-page: 328
  year: 2016
  publication-title: Nano Energy
– volume: 7
  start-page: 1096
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 1
  start-page: 16177
  year: 2016
  publication-title: Nat. Energy
– volume: 47
  start-page: 1300
  year: 1967
  publication-title: J. Chem. Phys.
– volume: 6
  start-page: 22862
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 7
  start-page: 995
  year: 2016
  publication-title: J. Phys. Chem. Lett.
– volume: 10
  start-page: 1503
  year: 2016
  publication-title: ACS Nano
– volume: 7
  start-page: 4283
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 75
  year: 2016
  publication-title: Nat. Nanotechnol.
– volume: 501
  start-page: 395
  year: 2013
  publication-title: Nature
SSID ssj0000491033
Score 2.6445386
Snippet Organic–inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency...
Organic-inorganic hybrid perovskite solar cells have resulted in tremendous interest in developing next generation photovoltaics due to high record efficiency...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Alignment
Cesium
cesium doping
Devices
Efficiency
Electron conductivity
Extraction
nickel oxide
Optoelectronics
organometallic halide perovskite
Photovoltaic cells
Solar cells
Title Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.201700722
https://www.proquest.com/docview/1949589042
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaW9gKHiqcoLcgHelqlOA-v4-OyXbRC7XJoKxYukZ3YIqVkq2SDKv4T_5GxndcKhKCXaOVkE8XzeeabycwYoddCx0CGOPWU0oEXRYx4UnLf00xrUJgETL7NtlhOFpfR-xVdjUY_B1lL9UYepz_-WFdyF6nCGMjVVMn-h2S7m8IA_Ab5whEkDMd_kvFMVXn9DUjwDdDGZf7h1uwaAwt2bvtCmK_8C5M8OL_dlM2W4KcCKLZNLTQNNkpDN822RaI0qfDr75WJ5Y7Pjbs7nqnr62rIXadtuoBy9YLAdd1L9ikCTod9VHmX55PXlh6bqHSbVvH5y7ruGajTNau8O_2p7gF7clWX-dGMHk393NJe1hTlfK1EkZVi_PZ4GLYAU2iyQPyBpgVe4E3iJriphmOuf1OrntkQhXxgqDsz9psVcF1lhSpMqwHTgJAFQW_v2m_83ZX079e67sDz5Vl3_h7aDcArAbW6Oz05Oz3vgnrgbvkktEUd7eu1jUJJ8Gb7IVsuzdAxsszm4iHaa1wSPHX4eoRGqniMHgwaVT5B0iENW6RhgzQsKiwK3CENG6ThHmnYIg0D0nCLNOyQhnukYYs0bJH2FF2-m1_MFl6zO4d3FZiUZUEYi7miUvk0o5RJmcHKFinjsfYp89NUk0gHEzbRUSQynsYsS1PKw4iGqdQyfIZ2inWhniPMZcZ9uEcsMgIOAuEmzBDF2UQSlsmQ7KPDdqqSZvlVic_Bt485GJ19FNjpS25cg5bEteIOEjPhSTfhyZYMX9zlTwfofo_lQ7SzKWv1EkjpRr5qoPALXOCBuQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cesium+Doped+NiOx+as+an+Efficient+Hole+Extraction+Layer+for+Inverted+Planar+Perovskite+Solar+Cells&rft.jtitle=Advanced+energy+materials&rft.au=Chen%2C+Wei&rft.au=Liu%2C+Fang%E2%80%90Zhou&rft.au=Feng%2C+Xi%E2%80%90Yuan&rft.au=Djuri%C5%A1i%C4%87%2C+Aleksandra+B.&rft.date=2017-10-11&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=7&rft.issue=19&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Faenm.201700722&rft.externalDBID=10.1002%252Faenm.201700722&rft.externalDocID=AENM201700722
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon