MgB2 超伝導バルク磁石の現状と展望
We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled magnetization (FCM) method using a superconductor coil and a pulsed field magnetization (PFM) method using a copper coil. We firstly obtained...
Saved in:
Published in | 低温工学 Vol. 56; no. 6; pp. 309 - 316 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会)
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0389-2441 1880-0408 |
DOI | 10.2221/jcsj.56.309 |
Cover
Abstract | We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled magnetization (FCM) method using a superconductor coil and a pulsed field magnetization (PFM) method using a copper coil. We firstly obtained a trapped field of 1.5 T at 14 K by FCM for an MgB2 disc bulk (30 mm diameter and 7 mm thickness) with a filling factor of about 50 %, which was fabricated by an in-situ capsule method using a home-made capsule. The trapped field of MgB2 bulk by FCM was enhanced up to 2.9 T by the densification and the enlargement. Such dense MgB2 bulks were fabricated by an in-situ hot isostatic pressing under the pressure of up to 980 MPa or an ex-situ spark plasma sintering by applying uniaxial stress of 50 MPa. An in-situ infiltration method without the physical pressure also produced the dense MgB2 bulks, which trapped a 3 T-class magnetic field. The Ti-doping improved considerably the trapped field by FCM up to 5.6 T at 11.3 K for the triple-stacked Ti-doped MgB2 bulks. The PFM method also produced a Tesla-class MgB2 bulk magnet. The trapped field of 1.1 T at 13 K was obtained for the HIP-processed MgB2 disc bulk (22 mm diameter and 20 mm thickness). A magnetic field of 1.6 T was trapped at 20 K in the MgB2 bulk composite, consisting of two ring-shaped MgB2 bulks sandwiched by four thin copper plates and an inserted soft-iron yoke cylinder, using double PFM using a split-type coil with softiron yokes. We have shown the potential of the MgB2 bulk magnets for the practical superconducting applications. |
---|---|
AbstractList | We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled magnetization (FCM) method using a superconductor coil and a pulsed field magnetization (PFM) method using a copper coil. We firstly obtained a trapped field of 1.5 T at 14 K by FCM for an MgB2 disc bulk (30 mm diameter and 7 mm thickness) with a filling factor of about 50 %, which was fabricated by an in-situ capsule method using a home-made capsule. The trapped field of MgB2 bulk by FCM was enhanced up to 2.9 T by the densification and the enlargement. Such dense MgB2 bulks were fabricated by an in-situ hot isostatic pressing under the pressure of up to 980 MPa or an ex-situ spark plasma sintering by applying uniaxial stress of 50 MPa. An in-situ infiltration method without the physical pressure also produced the dense MgB2 bulks, which trapped a 3 T-class magnetic field. The Ti-doping improved considerably the trapped field by FCM up to 5.6 T at 11.3 K for the triple-stacked Ti-doped MgB2 bulks. The PFM method also produced a Tesla-class MgB2 bulk magnet. The trapped field of 1.1 T at 13 K was obtained for the HIP-processed MgB2 disc bulk (22 mm diameter and 20 mm thickness). A magnetic field of 1.6 T was trapped at 20 K in the MgB2 bulk composite, consisting of two ring-shaped MgB2 bulks sandwiched by four thin copper plates and an inserted soft-iron yoke cylinder, using double PFM using a split-type coil with softiron yokes. We have shown the potential of the MgB2 bulk magnets for the practical superconducting applications. |
Author | 内藤, 智之 藤代, 博之 |
Author_xml | – sequence: 1 fullname: 藤代, 博之 organization: 岩手大学理工学部 – sequence: 1 fullname: 内藤, 智之 organization: 岩手大学理工学部 |
BookMark | eNo9j7tKA0EYhQeJ4BpT-QK-wG7-mZ2ZnWkEDd4gYqP1MrfEXWKU3TSWa7CxUBsrFQsbQfCCkEp8mTWuj2GCYnPOgQ8OfPOo1j_sO4QWMQSEENxMTZ4GjAchyBnkYSHABwqihjwIhfQJpXgONfI80QAgOWaceKi53V0lS9-j08_32_HLeTm8LIeP5clzdV9Ud29l8VRdfFRno7J4GL9efd1cL6DZjurlrvHXdbS3vrbb2vTbOxtbrZW2nxKJuW8iyTAGMFREgAW2yrJIO6mdsNYSKqg2kwFERsRGznBODQ1Zh2vttGCdsI6Wf3_TfKC6Lj7KkgOVHccqGySm5-KpbMx4zKcxMf4HZl9lcarCH1unX6c |
ContentType | Journal Article |
Copyright | 2021 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
Copyright_xml | – notice: 2021 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
DOI | 10.2221/jcsj.56.309 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1880-0408 |
EndPage | 316 |
ExternalDocumentID | article_jcsj_56_6_56_309_article_char_ja |
GroupedDBID | 123 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 JSF KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j2916-c7951100c4870181dad57be9be8ddd2484bcddd02972d7ec664c435f6bbeb85f3 |
ISSN | 0389-2441 |
IngestDate | Wed Sep 03 06:31:05 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2916-c7951100c4870181dad57be9be8ddd2484bcddd02972d7ec664c435f6bbeb85f3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jcsj/56/6/56_309/_article/-char/ja |
PageCount | 8 |
ParticipantIDs | jstage_primary_article_jcsj_56_6_56_309_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | 低温工学 |
PublicationTitleAlternate | 低温工学 |
PublicationYear | 2021 |
Publisher | 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
Publisher_xml | – name: 公益社団法人 低温工学・超電導学会 (旧 社団法人 低温工学協会) |
References | 7) H. Fujishiro: “Magnetization of superconducting bulks,” TEION KOGAKU 46 (2011) 81-88 (in Japanese) 藤代博之:「バルク超電導体の着磁現象」,低温工学 46 (2011) 81-88 40) Y. Takahashi, T. Naito and H. Fujishiro: “Vortex pinning properties and microstructure of MgB2 heavily doped with titanium group elements,” Supercond. Sci. Technol. 30 (2017) 125006 5) S. Namba, H. Fujishiro, T. Naito, M.D. Ainslie and K. Takahashi: “Experimental realization of a hybrid trapped field magnet lens using a GdBaCuO magnetic lens and MgB2 bulk cylinder,” Supercond. Sci. Technol. 32 (2019) 12LT03 42) H. Fujishiro, T. Hiyama, T. Naito, T. Tateiwa and Y. Yanagi: “Possible explanation for trapped field enhancement on REBaCuO bulk by modified multi-pulse technique with stepwise cooling (MMPSC),” Mat. Sci. Eng. B 151 (2008) 95–100 2) J. F. Fagnard, B. Vanderheyden, E. Pardo and P. Vanderbemden: “Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields,” Supercond. Sci. Technol. 32 (2019) 074007 11) J. D. Weiss, A. Yamamoto, A. A. Polyanskii, R. B. Richardson, D. C. Larbalestier and E. E. Hellstrom: “Demonstration of an iron-pnictide bulk superconducting magnet capable of trapping over 1 T”, Supercond. Sci. Technol. 28 (2015) 112001 35) C. P. Bean: “Magnetization of hard superconductors”, Phys. Rev. Lett. 8 (1962) 250-253 21) A. Murakami, H. Teshima, T. Naito, H. Fujishiro, T. Kudo and A. Iwamoto: “Low-temperature mechanical properties of bulk MgB2 fabricated by hot isostatic pressing,” Phys. Proc. 67 (2015) 982–986 32) T. Hirano, Y. Takahashi, S. Namba, T. Naito and H. Fujishiro: “A record-high trapped field of 1.61 T in MgB2 bulk comprised of copper plates and soft iron yoke cylinder using pulsed-field magnetization,” Supercond. Sci. Technol., 33 (2020) 085002 43) Y. Itoh, Y. Yanagi and T. Nakamura: “Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore,” TEION KOGAKU 52 (2017) 25-32 (in Japanese) 伊藤佳孝,柳 陽介,仲村髙志:「NMR 用超電導バルク磁石の新しい積層構造と内挿超電導円筒による磁場均一性向上」,低温工学 52 (2017) 25-32 24) J. H. Durrell, C. E. J. Dancer, A. Dennis, Y. Shi, Z. Xu, A. M. Campbell, N. H. Babu, R. I. Todd, C. R. M. Grovenor and D. A. Cardwell: “A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing,” Supercond. Sci. Technol. 25 (2012) 112002 10) S. I. Yoo: “Critical current densities and trapped fields of dense MgB2 bulk superconductors”, The 11th Int. Workshop on Critical Currents in Supercond. (IWCC11) (2003. 7.30) [MB3] 20) D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan,N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru and M. Haas: “Strongly linked current flow in polycrystalline forms of the superconductor MgB2,” Nature 410 (2001) 186–189 16) H. Fujishiro, T. Tateiwa, A. Fujiwara, T. Oka and H. Hayashi: “Higher trapped field over 5 T on HTSC bulk by modified pulse field magnetizing”, Physica C 445-448 (2006) 334-338 17) D. Zhou, M. D. Ainslie, J. Srpčič, K. Huang, Y. Shi, A. R. Dennis, D. A. Cardwell, J. H. Durrell, M. Boll and M. Filipenko: “Exploiting flux jumps for pulsed field magnetisation,” Supercond. Sci. Technol. 31 (2018) 105005 36) E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer and J. V. Waszczak: “Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended bean model,” Appl. Phys. Lett. 55 (1989) 283–285 18) J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: “Superconductivity at 39 K in magnesium diboride,” Nature 410 (2001) 63–64 27) A. Yamamoto, A. Ishihara, M. Tomita and K. Kishio: “Permanent magnet with MgB2 bulk superconductor,” Appl. Phys. Lett. 105 (2014) 032601 39) Y. Feng, Y. Zhao, Y. P. Sun, F. C. Liu, B. Q. Fu, L. Zhou, C. H. Cheng, N. Koshizuka and M. Murakami: “Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure,” Appl. Phys. Lett. 79 (2001) 3983–3985 4) Z. Y. Zhang, S. Choi, S. Matsumoto, R. Teranishi, G. Giunchi, A Figini Albisetti and T. Kiyoshi: “Magnetic lenses using different MgB2 bulk superconductors,” Supercond. Sci. Technol. 25 (2012) 025009 22) R. V. Viznichenko, A. A. Kordyuk, G. Fuchs, K. Nenkov, K.-H. Müller, T. A. Prikhna and W. Gawalek: “Temperature dependence of the trapped magnetic field in MgB2 bulk superconductors,” Appl. Phys. Lett. 83 (2003) 4360-4362 12) K. Amase, T. Naito and A. Kikuchi: “Fabrication and vortex pinning properties of Nb3Sn superconducting bulks using the precursors consisting of Nb and Nb-Sn compound,” Abstracts of CSSJ Conference 99 (2020) 121 天瀬洸太,内藤智之,菊池章弘:「Nb 及び Nb-Sn 化合物を前駆体とした Nb3Sn バルク超伝導体の作製と磁束ピン止め特性」,第 99 回 2020 年春季低温工学・超電導学会講演概要集(2020) 121 13) M. Tomita and M. Murakami: “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature 421 (2003) 517–520 3) Z. Y. Zhang, S. Matsumoto, R. Teranishi and T. Kiyoshi: “Magnetic field, temperature and mechanical crack performance of a GdBCO magnetic lens,” Supercond. Sci. Technol. 25 (2012) 115012 34) T. Naito, A. Ogino and H. Fujishiro: “Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by infiltration-capsule method,” Supercond. Sci. Technol. 29 (2016) 115003 38) Y. Zhao, D. X. Huang, Y. Feng, C. H. Cheng, T. Machi, N. Koshizuka and M. Murakami: “Nanoparticle structure of MgB2 with ultrathin TiB2 grain boundaries,” Appl. Phys. Lett. 80 (2002) 1640-1642 26) G. Fuchs, W. Häßler, K. Nenkov, J. Scheiter, O. Perner, A. Handstein, T. Kanai, L. Schultz and B. Holzapfel: “High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder,” Supercond. Sci. Technol. 26 (2013) 122002 14) J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y-H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom and D. A. Cardwell: “A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27 (2014) 082001 8) Z. Deng, M. Miki, K. Tsuzuki, B. Felder, R. Taguchi, N. Shinohara and M. Izumi: “Pulsed field magnetization properties of bulk RE-Ba-Cu-O as pole-field magnets for HTS rotating machines,” IEEE Trans. Appl. Supercond. 21 (2011) 1180-1184 19) M. Kambara, N. H. Babu, E. S. Sadki, J. R. Cooper, H. Minami, D. A. Cardwell, A. M. Campbell and I. H. Inoue: “High intergranular critical currents in metallic MgB2 superconductor,” Supercond. Sci. Technol. 14 (2001) L5–L7 30) T. Naito, Y. Takahashi and S. Awaji: “A record-high trapped field of 5.6 T in the stacking of MgB2/TiB2 composite bulks prepared by an in-situ hot isostatic pressing method,” Supercond. Sci. Technol. 33 (2020) 125004 9) S. Gotoh, M. Murakami, H. Fujimoto and N. Koshizuka: “Magnetic properties of superconducting YBa2Cu3Ox permanent magnets prepared by the melt process,” J. Appl. Phys. 72 (1992) 2404 15) T. Naito, H. Fujishiro and S. Awaji: “Field-cooled magnetization of Y-Ba-Cu-O superconducting bulk pair reinforced by full metal encapsulation under high magnetic fields up to 22 T,” J. Appl. Phys. 126 (2019) 243901 6) K. Takahashi, H. Fujishiro and M. D. Ainslie: “A conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth,” Supercond. Sci. Technol. 34 (2021) 035001 25) T. Sasaki, T. Naito and H. Fujishiro: “Trapped magnetic field of dense MgB2 bulks fabricated under high pressure,” Physics Procedia 45 (2013) 93–96 31) H. Fujishiro, H. Mochizuki, M. D. Ainslie and T. Naito: “Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke,” Supercond. Sci. Technol. 29 (2016) 084001 28) T. Naito, T. Yoshida and H. Fujishiro: “Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors,” Supercond. Sci. Technol. 28 (2015) 095009 44) Y. Takahashi, T. Naito, T. Nakamura and M. Takahashi: “Detection of 1H NMR signal in a trapped magnetic field of a compact tubular MgB2 superconductor bulk,” Supercond. Sci. Technol. 34 (2021) 06LT02 41) 鎌田大空:「超電導バルクのパルス着磁におけるコイル形状とヨークの効果」岩手大学大学院総合科学研究科修士学位論文(2020 年度) 29) A. G. Bhagurkar, A. Yamamoto, L. Wang, M. Xia, A. R. Dennis, J. H. Durrell, T. A. Aljohani, N. H. Babu and D. A. Cardwell: “High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process,” Sci. Rep. 8 (2018) 2045–2322 33) T. Naito, Y. Endo and H. Fujishiro: “Optimization of vortex pinning at grain boundaries on ex-situ MgB2 bulks synthesized by spark plasma sintering,” Supercond. Sci. Technol. 30 (2017) 095007 37) Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: “High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure,” Appl. Phys. Lett. 79 (2001) 1154–1156 23) T. Naito, T. Sasaki and H. Fujishiro: “Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method,” Supercond. Sci. Technol. 25 (2012) 095012 1) A. Yamamoto, T. Ida, M. Ainslie, N. Sakai, J. Shimoyama, T. Naito, S. Nariki and M. Izumi: “Recent progress on the development of high temperature superconducting bulk materials,” IEEJ Trans. Power Energy, 140 (2020) 141–147 (in Japanese) 山本明保,井田徹哉,M. Ainslie,坂井直道,下山淳一,内藤智之,成木紳也,和泉 充:「高温超電導バルクの材料研究開発における新展開」,電気学会論文誌 B(電力・エネルギー部門誌),140 (2020) 141–147 |
References_xml | – reference: 11) J. D. Weiss, A. Yamamoto, A. A. Polyanskii, R. B. Richardson, D. C. Larbalestier and E. E. Hellstrom: “Demonstration of an iron-pnictide bulk superconducting magnet capable of trapping over 1 T”, Supercond. Sci. Technol. 28 (2015) 112001 – reference: 34) T. Naito, A. Ogino and H. Fujishiro: “Potential ability of 3 T-class trapped field on MgB2 bulk surface synthesized by infiltration-capsule method,” Supercond. Sci. Technol. 29 (2016) 115003 – reference: 27) A. Yamamoto, A. Ishihara, M. Tomita and K. Kishio: “Permanent magnet with MgB2 bulk superconductor,” Appl. Phys. Lett. 105 (2014) 032601 – reference: 44) Y. Takahashi, T. Naito, T. Nakamura and M. Takahashi: “Detection of 1H NMR signal in a trapped magnetic field of a compact tubular MgB2 superconductor bulk,” Supercond. Sci. Technol. 34 (2021) 06LT02 – reference: 7) H. Fujishiro: “Magnetization of superconducting bulks,” TEION KOGAKU 46 (2011) 81-88 (in Japanese) 藤代博之:「バルク超電導体の着磁現象」,低温工学 46 (2011) 81-88 – reference: 26) G. Fuchs, W. Häßler, K. Nenkov, J. Scheiter, O. Perner, A. Handstein, T. Kanai, L. Schultz and B. Holzapfel: “High trapped fields in bulk MgB2 prepared by hot-pressing of ball-milled precursor powder,” Supercond. Sci. Technol. 26 (2013) 122002 – reference: 30) T. Naito, Y. Takahashi and S. Awaji: “A record-high trapped field of 5.6 T in the stacking of MgB2/TiB2 composite bulks prepared by an in-situ hot isostatic pressing method,” Supercond. Sci. Technol. 33 (2020) 125004 – reference: 10) S. I. Yoo: “Critical current densities and trapped fields of dense MgB2 bulk superconductors”, The 11th Int. Workshop on Critical Currents in Supercond. (IWCC11) (2003. 7.30) [MB3] – reference: 13) M. Tomita and M. Murakami: “High-temperature superconductor bulk magnets that can trap magnetic fields of over 17 tesla at 29 K,” Nature 421 (2003) 517–520 – reference: 32) T. Hirano, Y. Takahashi, S. Namba, T. Naito and H. Fujishiro: “A record-high trapped field of 1.61 T in MgB2 bulk comprised of copper plates and soft iron yoke cylinder using pulsed-field magnetization,” Supercond. Sci. Technol., 33 (2020) 085002 – reference: 35) C. P. Bean: “Magnetization of hard superconductors”, Phys. Rev. Lett. 8 (1962) 250-253 – reference: 41) 鎌田大空:「超電導バルクのパルス着磁におけるコイル形状とヨークの効果」岩手大学大学院総合科学研究科修士学位論文(2020 年度) – reference: 23) T. Naito, T. Sasaki and H. Fujishiro: “Trapped magnetic field and vortex pinning properties of MgB2 superconducting bulk fabricated by a capsule method,” Supercond. Sci. Technol. 