MgB2 超伝導バルク磁石の現状と展望

We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled magnetization (FCM) method using a superconductor coil and a pulsed field magnetization (PFM) method using a copper coil. We firstly obtained...

Full description

Saved in:
Bibliographic Details
Published in低温工学 Vol. 56; no. 6; pp. 309 - 316
Main Authors 藤代, 博之, 内藤, 智之
Format Journal Article
LanguageJapanese
Published 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) 2021
Subjects
Online AccessGet full text
ISSN0389-2441
1880-0408
DOI10.2221/jcsj.56.309

Cover

Abstract We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled magnetization (FCM) method using a superconductor coil and a pulsed field magnetization (PFM) method using a copper coil. We firstly obtained a trapped field of 1.5 T at 14 K by FCM for an MgB2 disc bulk (30 mm diameter and 7 mm thickness) with a filling factor of about 50 %, which was fabricated by an in-situ capsule method using a home-made capsule. The trapped field of MgB2 bulk by FCM was enhanced up to 2.9 T by the densification and the enlargement. Such dense MgB2 bulks were fabricated by an in-situ hot isostatic pressing under the pressure of up to 980 MPa or an ex-situ spark plasma sintering by applying uniaxial stress of 50 MPa. An in-situ infiltration method without the physical pressure also produced the dense MgB2 bulks, which trapped a 3 T-class magnetic field. The Ti-doping improved considerably the trapped field by FCM up to 5.6 T at 11.3 K for the triple-stacked Ti-doped MgB2 bulks. The PFM method also produced a Tesla-class MgB2 bulk magnet. The trapped field of 1.1 T at 13 K was obtained for the HIP-processed MgB2 disc bulk (22 mm diameter and 20 mm thickness). A magnetic field of 1.6 T was trapped at 20 K in the MgB2 bulk composite, consisting of two ring-shaped MgB2 bulks sandwiched by four thin copper plates and an inserted soft-iron yoke cylinder, using double PFM using a split-type coil with softiron yokes. We have shown the potential of the MgB2 bulk magnets for the practical superconducting applications.
AbstractList We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled magnetization (FCM) method using a superconductor coil and a pulsed field magnetization (PFM) method using a copper coil. We firstly obtained a trapped field of 1.5 T at 14 K by FCM for an MgB2 disc bulk (30 mm diameter and 7 mm thickness) with a filling factor of about 50 %, which was fabricated by an in-situ capsule method using a home-made capsule. The trapped field of MgB2 bulk by FCM was enhanced up to 2.9 T by the densification and the enlargement. Such dense MgB2 bulks were fabricated by an in-situ hot isostatic pressing under the pressure of up to 980 MPa or an ex-situ spark plasma sintering by applying uniaxial stress of 50 MPa. An in-situ infiltration method without the physical pressure also produced the dense MgB2 bulks, which trapped a 3 T-class magnetic field. The Ti-doping improved considerably the trapped field by FCM up to 5.6 T at 11.3 K for the triple-stacked Ti-doped MgB2 bulks. The PFM method also produced a Tesla-class MgB2 bulk magnet. The trapped field of 1.1 T at 13 K was obtained for the HIP-processed MgB2 disc bulk (22 mm diameter and 20 mm thickness). A magnetic field of 1.6 T was trapped at 20 K in the MgB2 bulk composite, consisting of two ring-shaped MgB2 bulks sandwiched by four thin copper plates and an inserted soft-iron yoke cylinder, using double PFM using a split-type coil with softiron yokes. We have shown the potential of the MgB2 bulk magnets for the practical superconducting applications.
Author 内藤, 智之
藤代, 博之
Author_xml – sequence: 1
  fullname: 藤代, 博之
  organization: 岩手大学理工学部
– sequence: 1
  fullname: 内藤, 智之
  organization: 岩手大学理工学部
BookMark eNo9j7tKA0EYhQeJ4BpT-QK-wG7-mZ2ZnWkEDd4gYqP1MrfEXWKU3TSWa7CxUBsrFQsbQfCCkEp8mTWuj2GCYnPOgQ8OfPOo1j_sO4QWMQSEENxMTZ4GjAchyBnkYSHABwqihjwIhfQJpXgONfI80QAgOWaceKi53V0lS9-j08_32_HLeTm8LIeP5clzdV9Ud29l8VRdfFRno7J4GL9efd1cL6DZjurlrvHXdbS3vrbb2vTbOxtbrZW2nxKJuW8iyTAGMFREgAW2yrJIO6mdsNYSKqg2kwFERsRGznBODQ1Zh2vttGCdsI6Wf3_TfKC6Lj7KkgOVHccqGySm5-KpbMx4zKcxMf4HZl9lcarCH1unX6c
ContentType Journal Article
Copyright 2021 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
Copyright_xml – notice: 2021 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
DOI 10.2221/jcsj.56.309
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1880-0408
EndPage 316
ExternalDocumentID article_jcsj_56_6_56_309_article_char_ja
GroupedDBID 123
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CS3
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j2916-c7951100c4870181dad57be9be8ddd2484bcddd02972d7ec664c435f6bbeb85f3
ISSN 0389-2441
IngestDate Wed Sep 03 06:31:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2916-c7951100c4870181dad57be9be8ddd2484bcddd02972d7ec664c435f6bbeb85f3
OpenAccessLink https://www.jstage.jst.go.jp/article/jcsj/56/6/56_309/_article/-char/ja
PageCount 8
ParticipantIDs jstage_primary_article_jcsj_56_6_56_309_article_char_ja
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 低温工学
PublicationTitleAlternate 低温工学
PublicationYear 2021
Publisher 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
Publisher_xml – name: 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
References 7) H. Fujishiro: “Magnetization of superconducting bulks,” TEION KOGAKU 46 (2011) 81-88 (in Japanese) 藤代博之:「バルク超電導体の着磁現象」,低温工学 46 (2011) 81-88
40) Y. Takahashi, T. Naito and H. Fujishiro: “Vortex pinning properties and microstructure of MgB2 heavily doped with titanium group elements,” Supercond. Sci. Technol. 30 (2017) 125006
5) S. Namba, H. Fujishiro, T. Naito, M.D. Ainslie and K. Takahashi: “Experimental realization of a hybrid trapped field magnet lens using a GdBaCuO magnetic lens and MgB2 bulk cylinder,” Supercond. Sci. Technol. 32 (2019) 12LT03
42) H. Fujishiro, T. Hiyama, T. Naito, T. Tateiwa and Y. Yanagi: “Possible explanation for trapped field enhancement on REBaCuO bulk by modified multi-pulse technique with stepwise cooling (MMPSC),” Mat. Sci. Eng. B 151 (2008) 95–100
2) J. F. Fagnard, B. Vanderheyden, E. Pardo and P. Vanderbemden: “Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields,” Supercond. Sci. Technol. 32 (2019) 074007
11) J. D. Weiss, A. Yamamoto, A. A. Polyanskii, R. B. Richardson, D. C. Larbalestier and E. E. Hellstrom: “Demonstration of an iron-pnictide bulk superconducting magnet capable of trapping over 1 T”, Supercond. Sci. Technol. 28 (2015) 112001
35) C. P. Bean: “Magnetization of hard superconductors”, Phys. Rev. Lett. 8 (1962) 250-253
21) A. Murakami, H. Teshima, T. Naito, H. Fujishiro, T. Kudo and A. Iwamoto: “Low-temperature mechanical properties of bulk MgB2 fabricated by hot isostatic pressing,” Phys. Proc. 67 (2015) 982–986
32) T. Hirano, Y. Takahashi, S. Namba, T. Naito and H. Fujishiro: “A record-high trapped field of 1.61 T in MgB2 bulk comprised of copper plates and soft iron yoke cylinder using pulsed-field magnetization,” Supercond. Sci. Technol., 33 (2020) 085002
43) Y. Itoh, Y. Yanagi and T. Nakamura: “Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore,” TEION KOGAKU 52 (2017) 25-32 (in Japanese) 伊藤佳孝,柳 陽介,仲村髙志:「NMR 用超電導バルク磁石の新しい積層構造と内挿超電導円筒による磁場均一性向上」,低温工学 52 (2017) 25-32
24) J. H. Durrell, C. E. J. Dancer, A. Dennis, Y. Shi, Z. Xu, A. M. Campbell, N. H. Babu, R. I. Todd, C. R. M. Grovenor and D. A. Cardwell: “A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing,” Supercond. Sci. Technol. 25 (2012) 112002
10) S. I. Yoo: “Critical current densities and trapped fields of dense MgB2 bulk superconductors”, The 11th Int. Workshop on Critical Currents in Supercond. (IWCC11) (2003. 7.30) [MB3]
20) D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan,N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru and M. Haas: “Strongly linked current flow in polycrystalline forms of the superconductor MgB2,” Nature 410 (2001) 186–189
16) H. Fujishiro, T. Tateiwa, A. Fujiwara, T. Oka and H. Hayashi: “Higher trapped field over 5 T on HTSC bulk by modified pulse field magnetizing”, Physica C 445-448 (2006) 334-338
17) D. Zhou, M. D. Ainslie, J. Srpčič, K. Huang, Y. Shi, A. R. Dennis, D. A. Cardwell, J. H. Durrell, M. Boll and M. Filipenko: “Exploiting flux jumps for pulsed field magnetisation,” Supercond. Sci. Technol. 31 (2018) 105005
36) E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer and J. V. Waszczak: “Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended bean model,” Appl. Phys. Lett. 55 (1989) 283–285
18) J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: “Superconductivity at 39 K in magnesium diboride,” Nature 410 (2001) 63–64
27) A. Yamamoto, A. Ishihara, M. Tomita and K. Kishio: “Permanent magnet with MgB2 bulk superconductor,” Appl. Phys. Lett. 105 (2014) 032601
39) Y. Feng, Y. Zhao, Y. P. Sun, F. C. Liu, B. Q. Fu, L. Zhou, C. H. Cheng, N. Koshizuka and M. Murakami: “Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure,” Appl. Phys. Lett. 79 (2001) 3983–3985
4) Z. Y. Zhang, S. Choi, S. Matsumoto, R. Teranishi, G. Giunchi, A Figini Albisetti and T. Kiyoshi: “Magnetic lenses using different MgB2 bulk superconductors,” Supercond. Sci. Technol. 25 (2012) 025009
22) R. V. Viznichenko, A. A. Kordyuk, G. Fuchs, K. Nenkov, K.-H. Müller, T. A. Prikhna and W. Gawalek: “Temperature dependence of the trapped magnetic field in MgB2 bulk superconductors,” Appl. Phys. Lett. 83 (2003) 4360-4362
12) K. Amase, T. Naito and A. Kikuchi: “Fabrication and vortex pinning properties of Nb3Sn superconducting bulks using the precursors consisting of Nb and Nb-Sn compound,” Abstracts of CSSJ Conference 99 (2020) 121 天瀬洸太,内藤智之,菊池章弘:「Nb 及び Nb-Sn 化合物を前駆体とした Nb3Sn バルク超伝導体の作製と磁束ピン止め特性」,第 99 回 2020 年春季低温工学・超電導学会講演概要集(2020) 121
13) M. Tomita and M. Murakami: “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature 421 (2003) 517–520
3) Z. Y. Zhang, S. Matsumoto, R. Teranishi and T. Kiyoshi: “Magnetic field, temperature and mechanical crack performance of a GdBCO magnetic lens,” Supercond. Sci. Technol. 25 (2012) 115012
34) T. Naito, A. Ogino and H. Fujishiro: “Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by infiltration-capsule method,” Supercond. Sci. Technol. 29 (2016) 115003
38) Y. Zhao, D. X. Huang, Y. Feng, C. H. Cheng, T. Machi, N. Koshizuka and M. Murakami: “Nanoparticle structure of MgB2 with ultrathin TiB2 grain boundaries,” Appl. Phys. Lett. 80 (2002) 1640-1642
26) G. Fuchs, W. Häßler, K. Nenkov, J. Scheiter, O. Perner, A. Handstein, T. Kanai, L. Schultz and B. Holzapfel: “High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder,” Supercond. Sci. Technol. 26 (2013) 122002
14) J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y-H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom and D. A. Cardwell: “A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27 (2014) 082001
8) Z. Deng, M. Miki, K. Tsuzuki, B. Felder, R. Taguchi, N. Shinohara and M. Izumi: “Pulsed field magnetization properties of bulk RE-Ba-Cu-O as pole-field magnets for HTS rotating machines,” IEEE Trans. Appl. Supercond. 21 (2011) 1180-1184
19) M. Kambara, N. H. Babu, E. S. Sadki, J. R. Cooper, H. Minami, D. A. Cardwell, A. M. Campbell and I. H. Inoue: “High intergranular critical currents in metallic MgB2 superconductor,” Supercond. Sci. Technol. 14 (2001) L5–L7
30) T. Naito, Y. Takahashi and S. Awaji: “A record-high trapped field of 5.6 T in the stacking of MgB2/TiB2 composite bulks prepared by an in-situ hot isostatic pressing method,” Supercond. Sci. Technol. 33 (2020) 125004
9) S. Gotoh, M. Murakami, H. Fujimoto and N. Koshizuka: “Magnetic properties of superconducting YBa2Cu3Ox permanent magnets prepared by the melt process,” J. Appl. Phys. 72 (1992) 2404
15) T. Naito, H. Fujishiro and S. Awaji: “Field-cooled magnetization of Y-Ba-Cu-O superconducting bulk pair reinforced by full metal encapsulation under high magnetic fields up to 22 T,” J. Appl. Phys. 126 (2019) 243901
6) K. Takahashi, H. Fujishiro and M. D. Ainslie: “A conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth,” Supercond. Sci. Technol. 34 (2021) 035001
25) T. Sasaki, T. Naito and H. Fujishiro: “Trapped magnetic field of dense MgB2 bulks fabricated under high pressure,” Physics Procedia 45 (2013) 93–96
31) H. Fujishiro, H. Mochizuki, M. D. Ainslie and T. Naito: “Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke,” Supercond. Sci. Technol. 29 (2016) 084001
28) T. Naito, T. Yoshida and H. Fujishiro: “Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors,” Supercond. Sci. Technol. 28 (2015) 095009
44) Y. Takahashi, T. Naito, T. Nakamura and M. Takahashi: “Detection of 1H NMR signal in a trapped magnetic field of a compact tubular MgB2 superconductor bulk,” Supercond. Sci. Technol. 34 (2021) 06LT02
41) 鎌田大空:「超電導バルクのパルス着磁におけるコイル形状とヨークの効果」岩手大学大学院総合科学研究科修士学位論文(2020 年度)
29) A. G. Bhagurkar, A. Yamamoto, L. Wang, M. Xia, A. R. Dennis, J. H. Durrell, T. A. Aljohani, N. H. Babu and D. A. Cardwell: “High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process,” Sci. Rep. 8 (2018) 2045–2322
33) T. Naito, Y. Endo and H. Fujishiro: “Optimization of vortex pinning at grain boundaries on ex-situ MgB2 bulks synthesized by spark plasma sintering,” Supercond. Sci. Technol. 30 (2017) 095007
37) Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: “High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure,” Appl. Phys. Lett. 79 (2001) 1154–1156
23) T. Naito, T. Sasaki and H. Fujishiro: “Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method,” Supercond. Sci. Technol. 25 (2012) 095012
1) A. Yamamoto, T. Ida, M. Ainslie, N. Sakai, J. Shimoyama, T. Naito, S. Nariki and M. Izumi: “Recent progress on the development of high temperature superconducting bulk materials,” IEEJ Trans. Power Energy, 140 (2020) 141–147 (in Japanese) 山本明保,井田徹哉,M. Ainslie,坂井直道,下山淳一,内藤智之,成木紳也,和泉 充:「高温超電導バルクの材料研究開発における新展開」,電気学会論文誌 B(電力・エネルギー部門誌),140 (2020) 141–147
References_xml – reference: 11) J. D. Weiss, A. Yamamoto, A. A. Polyanskii, R. B. Richardson, D. C. Larbalestier and E. E. Hellstrom: “Demonstration of an iron-pnictide bulk superconducting magnet capable of trapping over 1 T”, Supercond. Sci. Technol. 28 (2015) 112001
– reference: 34) T. Naito, A. Ogino and H. Fujishiro: “Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by infiltration-capsule method,” Supercond. Sci. Technol. 29 (2016) 115003
– reference: 27) A. Yamamoto, A. Ishihara, M. Tomita and K. Kishio: “Permanent magnet with MgB2 bulk superconductor,” Appl. Phys. Lett. 105 (2014) 032601
– reference: 44) Y. Takahashi, T. Naito, T. Nakamura and M. Takahashi: “Detection of 1H NMR signal in a trapped magnetic field of a compact tubular MgB2 superconductor bulk,” Supercond. Sci. Technol. 34 (2021) 06LT02
– reference: 7) H. Fujishiro: “Magnetization of superconducting bulks,” TEION KOGAKU 46 (2011) 81-88 (in Japanese) 藤代博之:「バルク超電導体の着磁現象」,低温工学 46 (2011) 81-88
– reference: 26) G. Fuchs, W. Häßler, K. Nenkov, J. Scheiter, O. Perner, A. Handstein, T. Kanai, L. Schultz and B. Holzapfel: “High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder,” Supercond. Sci. Technol. 26 (2013) 122002
– reference: 30) T. Naito, Y. Takahashi and S. Awaji: “A record-high trapped field of 5.6 T in the stacking of MgB2/TiB2 composite bulks prepared by an in-situ hot isostatic pressing method,” Supercond. Sci. Technol. 33 (2020) 125004
– reference: 10) S. I. Yoo: “Critical current densities and trapped fields of dense MgB2 bulk superconductors”, The 11th Int. Workshop on Critical Currents in Supercond. (IWCC11) (2003. 7.30) [MB3]
– reference: 13) M. Tomita and M. Murakami: “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature 421 (2003) 517–520
– reference: 32) T. Hirano, Y. Takahashi, S. Namba, T. Naito and H. Fujishiro: “A record-high trapped field of 1.61 T in MgB2 bulk comprised of copper plates and soft iron yoke cylinder using pulsed-field magnetization,” Supercond. Sci. Technol., 33 (2020) 085002
– reference: 35) C. P. Bean: “Magnetization of hard superconductors”, Phys. Rev. Lett. 8 (1962) 250-253
– reference: 41) 鎌田大空:「超電導バルクのパルス着磁におけるコイル形状とヨークの効果」岩手大学大学院総合科学研究科修士学位論文(2020 年度)
– reference: 23) T. Naito, T. Sasaki and H. Fujishiro: “Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method,” Supercond. Sci. Technol. 25 (2012) 095012
– reference: 37) Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: “High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure,” Appl. Phys. Lett. 79 (2001) 1154–1156
– reference: 15) T. Naito, H. Fujishiro and S. Awaji: “Field-cooled magnetization of Y-Ba-Cu-O superconducting bulk pair reinforced by full metal encapsulation under high magnetic fields up to 22 T,” J. Appl. Phys. 126 (2019) 243901
