Predicting disease Risk by Transformation Models in the Presence of Unspecified Subgroup Membership
Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution o...
Saved in:
Published in | Statistica Sinica Vol. 27; no. 4; p. 1857 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
China (Republic : 1949- )
01.10.2017
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Abstract | Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution of the group membership and the covariates, we model the relation between the disease onset time and the covariates through transformation models in each sub-population, and develop a nonparametric maximum likelihood based estimation implemented through EM algorithm along with its inference procedure. We further propose methods to identify the covariates that have different effects or common effects in distinct populations, which enables parsimonious modeling and better understanding of the difference across populations. The methods are illustrated through extensive simulation studies and a real data example. |
---|---|
AbstractList | Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution of the group membership and the covariates, we model the relation between the disease onset time and the covariates through transformation models in each sub-population, and develop a nonparametric maximum likelihood based estimation implemented through EM algorithm along with its inference procedure. We further propose methods to identify the covariates that have different effects or common effects in distinct populations, which enables parsimonious modeling and better understanding of the difference across populations. The methods are illustrated through extensive simulation studies and a real data example. |
Author | Wang, Qianqian Ma, Yanyuan Wang, Yuanjia |
Author_xml | – sequence: 1 givenname: Qianqian surname: Wang fullname: Wang, Qianqian organization: University of South Carolina, Penn State University and Columbia University – sequence: 2 givenname: Yanyuan surname: Ma fullname: Ma, Yanyuan organization: University of South Carolina, Penn State University and Columbia University – sequence: 3 givenname: Yuanjia surname: Wang fullname: Wang, Yuanjia organization: University of South Carolina, Penn State University and Columbia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29097879$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j7tOwzAUQD0U0QesjMg_kHJ9m_gxooqX1AoE7VzZ8U3r0jiRnQ78PUjAdKZzpDNlo9hFYuxGwLxSUN3lPEdAEHIOwpgRmwgQqoASqjGb5nwEQCnRXLIxGjBKKzNh9VsiH-ohxD33IZPNxN9D_uTui2-SjbnpUmuH0EW-7jydMg-RDwfiP16mWBPvGr6Nuac6NIE8_zi7ferOPV9T6yjlQ-iv2EVjT5mu_zhj28eHzfK5WL0-vSzvV8URtR4KB5UTFZa4QCy1VLo0ZJ3RCy9QSaEXaK1orK9q1dQSiCR5V4LUaEF6gzhjt7_d_uxa8rs-hdamr93_LX4D5ulXeQ |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.5705/ss.202016.0199 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Mathematics |
ExternalDocumentID | 29097879 |
Genre | Journal Article |
GroupedDBID | -~X 123 AAHSX ABBHK ABJPR ABTAH ABXSQ ACHDO ACIPV ACMTB ACTMH ADLSF ADNWM ADULT AEHFS AEILP AELHJ AELPN AENEX AEUPB AFOWJ AFVYC AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG AOUPZ DQDLB E3Z EBS ECEWR EJD F5P FRP FS6 IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST NPM OK1 P2P SA0 SJN TN5 TR2 ZY4 |
ID | FETCH-LOGICAL-j288t-b05b152423224867849eab983d12761832aa1fad5c7fc60ee6edb40682a06d922 |
ISSN | 1017-0405 |
IngestDate | Wed Feb 19 02:43:12 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Censored data mixed populations uncertain population identifier semiparametric models Laplace transformation EM algorithm transformation models |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j288t-b05b152423224867849eab983d12761832aa1fad5c7fc60ee6edb40682a06d922 |
PMID | 29097879 |
ParticipantIDs | pubmed_primary_29097879 |
PublicationCentury | 2000 |
PublicationDate | 2017-Oct |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: 2017-Oct |
PublicationDecade | 2010 |
PublicationPlace | China (Republic : 1949- ) |
PublicationPlace_xml | – name: China (Republic : 1949- ) |
PublicationTitle | Statistica Sinica |
PublicationTitleAlternate | Stat Sin |
PublicationYear | 2017 |
SSID | ssj0026629 |
Score | 2.1491342 |
Snippet | Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1857 |
Title | Predicting disease Risk by Transformation Models in the Presence of Unspecified Subgroup Membership |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29097879 |
Volume | 27 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBA7DvygVsVSB3HSY4IgSqkIpZWoidkJ7bUCsLScoCvZ8aJm7QCqXCJqnGapJ7XybNnI-S4KUIwjE3pRUIaj0tfejIwxgukZEJpGLEe_Pa1aHX51UNYc7Tb7JKROkm_fswr-Y9WQQZ6xSzZP2h2fFEQwGfQLxxBw3CcScc37-hmsYHLpaOlcYeh4kApOzVCCgrGlmdPQxfUeGNzjlK7XdDNMdmyb5CKghWxWR6NtsY-IS7A2ZFXJKa2rrNs3Nt8ymo3vrAYt4C1txre2paZ9sDefFRCd3IPZIO-rG87wKvMBbA5S4kysABh3ZQWaf4lZHjNLmLFqZ8Mdhj5WNtiiIXT4S7iBBhnUj8RJvz12aqPJZhyEs0wOlVA2w3Nk3lYSmBvVNzQKdfkQthGduNfU9T1xMc6nXworBpdXmhqBWKZSGeVrJRLCHpW4GGNzOl8nSy3x_V3hxskrZBBS2RQRAZVn3QSGbRABu3nFL5PHTLoi6E1ZFCHDFohY5N0Ly865y2vbKfhDVgcjzzlhwrYGnrmGdZZjHmipUriIGuySKBpl7JpZBamkUmFr7XQmQK-FzPpiyxhbIss5C-53iE0UZEOmQh4wDlnSsoE_dkqCIwW8FLIdsl2MUOPr0XNlEc3d3u_juyTpQpnB2TRwJ9UHwLjG6kjq7NvfPBVHQ |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+disease+Risk+by+Transformation+Models+in+the+Presence+of+Unspecified+Subgroup+Membership&rft.jtitle=Statistica+Sinica&rft.au=Wang%2C+Qianqian&rft.au=Ma%2C+Yanyuan&rft.au=Wang%2C+Yuanjia&rft.date=2017-10-01&rft.issn=1017-0405&rft.volume=27&rft.issue=4&rft.spage=1857&rft_id=info:doi/10.5705%2Fss.202016.0199&rft_id=info%3Apmid%2F29097879&rft_id=info%3Apmid%2F29097879&rft.externalDocID=29097879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-0405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-0405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-0405&client=summon |