Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β₂AR

Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 112; no. 46; pp. 14254 - 14259
Main Authors Lamichhane, Rajan, Liu, Jeffrey J., Pljevaljcic, Goran, White, Kate L., van der Schans, Edwin, Katritch, Vsevolod, Stevens, Raymond C., Wüthrich, Kurt, Millar, David P.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 17.11.2015
National Acad Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β₂-adrenergic receptor (β₂AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs.
AbstractList Activation of G protein-coupled receptors (GPCRs) by agonists is the first step of eukaryotic cellular signal transduction. Because GPCRs are expressed in almost all human tissues and play a key role in human physiology, they are the targets for more than 30% of pharmaceutical drugs. Binding of ligands on the extracellular surface of a GPCR induces a conformational change on the cytoplasmic surface, which is recognized by G proteins or other cellular effectors. Here we show that the β 2 -adrenergic receptor, a prototypical GPCR, naturally fluctuates between inactive and active conformations, and that agonist or inverse agonist ligands modulate the conformational exchange kinetics in distinct ways, explaining their different pharmacological efficacies. These insights should assist in the design of improved GPCR-targeting drugs. Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β 2 -adrenergic receptor (β 2 AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs.
Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β2-adrenergic receptor (β2AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs.
Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic receptor surface. Knowledge of this process provides a platform for the development of GPCR-targeting drugs. Here, using a site-specific Cy3 fluorescence probe in the human β₂-adrenergic receptor (β₂AR), we observed that individual receptor molecules in the native-like environment of phospholipid nanodiscs undergo spontaneous transitions between two distinct conformational states. These states are assigned to inactive and active-like receptor conformations. Individual receptor molecules in the apo form repeatedly sample both conformations, with a bias toward the inactive conformation. Experiments in the presence of drug ligands show that binding of the full agonist formoterol shifts the conformational distribution in favor of the active-like conformation, whereas binding of the inverse agonist ICI-118,551 favors the inactive conformation. Analysis of single-molecule dwell-time distributions for each state reveals that formoterol increases the frequency of activation transitions, while also reducing the frequency of deactivation events. In contrast, the inverse agonist increases the frequency of deactivation transitions. Our observations account for the high level of basal activity of this receptor and provide insights that help to rationalize, on the molecular level, the widely documented variability of the pharmacological efficacies among GPCR-targeting drugs.
Author van der Schans, Edwin
Millar, David P.
Stevens, Raymond C.
Pljevaljcic, Goran
Lamichhane, Rajan
White, Kate L.
Wüthrich, Kurt
Liu, Jeffrey J.
Katritch, Vsevolod
Author_xml – sequence: 1
  givenname: Rajan
  surname: Lamichhane
  fullname: Lamichhane, Rajan
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 2
  givenname: Jeffrey J.
  surname: Liu
  fullname: Liu, Jeffrey J.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 3
  givenname: Goran
  surname: Pljevaljcic
  fullname: Pljevaljcic, Goran
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 4
  givenname: Kate L.
  surname: White
  fullname: White, Kate L.
  organization: Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089
– sequence: 5
  givenname: Edwin
  surname: van der Schans
  fullname: van der Schans, Edwin
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
– sequence: 6
  givenname: Vsevolod
  surname: Katritch
  fullname: Katritch, Vsevolod
  organization: Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089
– sequence: 7
  givenname: Raymond C.
  surname: Stevens
  fullname: Stevens, Raymond C.
  organization: Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089
– sequence: 8
  givenname: Kurt
  surname: Wüthrich
  fullname: Wüthrich, Kurt
  organization: Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland
– sequence: 9
  givenname: David P.
  surname: Millar
  fullname: Millar, David P.
  organization: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26578769$$D View this record in MEDLINE/PubMed
BookMark eNpVkc1q3DAUhUVJaSY_665atOzGqWT9elMIoU0LgULSro0sX2c0yJJryROyzSP1QfIQeZKqzDSkq8vlfJwD5xyhgxADIPSWkjNKFPs4BZPOqKCNrCWl9Su0oqShleQNOUArQmpVaV7zQ3SU0oYQ0ghN3qDDWgqllWxWaHPjwq2Haowe7OIBbx3c4TjgziTjsbHZbV2-xyb0u8dkFwMewa5NcGlMf9m8BnyJpzlmcKGycZk89HgGC1OOM378_fTwcH59gl4Pxic43d9j9PPL5x8XX6ur75ffLs6vqk3d8FxZWTeaDdZQYqRhVAxdz7VilPddATRvBmo5Y5QRYjvJNJdkUNoq3XXAiGXH6NPOd1q6EXoLIc_Gt9PsRjPft9G49n8luHV7G7ctl0IIrorBh73BHH8tkHI7umTBexMgLqmlignGRKmwoO9fZj2H_Cu4AHgPlKWe5TJVSWsprwUvyLsdskmlrRcWXErOJPsD17KWlw
ContentType Journal Article
Copyright Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright_xml – notice: Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1073/pnas.1519626112
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
DocumentTitleAlternate Single-molecule conformational dynamics of β2AR
EISSN 1091-6490
EndPage 14259
ExternalDocumentID 26578769
112_46_14254
26466436
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P50 GM073197
– fundername: NIGMS NIH HHS
  grantid: R01 GM115825
– fundername: HHS | NIH | National Institute of General Medical Sciences (NIGMS)
  grantid: GM073197
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADULT
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
EJD
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JSODD
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
-
02
0R
1AW
55
AAPBV
ABFLS
ABPTK
ADACO
DZ
F20
H13
KM
PQEST
X
XHC
ADACV
CGR
CUY
CVF
ECM
EIF
IPSME
NPM
7X8
ADQXQ
5PM
ID FETCH-LOGICAL-j294t-c62983fca10a6a315fbd487314db294849f1c4331300cb638460f78c78bbe30c3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:10:52 EDT 2024
Fri Aug 16 07:37:01 EDT 2024
Sat Sep 28 08:02:34 EDT 2024
Wed Nov 11 00:29:30 EST 2020
Fri Feb 02 08:16:18 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords signal transduction mechanisms
phospholipid nanodiscs
conformational polymorphism
agonists and inverse agonists
single-molecule fluorescence spectroscopy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j294t-c62983fca10a6a315fbd487314db294849f1c4331300cb638460f78c78bbe30c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
1R.L. and J.J.L. contributed equally to this work.
3Present Address: BioNano Genomics, San Diego, CA 92121.
Contributed by Kurt Wüthrich, October 9, 2015 (sent for review August 16, 2015; reviewed by W. E. Moerner and David Rueda)
Author contributions: R.C.S., K.W., and D.P.M. designed research; R.L., J.J.L., G.P., K.L.W., E.v.d.S., and V.K. performed research; J.J.L., G.P., K.L.W., E.v.d.S., and V.K. contributed new reagents/analytic tools; R.L., K.L.W., and D.P.M. analyzed data; and R.L., K.L.W., V.K., R.C.S., K.W., and D.P.M. wrote the paper.
Reviewers: W.E.M., Stanford University; and D.R., Imperial College London.