– reference: 2) J. F. Fagnard, B. Vanderheyden, E. Pardo and P. Vanderbemden: “Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields,” Supercond. Sci. Technol. 32 (2019) 074007
– reference: 22) R. V. Viznichenko, A. A. Kordyuk, G. Fuchs, K. Nenkov, K.-H. Müller, T. A. Prikhna and W. Gawalek: “Temperature dependence of the trapped magnetic field in MgB2 bulk superconductors,” Appl. Phys. Lett. 83 (2003) 4360-4362
– reference: 25) T. Sasaki, T. Naito and H. Fujishiro: “Trapped magnetic field of dense MgB2 bulks fabricated under high pressure,” Physics Procedia 45 (2013) 93–96
– reference: 5) S. Namba, H. Fujishiro, T. Naito, M.D. Ainslie and K. Takahashi: “Experimental realization of a hybrid trapped field magnet lens using a GdBaCuO magnetic lens and MgB2 bulk cylinder,” Supercond. Sci. Technol. 32 (2019) 12LT03
– reference: 21) A. Murakami, H. Teshima, T. Naito, H. Fujishiro, T. Kudo and A. Iwamoto: “Low-temperature mechanical properties of bulk MgB2 fabricated by hot isostatic pressing,” Phys. Proc. 67 (2015) 982–986
– reference: 8) Z. Deng, M. Miki, K. Tsuzuki, B. Felder, R. Taguchi, N. Shinohara and M. Izumi: “Pulsed field magnetization properties of bulk RE-Ba-Cu-O as pole-field magnets for HTS rotating machines,” IEEE Trans. Appl. Supercond. 21 (2011) 1180-1184
– reference: 18) J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: “Superconductivity at 39 K in magnesium diboride,” Nature 410 (2001) 63–64
– reference: 42) H. Fujishiro, T. Hiyama, T. Naito, T. Tateiwa and Y. Yanagi: “Possible explanation for trapped field enhancement on REBaCuO bulk by modified multi-pulse technique with stepwise cooling (MMPSC),” Mat. Sci. Eng. B 151 (2008) 95–100
– reference: 14) J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y-H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom and D. A. Cardwell: “A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27 (2014) 082001
– reference: 36) E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer and J. V. Waszczak: “Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended bean model,” Appl. Phys. Lett. 55 (1989) 283–285
– reference: 39) Y. Feng, Y. Zhao, Y. P. Sun, F. C. Liu, B. Q. Fu, L. Zhou, C. H. Cheng, N. Koshizuka and M. Murakami: “Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure,” Appl. Phys. Lett. 79 (2001) 3983–3985
– reference: 6) K. Takahashi, H. Fujishiro and M. D. Ainslie: “A conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth,” Supercond. Sci. Technol. 34 (2021) 035001
– reference: 24) J. H. Durrell, C. E. J. Dancer, A. Dennis, Y. Shi, Z. Xu, A. M. Campbell, N. H. Babu, R. I. Todd, C. R. M. Grovenor and D. A. Cardwell: “A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing,” Supercond. Sci. Technol. 25 (2012) 112002
– reference: 43) Y. Itoh, Y. Yanagi and T. Nakamura: “Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore,” TEION KOGAKU 52 (2017) 25-32 (in Japanese) 伊藤佳孝,柳 陽介,仲村髙志:「NMR 用超電導バルク磁石の新しい積層構造と内挿超電導円筒による磁場均一性向上」,低温工学 52 (2017) 25-32
– reference: 9) S. Gotoh, M. Murakami, H. Fujimoto and N. Koshizuka: “Magnetic properties of superconducting YBa2Cu3Ox permanent magnets prepared by the melt process,” J. Appl. Phys. 72 (1992) 2404
– reference: 16) H. Fujishiro, T. Tateiwa, A. Fujiwara, T. Oka and H. Hayashi: “Higher trapped field over 5 T on HTSC bulk by modified pulse field magnetizing”, Physica C 445-448 (2006) 334-338