25 (2012) 095012 – reference: 37) Y. Zhao, Y. Feng, C. H. Cheng, L. Zhou, Y. Wu, T. Machi, Y. Fudamoto, N. Koshizuka and M. Murakami: “High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure,” Appl. Phys. Lett. 79 (2001) 1154–1156 – reference: 15) T. Naito, H. Fujishiro and S. Awaji: “Field-cooled magnetization of Y-Ba-Cu-O superconducting bulk pair reinforced by full metal encapsulation under high magnetic fields up to 22 T,” J. Appl. Phys. 126 (2019) 243901 – reference: 2) J. F. Fagnard, B. Vanderheyden, E. Pardo and P. Vanderbemden: “Magnetic shielding of various geometries of bulk semi-closed superconducting cylinders subjected to axial and transverse fields,” Supercond. Sci. Technol. 32 (2019) 074007 – reference: 22) R. V. Viznichenko, A. A. Kordyuk, G. Fuchs, K. Nenkov, K.-H. Müller, T. A. Prikhna and W. Gawalek: “Temperature dependence of the trapped magnetic field in MgB2 bulk superconductors,” Appl. Phys. Lett. 83 (2003) 4360-4362 – reference: 25) T. Sasaki, T. Naito and H. Fujishiro: “Trapped magnetic field of dense MgB2 bulks fabricated under high pressure,” Physics Procedia 45 (2013) 93–96 – reference: 5) S. Namba, H. Fujishiro, T. Naito, M.D. Ainslie and K. Takahashi: “Experimental realization of a hybrid trapped field magnet lens using a GdBaCuO magnetic lens and MgB2 bulk cylinder,” Supercond. Sci. Technol. 32 (2019) 12LT03 – reference: 21) A. Murakami, H. Teshima, T. Naito, H. Fujishiro, T. Kudo and A. Iwamoto: “Low-temperature mechanical properties of bulk MgB2 fabricated by hot isostatic pressing,” Phys. Proc. 67 (2015) 982–986 – reference: 8) Z. Deng, M. Miki, K. Tsuzuki, B. Felder, R. Taguchi, N. Shinohara and M. Izumi: “Pulsed field magnetization properties of bulk RE-Ba-Cu-O as pole-field magnets for HTS rotating machines,” IEEE Trans. Appl. Supercond. 21 (2011) 1180-1184 – reference: 18) J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani and J. Akimitsu: “Superconductivity at 39 K in magnesium diboride,” Nature 410 (2001) 63–64 – reference: 42) H. Fujishiro, T. Hiyama, T. Naito, T. Tateiwa and Y. Yanagi: “Possible explanation for trapped field enhancement on REBaCuO bulk by modified multi-pulse technique with stepwise cooling (MMPSC),” Mat. Sci. Eng. B 151 (2008) 95–100 – reference: 14) J. H. Durrell, A. R. Dennis, J. Jaroszynski, M. D. Ainslie, K. G. B. Palmer, Y-H. Shi, A. M. Campbell, J. Hull, M. Strasik, E. E. Hellstrom and D. A. Cardwell: “A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel,” Supercond. Sci. Technol. 27 (2014) 082001 – reference: 36) E. M. Gyorgy, R. B. van Dover, K. A. Jackson, L. F. Schneemeyer and J. V. Waszczak: “Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended bean model,” Appl. Phys. Lett. 55 (1989) 283–285 – reference: 39) Y. Feng, Y. Zhao, Y. P. Sun, F. C. Liu, B. Q. Fu, L. Zhou, C. H. Cheng, N. Koshizuka and M. Murakami: “Improvement of critical current density in MgB2 superconductors by Zr doping at ambient pressure,” Appl. Phys. Lett. 79 (2001) 3983–3985 – reference: 6) K. Takahashi, H. Fujishiro and M. D. Ainslie: “A conceptual study of a high gradient trapped field magnet (HG-TFM) toward providing a quasi-zero gravity space on Earth,” Supercond. Sci. Technol. 34 (2021) 035001 – reference: 24) J. H. Durrell, C. E. J. Dancer, A. Dennis, Y. Shi, Z. Xu, A. M. Campbell, N. H. Babu, R. I. Todd, C. R. M. Grovenor and D. A. Cardwell: “A trapped field of >3 T in bulk MgB2 fabricated by uniaxial hot pressing,” Supercond. Sci. Technol. 