A Chaotic Model of Hippocampus-Neocortex
To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural ch...
Saved in:
Published in | Advances in Natural Computation pp. 439 - 448 |
---|---|
Main Authors | , , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 3540283234 9783540283232 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/11539087_56 |
Cover
Loading…
Abstract | To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural chaotic neural networks (CNNs), whose each CNN layer is a classical association model proposed by Aihara. MCNN realizes mutual association using incremental and relational learning between layers, and it is introduced into CA3 of hippocampus. This chaotic hippocampus-neocortex model intends to retrieve relative multiple time series patterns which are stored (experienced) before when one common pattern is represented. Computer simulations verified the efficiency of proposed model. |
---|---|
AbstractList | To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural chaotic neural networks (CNNs), whose each CNN layer is a classical association model proposed by Aihara. MCNN realizes mutual association using incremental and relational learning between layers, and it is introduced into CA3 of hippocampus. This chaotic hippocampus-neocortex model intends to retrieve relative multiple time series patterns which are stored (experienced) before when one common pattern is represented. Computer simulations verified the efficiency of proposed model. |
Author | Kuremoto, Takashi Kobayashi, Kunikazu Obayashi, Masanao Eto, Tsuyoshi |
Author_xml | – sequence: 1 givenname: Takashi surname: Kuremoto fullname: Kuremoto, Takashi email: wu@yamaguchi-u.ac.jp organization: Yamaguchi Univ., Ube, Japan – sequence: 2 givenname: Tsuyoshi surname: Eto fullname: Eto, Tsuyoshi organization: CEC-OITA Ltd., Kitsuki, Japan – sequence: 3 givenname: Kunikazu surname: Kobayashi fullname: Kobayashi, Kunikazu email: koba@yamaguchi-u.ac.jp organization: Yamaguchi Univ., Ube, Japan – sequence: 4 givenname: Masanao surname: Obayashi fullname: Obayashi, Masanao email: m.obayas@yamaguchi-u.ac.jp organization: Yamaguchi Univ., Ube, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135693$$DView record in Pascal Francis |
BookMark | eNpNkD1PwzAURQ0UibYw8QeyIMEQeM_P8cdYVUCRCiwwW45jQ0obR3GR4N9TVAamO5yrq6szYaMudYGxc4RrBFA3iBUZ0MpW8oBNqBJAqCsSh2yMErEkEuZoD7gmTmLExkDAS6MEnbBJzisA4MrwMbucFfN3l7atLx5TE9ZFisWi7fvk3ab_zOVTSD4N2_B1yo6jW-dw9pdT9np3-zJflMvn-4f5bFmuuK62ZahD5E5io4g7xX0TmoiRRy2cDyGAJBN3X71poBEUtATVyIi1glo4kpqm7GK_27vs3ToOrvNttv3QbtzwbVEhVdLQrne17-Ud6t7CYOuUPrJFsL-S7D9J9ANNMFUw |
ContentType | Book Chapter Conference Proceeding |
Copyright | Springer-Verlag Berlin Heidelberg 2005 2005 INIST-CNRS |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2005 – notice: 2005 INIST-CNRS |
DBID | IQODW |
DOI | 10.1007/11539087_56 |
DatabaseName | Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISBN | 3540318534 9783540318538 |
EISSN | 1611-3349 |
Editor | Wang, Lipo Ong, Yew Soon Chen, Ke |
Editor_xml | – sequence: 1 givenname: Lipo surname: Wang fullname: Wang, Lipo email: elpwang@ntu.edu.sg – sequence: 2 givenname: Ke surname: Chen fullname: Chen, Ke email: chenk@cs.zju.edu.cn – sequence: 3 givenname: Yew Soon surname: Ong fullname: Ong, Yew Soon email: asysong@ntu.edu.sg |
EndPage | 448 |
ExternalDocumentID | 17135693 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 IQODW |
ID | FETCH-LOGICAL-j285t-ebef2a61d732a72cdedf1f2f84aceee0639f853c9d0d43e8607d6f1b70b4a3683 |
ISBN | 3540283234 9783540283232 |
ISSN | 0302-9743 |
IngestDate | Mon Jul 21 09:10:25 EDT 2025 Tue Jul 29 20:07:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Chaos Itô equation Computer simulation Time series Neural network Long term Modeling Multilayer network |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Advances in natural computation (Changsha, 27-29 August 2005) |
MergedId | FETCHMERGED-LOGICAL-j285t-ebef2a61d732a72cdedf1f2f84aceee0639f853c9d0d43e8607d6f1b70b4a3683 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_17135693 springer_books_10_1007_11539087_56 |
PublicationCentury | 2000 |
PublicationDate | 2005 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005 |
PublicationDecade | 2000 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I |
PublicationTitle | Advances in Natural Computation |
PublicationYear | 2005 |
Publisher | Springer Berlin Heidelberg Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Tygar, Dough Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, CA, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, MA, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: New York University, NY, USA – sequence: 13 givenname: Dough surname: Tygar fullname: Tygar, Dough organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany |
SSID | ssj0002792 ssj0000316024 |
Score | 1.8161454 |
Snippet | To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito... |
SourceID | pascalfrancis springer |
SourceType | Index Database Publisher |
StartPage | 439 |
SubjectTerms | Applied sciences Artificial intelligence Association Cortex Chaotic Neural Network Computer science; control theory; systems Connection Weight Exact sciences and technology Input Pattern Mutual Association |
Title | A Chaotic Model of Hippocampus-Neocortex |
URI | http://link.springer.com/10.1007/11539087_56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF4a91J66JumjyBKD4WgImullXTowZQUkyY-OSU3sU9IA5Kp5EPy6zuzs3KkJJS2F2HWsrWa0Tw0j28Y-yiSQnOwq7ERWR4jhlSs4CUsTgutXQEKUfn5KacrsTzLjs_z85tUjO8u6dVnfX1vX8n_cBXWgK_YJfsPnN39KSzAZ-AvHIHDcLzl_E7DrFReTNl7X8-6kgSfQTMapsl1jAC2fljS4Vpe4uyknRcdVrvtVTta_g4ifoXneSWwbS4u5fV2F4wdfXcqO9nIdvzULTB_3yIILA5Z837u8mKzAYMJG-vilW01VvdS7STSyHZfTkIaY9X2dDfDpIlB8UwiE_mtyMQQmTz8A3BXCDzhvKRJmJODnoY3HVJ9llSzQMBFTgCnQd1mBIQULHdGmJ13jALVgYDry6ukLOpc7LG9osxn7OHi6Pjkxy4kB_pNJNgsEww5YitSEoo2E1qD_GYJU3K0-dD7iW2Zoythqa3sQNocjUm5k2_3bsz6KXuMrS0R9pwAeZ-xB7Z5zp4M5I4CuV-wT4sosDHybIxaF93Lxpfs7NvR-usyDiM14p9pmfcxiKxLpZibgqeySLWxxs1d6spMgrdk0V914MDpyiQm47YEUTbCzVWRqExyUfJXbNa0jX3NoqRyWoL_I6s8yUwulUkr-I1S2qlEunKfHUxuvd4QfEo9x6mQouL77MNAixqlqKsHCO0RAd_8zUlv2aOb5-8dm_W_tvY9-Iq9Ogg8_g09nmLw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Natural+Computation&rft.au=Kuremoto%2C+Takashi&rft.au=Eto%2C+Tsuyoshi&rft.au=Kobayashi%2C+Kunikazu&rft.au=Obayashi%2C+Masanao&rft.atitle=A+Chaotic+Model+of+Hippocampus-Neocortex&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540283232&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=439&rft.epage=448&rft_id=info:doi/10.1007%2F11539087_56 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |