Predicting disease Risk by Transformation Models in the Presence of Unspecified Subgroup Membership

Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution o...

Full description

Saved in:
Bibliographic Details
Published inStatistica Sinica Vol. 27; no. 4; p. 1857
Main Authors Wang, Qianqian, Ma, Yanyuan, Wang, Yuanjia
Format Journal Article
LanguageEnglish
Published China (Republic : 1949- ) 01.10.2017
Subjects
Online AccessGet more information

Cover

Loading…
Abstract Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution of the group membership and the covariates, we model the relation between the disease onset time and the covariates through transformation models in each sub-population, and develop a nonparametric maximum likelihood based estimation implemented through EM algorithm along with its inference procedure. We further propose methods to identify the covariates that have different effects or common effects in distinct populations, which enables parsimonious modeling and better understanding of the difference across populations. The methods are illustrated through extensive simulation studies and a real data example.
AbstractList Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the distribution of the outcome follows a mixture distribution of the subgroup-specific distributions. Taking into account the uncertain distribution of the group membership and the covariates, we model the relation between the disease onset time and the covariates through transformation models in each sub-population, and develop a nonparametric maximum likelihood based estimation implemented through EM algorithm along with its inference procedure. We further propose methods to identify the covariates that have different effects or common effects in distinct populations, which enables parsimonious modeling and better understanding of the difference across populations. The methods are illustrated through extensive simulation studies and a real data example.
Author Wang, Qianqian
Ma, Yanyuan
Wang, Yuanjia
Author_xml – sequence: 1
  givenname: Qianqian
  surname: Wang
  fullname: Wang, Qianqian
  organization: University of South Carolina, Penn State University and Columbia University
– sequence: 2
  givenname: Yanyuan
  surname: Ma
  fullname: Ma, Yanyuan
  organization: University of South Carolina, Penn State University and Columbia University
– sequence: 3
  givenname: Yuanjia
  surname: Wang
  fullname: Wang, Yuanjia
  organization: University of South Carolina, Penn State University and Columbia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29097879$$D View this record in MEDLINE/PubMed
BookMark eNo1j7tOwzAUQD0U0QesjMg_kHJ9m_gxooqX1AoE7VzZ8U3r0jiRnQ78PUjAdKZzpDNlo9hFYuxGwLxSUN3lPEdAEHIOwpgRmwgQqoASqjGb5nwEQCnRXLIxGjBKKzNh9VsiH-ohxD33IZPNxN9D_uTui2-SjbnpUmuH0EW-7jydMg-RDwfiP16mWBPvGr6Nuac6NIE8_zi7ferOPV9T6yjlQ-iv2EVjT5mu_zhj28eHzfK5WL0-vSzvV8URtR4KB5UTFZa4QCy1VLo0ZJ3RCy9QSaEXaK1orK9q1dQSiCR5V4LUaEF6gzhjt7_d_uxa8rs-hdamr93_LX4D5ulXeQ
ContentType Journal Article
DBID NPM
DOI 10.5705/ss.202016.0199
DatabaseName PubMed
DatabaseTitle PubMed
DatabaseTitleList PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 29097879
Genre Journal Article
GroupedDBID -~X
123
AAHSX
ABBHK
ABJPR
ABTAH
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADLSF
ADNWM
ADULT
AEHFS
AEILP
AELHJ
AELPN
AENEX
AEUPB
AFOWJ
AFVYC
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
AOUPZ
DQDLB
E3Z
EBS
ECEWR
EJD
F5P
FRP
FS6
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
NPM
OK1
P2P
SA0
SJN
TN5
TR2
ZY4
ID FETCH-LOGICAL-j288t-b05b152423224867849eab983d12761832aa1fad5c7fc60ee6edb40682a06d922
ISSN 1017-0405
IngestDate Wed Feb 19 02:43:12 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Censored data
mixed populations
uncertain population identifier
semiparametric models
Laplace transformation
EM algorithm
transformation models
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j288t-b05b152423224867849eab983d12761832aa1fad5c7fc60ee6edb40682a06d922
PMID 29097879
ParticipantIDs pubmed_primary_29097879
PublicationCentury 2000
PublicationDate 2017-Oct
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-Oct
PublicationDecade 2010
PublicationPlace China (Republic : 1949- )
PublicationPlace_xml – name: China (Republic : 1949- )
PublicationTitle Statistica Sinica
PublicationTitleAlternate Stat Sin
PublicationYear 2017
SSID ssj0026629
Score 2.1491342
Snippet Some biomedical studies lead to mixture data. When a discrete covariate defining subgroup membership is missing for some of the subjects in a study, the...
SourceID pubmed
SourceType Index Database
StartPage 1857
Title Predicting disease Risk by Transformation Models in the Presence of Unspecified Subgroup Membership
URI https://www.ncbi.nlm.nih.gov/pubmed/29097879
Volume 27
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVYLnBA7DvygVsVSB3HSY4IgSqkIpZWoidkJ7bUCsLScoCvZ8aJm7QCqXCJqnGapJ7XybNnI-S4KUIwjE3pRUIaj0tfejIwxgukZEJpGLEe_Pa1aHX51UNYc7Tb7JKROkm_fswr-Y9WQQZ6xSzZP2h2fFEQwGfQLxxBw3CcScc37-hmsYHLpaOlcYeh4kApOzVCCgrGlmdPQxfUeGNzjlK7XdDNMdmyb5CKghWxWR6NtsY-IS7A2ZFXJKa2rrNs3Nt8ymo3vrAYt4C1txre2paZ9sDefFRCd3IPZIO-rG87wKvMBbA5S4kysABh3ZQWaf4lZHjNLmLFqZ8Mdhj5WNtiiIXT4S7iBBhnUj8RJvz12aqPJZhyEs0wOlVA2w3Nk3lYSmBvVNzQKdfkQthGduNfU9T1xMc6nXworBpdXmhqBWKZSGeVrJRLCHpW4GGNzOl8nSy3x_V3hxskrZBBS2RQRAZVn3QSGbRABu3nFL5PHTLoi6E1ZFCHDFohY5N0Ly865y2vbKfhDVgcjzzlhwrYGnrmGdZZjHmipUriIGuySKBpl7JpZBamkUmFr7XQmQK-FzPpiyxhbIss5C-53iE0UZEOmQh4wDlnSsoE_dkqCIwW8FLIdsl2MUOPr0XNlEc3d3u_juyTpQpnB2TRwJ9UHwLjG6kjq7NvfPBVHQ
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+disease+Risk+by+Transformation+Models+in+the+Presence+of+Unspecified+Subgroup+Membership&rft.jtitle=Statistica+Sinica&rft.au=Wang%2C+Qianqian&rft.au=Ma%2C+Yanyuan&rft.au=Wang%2C+Yuanjia&rft.date=2017-10-01&rft.issn=1017-0405&rft.volume=27&rft.issue=4&rft.spage=1857&rft_id=info:doi/10.5705%2Fss.202016.0199&rft_id=info%3Apmid%2F29097879&rft_id=info%3Apmid%2F29097879&rft.externalDocID=29097879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-0405&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-0405&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-0405&client=summon