– reference: 3) Z. Y. Zhang, S. Matsumoto, R. Teranishi and T. Kiyoshi: “Magnetic field, temperature and mechanical crack performance of a GdBCO magnetic lens,” Supercond. Sci. Technol. 25 (2012) 115012
– reference: 4) Z. Y. Zhang, S. Choi, S. Matsumoto, R. Teranishi, G. Giunchi, A Figini Albisetti and T. Kiyoshi: “Magnetic lenses using different MgB2 bulk superconductors,” Supercond. Sci. Technol. 25 (2012) 025009
– reference: 28) T. Naito, T. Yoshida and H. Fujishiro: “Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors,” Supercond. Sci. Technol. 28 (2015) 095009
– reference: 20) D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan,N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru and M. Haas: “Strongly linked current flow in polycrystalline forms of the superconductor MgB2,” Nature 410 (2001) 186–189
– reference: 17) D. Zhou, M. D. Ainslie, J. Srpčič, K. Huang, Y. Shi, A. R. Dennis, D. A. Cardwell, J. H. Durrell, M. Boll and M. Filipenko: “Exploiting flux jumps for pulsed field magnetisation,” Supercond. Sci. Technol. 31 (2018) 105005
– reference: 31) H. Fujishiro, H. Mochizuki, M. D. Ainslie and T. Naito: “Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke,” Supercond. Sci. Technol. 29 (2016) 084001
– reference: 38) Y. Zhao, D. X. Huang, Y. Feng, C. H. Cheng, T. Machi, N. Koshizuka and M. Murakami: “Nanoparticle structure of MgB2 with ultrathin TiB2 grain boundaries,” Appl. Phys. Lett. 80 (2002) 1640-1642
– reference: 40) Y. Takahashi, T. Naito and H. Fujishiro: “Vortex pinning properties and microstructure of MgB2 heavily doped with titanium group elements,” Supercond. Sci. Technol. 30 (2017) 125006
– reference: 1) A. Yamamoto, T. Ida, M. Ainslie, N. Sakai, J. Shimoyama, T. Naito, S. Nariki and M. Izumi: “Recent progress on the development of high temperature superconducting bulk materials,” IEEJ Trans. Power Energy, 140 (2020) 141–147 (in Japanese) 山本明保,井田徹哉,M. Ainslie,坂井直道,下山淳一,内藤智之,成木紳也,和泉 充:「高温超電導バルクの材料研究開発における新展開」,電気学会論文誌 B(電力・エネルギー部門誌),140 (2020) 141–147
– reference: 12) K. Amase, T. Naito and A. Kikuchi: “Fabrication and vortex pinning properties of Nb3Sn superconducting bulks using the precursors consisting of Nb and Nb-Sn compound,” Abstracts of CSSJ Conference 99 (2020) 121 天瀬洸太,内藤智之,菊池章弘:「Nb 及び Nb-Sn 化合物を前駆体とした Nb3Sn バルク超伝導体の作製と磁束ピン止め特性」,第 99 回 2020 年春季低温工学・超電導学会講演概要集(2020) 121
– reference: 29) A. G. Bhagurkar, A. Yamamoto, L. Wang, M. Xia, A. R. Dennis, J. H. Durrell, T. A. Aljohani, N. H. Babu and D. A. Cardwell: “High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process,” Sci. Rep. 8 (2018) 2045–2322
– reference: 33) T. Naito, Y. Endo and H. Fujishiro: “Optimization of vortex pinning at grain boundaries on ex-situ MgB2 bulks synthesized by spark plasma sintering,” Supercond. Sci. Technol. 30 (2017) 095007
– reference: 19) M. Kambara, N. H. Babu, E. S. Sadki, J. R. Cooper, H. Minami, D. A. Cardwell, A. M. Campbell and I. H. Inoue: “High intergranular critical currents in metallic MgB2 superconductor,” Supercond. Sci. Technol. 14 (2001) L5–L7
SSID ssib000961562
ssj0041516
ssib005901851
ssib002484407
Score 2.2229948
Snippet We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled...