25 (2012) 112002 – reference: 43) Y. Itoh, Y. Yanagi and T. Nakamura: “Improved magnetic-field homogeneity of NMR HTS bulk magnet using a new stacking structure and insertion of an HTS film cylinder into a bulk bore,” TEION KOGAKU 52 (2017) 25-32 (in Japanese) 伊藤佳孝,柳 陽介,仲村髙志:「NMR 用超電導バルク磁石の新しい積層構造と内挿超電導円筒による磁場均一性向上」,低温工学 52 (2017) 25-32 – reference: 9) S. Gotoh, M. Murakami, H. Fujimoto and N. Koshizuka: “Magnetic properties of superconducting YBa2Cu3Ox permanent magnets prepared by the melt process,” J. Appl. Phys. 72 (1992) 2404 – reference: 16) H. Fujishiro, T. Tateiwa, A. Fujiwara, T. Oka and H. Hayashi: “Higher trapped field over 5 T on HTSC bulk by modified pulse field magnetizing”, Physica C 445-448 (2006) 334-338 – reference: 3) Z. Y. Zhang, S. Matsumoto, R. Teranishi and T. Kiyoshi: “Magnetic field, temperature and mechanical crack performance of a GdBCO magnetic lens,” Supercond. Sci. Technol. 25 (2012) 115012 – reference: 4) Z. Y. Zhang, S. Choi, S. Matsumoto, R. Teranishi, G. Giunchi, A Figini Albisetti and T. Kiyoshi: “Magnetic lenses using different MgB2 bulk superconductors,” Supercond. Sci. Technol. 25 (2012) 025009 – reference: 28) T. Naito, T. Yoshida and H. Fujishiro: “Ti-doping effects on magnetic properties of dense MgB2 bulk superconductors,” Supercond. Sci. Technol. 28 (2015) 095009 – reference: 20) D. C. Larbalestier, L. D. Cooley, M. O. Rikel, A. A. Polyanskii, J. Jiang, S. Patnaik, X. Y. Cai, D. M. Feldmann, A. Gurevich, A. A. Squitieri, M. T. Naus, C. B. Eom, E. E. Hellstrom, R. J. Cava, K. A. Regan,N. Rogado, M. A. Hayward, T. He, J. S. Slusky, P. Khalifah, K. Inumaru and M. Haas: “Strongly linked current flow in polycrystalline forms of the superconductor MgB2,” Nature 410 (2001) 186–189 – reference: 17) D. Zhou, M. D. Ainslie, J. Srpčič, K. Huang, Y. Shi, A. R. Dennis, D. A. Cardwell, J. H. Durrell, M. Boll and M. Filipenko: “Exploiting flux jumps for pulsed field magnetisation,” Supercond. Sci. Technol. 31 (2018) 105005 – reference: 31) H. Fujishiro, H. Mochizuki, M. D. Ainslie and T. Naito: “Trapped field of 1.1 T without flux jumps in an MgB2 bulk during pulsed field magnetization using a split coil with a soft iron yoke,” Supercond. Sci. Technol. 29 (2016) 084001 – reference: 38) Y. Zhao, D. X. Huang, Y. Feng, C. H. Cheng, T. Machi, N. Koshizuka and M. Murakami: “Nanoparticle structure of MgB2 with ultrathin TiB2 grain boundaries,” Appl. Phys. Lett. 80 (2002) 1640-1642 – reference: 40) Y. Takahashi, T. Naito and H. Fujishiro: “Vortex pinning properties and microstructure of MgB2 heavily doped with titanium group elements,” Supercond. Sci. Technol. 30 (2017) 125006 – reference: 1) A. Yamamoto, T. Ida, M. Ainslie, N. Sakai, J. Shimoyama, T. Naito, S. Nariki and M. Izumi: “Recent progress on the development of high temperature superconducting bulk materials,” IEEJ Trans. Power Energy, 140 (2020) 141–147 (in Japanese) 山本明保,井田徹哉,M. Ainslie,坂井直道,下山淳一,内藤智之,成木紳也,和泉 充:「高温超電導バルクの材料研究開発における新展開」,電気学会論文誌 B(電力・エネルギー部門誌),140 (2020) 141–147 – reference: 12) K. Amase, T. Naito and A. Kikuchi: “Fabrication and vortex pinning properties of Nb3Sn superconducting bulks using the precursors consisting of Nb and Nb-Sn compound,” Abstracts of CSSJ Conference 99 (2020) 121 天瀬洸太,内藤智之,菊池章弘:「Nb 及び Nb-Sn 化合物を前駆体とした Nb3Sn バルク超伝導体の作製と磁束ピン止め特性」,第 99 回 2020 年春季低温工学・超電導学会講演概要集(2020) 121 – reference: 29) A. G. Bhagurkar, A. Yamamoto, L. Wang, M. Xia, A. R. Dennis, J. H. Durrell, T. A. Aljohani, N. H. Babu and D. A. Cardwell: “High trapped fields in C-doped MgB2 bulk superconductors fabricated by infiltration and growth process,” Sci. Rep. 8 (2018) 2045–2322 – reference: 33) T. Naito, Y. Endo and H. Fujishiro: “Optimization of vortex pinning at grain boundaries on ex-situ MgB2 bulks synthesized by spark plasma sintering,” Supercond. Sci. Technol. 