2Present Address: Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
PMID 26578769
PQID 1735335578
PQPubID 23479
PageCount 6
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4655547
pnas_primary_112_46_14254
proquest_miscellaneous_1735335578
jstor_primary_26466436
pubmed_primary_26578769
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2015-11-17
PublicationDateYYYYMMDD 2015-11-17
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-17
  day: 17
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2015
Publisher National Academy of Sciences
National Acad Sciences
Publisher_xml – name: National Academy of Sciences
– name: National Acad Sciences
References 22650319 - J Am Chem Soc. 2012 Jul 11;134(27):11261-8
23721409 - J Am Chem Soc. 2013 Jun 26;135(25):9465-74
20590599 - Br J Pharmacol. 2010 Jul;160(5):1048-61
12209152 - Nat Rev Drug Discov. 2002 Sep;1(9):727-30
20837485 - J Biol Chem. 2010 Nov 12;285(46):36188-98
21502529 - Proc Natl Acad Sci U S A. 2011 May 3;108(18):7414-8
23374348 - Cell. 2013 Jan 31;152(3):532-42
7885448 - Nature. 1995 Mar 16;374(6519):272-6
17962520 - Science. 2007 Nov 23;318(5854):1258-65
17452637 - Proc Natl Acad Sci U S A. 2007 May 1;104(18):7682-7
14645655 - Mol Pharmacol. 2003 Dec;64(6):1271-6
25981665 - Cell. 2015 May 21;161(5):1101-11
16766620 - Biophys J. 2006 Sep 1;91(5):1941-51
22948827 - Nat Commun. 2012;3:1045
21928818 - J Phys Chem B. 2011 Nov 17;115(45):13328-38
23956158 - Angew Chem Int Ed Engl. 2013 Oct 4;52(41):10762-5
19836392 - FEBS Lett. 2010 May 3;584(9):1721-7
20554047 - Methods. 2010 Oct;52(2):192-200
22267580 - Science. 2012 Mar 2;335(6072):1106-10
19903557 - Methods Enzymol. 2009;464:211-31
16708760 - Biotechniques. 2006 May;40(5):601-2, 604, 606, passim
24056732 - Chem Soc Rev. 2014 Feb 21;43(4):1221-9
26263254 - J Phys Chem Lett. 2015 May 21;6(10):1819-23
26258295 - Nature. 2015 Aug 27;524(7566):497-501
11353823 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):5997-6002
22031696 - Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18684-9
18222471 - J Mol Biol. 2008 Mar 7;376(5):1305-19
25323157 - Nat Commun. 2014;5:5206
11438704 - Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8469-74
11320077 - J Biol Chem. 2001 Jul 6;276(27):24433-6
23409810 - J Am Chem Soc. 2013 Mar 27;135(12):4735-42
19470481 - Proc Natl Acad Sci U S A. 2009 Jun 9;106(23):9501-6
21772288 - Nature. 2011 Sep 29;477(7366):549-55
References_xml
SSID ssj0009580
Score 2.5025191
Snippet Binding of extracellular ligands to G protein-coupled receptors (GPCRs) initiates transmembrane signaling by inducing conformational changes on the cytoplasmic...
Activation of G protein-coupled receptors (GPCRs) by agonists is the first step of eukaryotic cellular signal transduction. Because GPCRs are expressed in...
SourceID pubmedcentral
proquest
pubmed
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 14254
SubjectTerms Binding Sites
Biological Sciences
Carbocyanines - chemistry
Humans
Molecular Dynamics Simulation
Propanolamines - chemistry
Receptors, Adrenergic, beta-2 - chemistry
Title Single-molecule view of basal activity and activation mechanisms of the G protein-coupled receptor β₂AR