SourceID jstage
SourceType Publisher
StartPage 309
SubjectTerms bulk magnet
field-cooled magnetization
MgB2 superconductor
pulsed field magnetization
trapped field
Title MgB2 超伝導バルク磁石の現状と展望
URI https://www.jstage.jst.go.jp/article/jcsj/56/6/56_309/_article/-char/ja
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 低温工学, 2021, Vol.56(6), pp.309-316
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR27jtNA0DqOhgaBAPFWCqaKnIvtXXu39CaOTqBDQrqTrrP82CClOBDkGrpwoqEAGipAFDRISDwEugrxM-EIn8HMruP4ThThRGONZmdnZ3aynpnNztpxbkTcy3kWMjfw5dBlMsvcrMD1iOl1gf5Ml9GQEsWN2-H6Fru5zbdXTnxrnFraHeed4tFf60qOY1XEoV2pSvYfLFszRQTCaF98ooXxuZSNN-4qvw2JABWC4JAwUD2QfUg4qC6IBJIARACyWwGxMoAP8QCSCGKEPQLkAFRgmjyIE8IIxFggJuZVkzCcPZA4VggSx1LN4NYI0DfjhqAExNLQ40CcgLgPcb0PSFJLbGGmkyJZ0NhEJvogY4OVINSCHluslvOOhh7FkKCO0Fe7GP5i_8J0RxF6Rl1FaiWGCWnJCYMCkNSBUY4RSxW3l9GomlvUYWEISRwJUxuiJrY2iimyN9Ijr6j9H4WxE8jqgeZbPVX1mjltZi8B62jrjPDd6uJLVjS9lb2GvVqVTdcTdGUjiglsBetRB4nRoHGQxcNRh4edus-hG8er33NKVCkP05AeSJrOG6ggMB1hVnLSjyKPDtLeutMI6iVGyY1LKH0mGOsernY2_0XbeAkjSM-eKKhmwFbRkqRrDTkxQhxhvjQ_a2nCv80zzukqb2vFVrazzsooO-es0QJs_d5_8vP7m4PPz6Z7L6Z7H6aPP83eTWZvv04nH2fPf8ye7k8n7w--vPz1-tV5Z2uQbPbW3eoLJO7Ix7zJLSJMQLxut8C0nm62K7OSR7mWuRZlWZJieYEAfQDOLyNdhCErMP8Yhnmuc8GHwQVndefejr7otITWPpfoXQtesmHOsiAvtZd7uixZ4Bf8khNZ_dL79pqZdFkzXD52zyvOKVqLdkfxqrM6frCrr2GMPc6vG5P-AVcLnnc
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MgB2+%E8%B6%85%E4%BC%9D%E5%B0%8E%E3%83%90%E3%83%AB%E3%82%AF%E7%A3%81%E7%9F%B3%E3%81%AE%E7%8F%BE%E7%8A%B6%E3%81%A8%E5%B1%95%E6%9C%9B&rft.jtitle=%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6&rft.au=%E8%97%A4%E4%BB%A3%2C+%E5%8D%9A%E4%B9%8B&rft.au=%E5%86%85%E8%97%A4%2C+%E6%99%BA%E4%B9%8B&rft.date=2021&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E3%83%BB%E8%B6%85%E9%9B%BB%E5%B0%8E%E5%AD%A6%E4%BC%9A+%28%E6%97%A7+%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E5%8D%94%E4%BC%9A%29&rft.issn=0389-2441&rft.eissn=1880-0408&rft.volume=56&rft.issue=6&rft.spage=309&rft.epage=316&rft_id=info:doi/10.2221%2Fjcsj.56.309&rft.externalDocID=article_jcsj_56_6_56_309_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-2441&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-2441&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-2441&client=summon