30 (2017) 095007 – reference: 19) M. Kambara, N. H. Babu, E. S. Sadki, J. R. Cooper, H. Minami, D. A. Cardwell, A. M. Campbell and I. H. Inoue: “High intergranular critical currents in metallic MgB2 superconductor,” Supercond. Sci. Technol. 14 (2001) L5–L7 |
SSID | ssib000961562 ssj0041516 ssib005901851 ssib002484407 |
Score | 2.2229948 |
Snippet | We have studied the trapped field properties of the MgB2 bulk superconductors fabricated by various methods. The MgB2 bulks were magnetized by a filed-cooled... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 309 |
SubjectTerms | bulk magnet field-cooled magnetization MgB2 superconductor pulsed field magnetization trapped field |
Title | MgB2 超伝導バルク磁石の現状と展望 |
URI | https://www.jstage.jst.go.jp/article/jcsj/56/6/56_309/_article/-char/ja |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 低温工学, 2021, Vol.56(6), pp.309-316 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR27jtNA0DqOhgaBAPFWCqaKnIvtXXu39CaOTqBDQrqTrrP82CClOBDkGrpwoqEAGipAFDRISDwEugrxM-EIn8HMruP4ThThRGONZmdnZ3aynpnNztpxbkTcy3kWMjfw5dBlMsvcrMD1iOl1gf5Ml9GQEsWN2-H6Fru5zbdXTnxrnFraHeed4tFf60qOY1XEoV2pSvYfLFszRQTCaF98ooXxuZSNN-4qvw2JABWC4JAwUD2QfUg4qC6IBJIARACyWwGxMoAP8QCSCGKEPQLkAFRgmjyIE8IIxFggJuZVkzCcPZA4VggSx1LN4NYI0DfjhqAExNLQ40CcgLgPcb0PSFJLbGGmkyJZ0NhEJvogY4OVINSCHluslvOOhh7FkKCO0Fe7GP5i_8J0RxF6Rl1FaiWGCWnJCYMCkNSBUY4RSxW3l9GomlvUYWEISRwJUxuiJrY2iimyN9Ijr6j9H4WxE8jqgeZbPVX1mjltZi8B62jrjPDd6uJLVjS9lb2GvVqVTdcTdGUjiglsBetRB4nRoHGQxcNRh4edus-hG8er33NKVCkP05AeSJrOG6ggMB1hVnLSjyKPDtLeutMI6iVGyY1LKH0mGOsernY2_0XbeAkjSM-eKKhmwFbRkqRrDTkxQhxhvjQ_a2nCv80zzukqb2vFVrazzsooO-es0QJs_d5_8vP7m4PPz6Z7L6Z7H6aPP83eTWZvv04nH2fPf8ye7k8n7w--vPz1-tV5Z2uQbPbW3eoLJO7Ix7zJLSJMQLxut8C0nm62K7OSR7mWuRZlWZJieYEAfQDOLyNdhCErMP8Yhnmuc8GHwQVndefejr7otITWPpfoXQtesmHOsiAvtZd7uixZ4Bf8khNZ_dL79pqZdFkzXD52zyvOKVqLdkfxqrM6frCrr2GMPc6vG5P-AVcLnnc |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MgB2+%E8%B6%85%E4%BC%9D%E5%B0%8E%E3%83%90%E3%83%AB%E3%82%AF%E7%A3%81%E7%9F%B3%E3%81%AE%E7%8F%BE%E7%8A%B6%E3%81%A8%E5%B1%95%E6%9C%9B&rft.jtitle=%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6&rft.au=%E8%97%A4%E4%BB%A3%2C+%E5%8D%9A%E4%B9%8B&rft.au=%E5%86%85%E8%97%A4%2C+%E6%99%BA%E4%B9%8B&rft.date=2021&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E3%83%BB%E8%B6%85%E9%9B%BB%E5%B0%8E%E5%AD%A6%E4%BC%9A+%28%E6%97%A7+%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BD%8E%E6%B8%A9%E5%B7%A5%E5%AD%A6%E5%8D%94%E4%BC%9A%29&rft.issn=0389-2441&rft.eissn=1880-0408&rft.volume=56&rft.issue=6&rft.spage=309&rft.epage=316&rft_id=info:doi/10.2221%2Fjcsj.56.309&rft.externalDocID=article_jcsj_56_6_56_309_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-2441&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-2441&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-2441&client=summon |