URI https://www.jstor.org/stable/26466436
http://www.pnas.org/content/112/46/14254.abstract
https://www.ncbi.nlm.nih.gov/pubmed/26578769
https://search.proquest.com/docview/1735335578
https://pubmed.ncbi.nlm.nih.gov/PMC4655547
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB0BJy5VKdCGfshIHMohu4ntOMkRoQJCAlUtSNwi22uLrTbeqNn9Y_0h_U2dyccKUE8ck0ysxDO238jzngFOtNa8VKXEJIc7ouQUOA8WMk4Qe3hOokUFcYdvbtXVvbx-yB62IBu5MF3RvjXzSVjUkzB_7Gorm9pOxzqx6febc9L8ymQ-3YbtXIgxRd8o7RY974Tj9Cu5HPV8cjFtgm4nuMSViOIRZ5AQsKKIVZtqRJI4RaP_wc2XVZNPlqGLt_BmwI_srP_OPdhy4R3sDSO0ZV8HGenTfXj8iavSwsV1fwCuY7QJwJae4cKFLRChgc6NYDrM-ovOR6x2xAWet3VLtggP2SXrxBzmIbbLdbNwM4azpGvwP9jfP_zsxwHcX3y7O7-Kh3MV4l-8lKvYKl4WwludJlppkWbezDBvEamcGTQoZOlTS0wqkSTW4ACVKvF5YfPCGCcSKw5hJyyD-wCMayt0xr1zCCMzwQ3XPk1Ko5xXpKwXwWHXr1XTa2dUiL8UgiAVQUQdvbmP7qikwkQEE9YIjsferzDYaQdDB7dct1WaC4SnGfosgve9N5603LsygvyZnzYGJKT9_AnGVyeoPcTT0avf_Ai7CKQy4iim-SfYWf1eu88IVlbmSxec_wC07egD
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VcoALbYGWlAJG4gCHZBP_JTlWFWWBboWgRb1FttdWFzbZqNm99LF4EJ6JcX5WbcUFjoknlpyZ8Xwjz3wGeKOUornMOSY51PqWnAz3wYyHMWIPRz1pUeZ7hyencnzOP12Iiw0QQy9MW7Rv9Cyq5mVUzS7b2sq6NKOhTmz0ZXLkOb8ET0f34D76KxVDkr7m2s26zhOKGzCnfGD0SdmorlQTYZDLEccj0vBUwNLbrFzXI3qSUxT6G-C8Wzd5IxAdb8H3YQld_cnPaLXUkbm-w-74z2vchkc9NCWH3fAObNjqMez0zt-Qtz1D9bsncPkNA97chmV3t64l_nyBLBzBmIgz-F4JfyUFUdW0e2jVT0rr24xnTdl4WUSe5ANpeSJmVWgWq3pupwQ3YFvjDyK_f9HDr0_h_Pj92dE47K9sCH_QnC9DI2meMWdUEiupWCKcnmJKxBI-1SiQ8dwlxjdpsTg2Gn2fy9ilmUkzrS2LDduFzWpR2WdAqDJMCeqsRYQqGNVUuSTOtbROetK-AHZbhRV1R8tRILSTiK9kAIHX4Po96rngEnMczIUDeD2otUA_8ocjqrKLVVMkKUPkK9AYAtjr1Hxj5s5GAkhvGcBawHN03x5BtbZc3b0a9__7y1fwYHw2OSlOPp5-fg4PEa8J3wqZpAewubxa2ReIiZb6ZesBfwACXQoM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkRAXoEAhPI3EAQ552Y6THKvCUh6tKqBSxSWyHVtd2HgjsnvhZ_FD-E2M81htK049JplYSmY884088w3AKyklLUXJMcmhxrfkFOgHCx4miD0s9aRFhe8dPjoWh6f841l2tjXqqy_a12oeuUUTufl5X1vZNjqe6sTik6MDz_mV8Txuaxtfhxu4Z2k-Jeobvt1i6D6h6IQ55ROrT87i1skuwkBXIpZHtOHpgIW3W7GpSfREpyj0P9B5uXZyKxjN7sD36TOGGpSf0XqlIv37EsPjlb7zLtweISrZH0R24Zpx92B3dAIdeT0yVb-5D-dfMfAtTNgMM3YN8ecMZGkJxkZcwfdM-NEURLp6uOjNgDTGtxvPu6bzsohAyXvS80XMXaiX63ZhaoKO2LT4k8jfP3T_ywM4nb37dnAYjqMbwh-05KtQC1oWzGqZJlJIlmZW1ZgasZTXCgUKXtpU-2YtliRaoQ_gIrF5ofNCKcMSzfZgxy2deQSESs1kRq0xiFQzRhWVNk1KJYwVnrwvgL1eaVU70HNUCPEE4iwRQOC1uLmPuq64wFwHc-IAXk6qrXA_-UMS6cxy3VVpzhABZ2gQATwcVL218mAnAeQXjGAj4Lm6Lz5B1fac3aMqH1_5zRdw8-TtrPr84fjTE7iFsC3zHZFp_hR2Vr_W5hlCo5V63m-Cf12eDIw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Single-molecule+view+of+basal+activity+and+activation+mechanisms+of+the+G+protein-coupled+receptor+%CE%B22AR&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Lamichhane%2C+Rajan&rft.au=Liu%2C+Jeffrey+J.&rft.au=Pljevaljcic%2C+Goran&rft.au=White%2C+Kate+L.&rft.date=2015-11-17&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=112&rft.issue=46&rft.spage=14254&rft.epage=14259&rft_id=info:doi/10.1073%2Fpnas.1519626112&rft_id=info%3Apmid%2F26578769&rft.externalDBID=PMC4655547
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F46.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F112%2F46.cover.gif