A Chaotic Model of Hippocampus-Neocortex

To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural ch...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 439 - 448
Main Authors Kuremoto, Takashi, Eto, Tsuyoshi, Kobayashi, Kunikazu, Obayashi, Masanao
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3540283234
9783540283232
ISSN0302-9743
1611-3349
DOI10.1007/11539087_56

Cover

Loading…
Abstract To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural chaotic neural networks (CNNs), whose each CNN layer is a classical association model proposed by Aihara. MCNN realizes mutual association using incremental and relational learning between layers, and it is introduced into CA3 of hippocampus. This chaotic hippocampus-neocortex model intends to retrieve relative multiple time series patterns which are stored (experienced) before when one common pattern is represented. Computer simulations verified the efficiency of proposed model.
AbstractList To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito etal.’s hippocampus-cortex model (2000), which is able to recall temporal patterns, and form long-term memory. The MCNN consists of plural chaotic neural networks (CNNs), whose each CNN layer is a classical association model proposed by Aihara. MCNN realizes mutual association using incremental and relational learning between layers, and it is introduced into CA3 of hippocampus. This chaotic hippocampus-neocortex model intends to retrieve relative multiple time series patterns which are stored (experienced) before when one common pattern is represented. Computer simulations verified the efficiency of proposed model.
Author Kuremoto, Takashi
Kobayashi, Kunikazu
Obayashi, Masanao
Eto, Tsuyoshi
Author_xml – sequence: 1
  givenname: Takashi
  surname: Kuremoto
  fullname: Kuremoto, Takashi
  email: wu@yamaguchi-u.ac.jp
  organization: Yamaguchi Univ., Ube, Japan
– sequence: 2
  givenname: Tsuyoshi
  surname: Eto
  fullname: Eto, Tsuyoshi
  organization: CEC-OITA Ltd., Kitsuki, Japan
– sequence: 3
  givenname: Kunikazu
  surname: Kobayashi
  fullname: Kobayashi, Kunikazu
  email: koba@yamaguchi-u.ac.jp
  organization: Yamaguchi Univ., Ube, Japan
– sequence: 4
  givenname: Masanao
  surname: Obayashi
  fullname: Obayashi, Masanao
  email: m.obayas@yamaguchi-u.ac.jp
  organization: Yamaguchi Univ., Ube, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135693$$DView record in Pascal Francis
BookMark eNpNkD1PwzAURQ0UibYw8QeyIMEQeM_P8cdYVUCRCiwwW45jQ0obR3GR4N9TVAamO5yrq6szYaMudYGxc4RrBFA3iBUZ0MpW8oBNqBJAqCsSh2yMErEkEuZoD7gmTmLExkDAS6MEnbBJzisA4MrwMbucFfN3l7atLx5TE9ZFisWi7fvk3ab_zOVTSD4N2_B1yo6jW-dw9pdT9np3-zJflMvn-4f5bFmuuK62ZahD5E5io4g7xX0TmoiRRy2cDyGAJBN3X71poBEUtATVyIi1glo4kpqm7GK_27vs3ToOrvNttv3QbtzwbVEhVdLQrne17-Ud6t7CYOuUPrJFsL-S7D9J9ANNMFUw
ContentType Book Chapter
Conference Proceeding
Copyright Springer-Verlag Berlin Heidelberg 2005
2005 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2005
– notice: 2005 INIST-CNRS
DBID IQODW
DOI 10.1007/11539087_56
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISBN 3540318534
9783540318538
EISSN 1611-3349
Editor Wang, Lipo
Ong, Yew Soon
Chen, Ke
Editor_xml – sequence: 1
  givenname: Lipo
  surname: Wang
  fullname: Wang, Lipo
  email: elpwang@ntu.edu.sg
– sequence: 2
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  email: chenk@cs.zju.edu.cn
– sequence: 3
  givenname: Yew Soon
  surname: Ong
  fullname: Ong, Yew Soon
  email: asysong@ntu.edu.sg
EndPage 448
ExternalDocumentID 17135693
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
IQODW
ID FETCH-LOGICAL-j285t-ebef2a61d732a72cdedf1f2f84aceee0639f853c9d0d43e8607d6f1b70b4a3683
ISBN 3540283234
9783540283232
ISSN 0302-9743
IngestDate Mon Jul 21 09:10:25 EDT 2025
Tue Jul 29 20:07:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Chaos
Itô equation
Computer simulation
Time series
Neural network
Long term
Modeling
Multilayer network
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Advances in natural computation (Changsha, 27-29 August 2005)
MergedId FETCHMERGED-LOGICAL-j285t-ebef2a61d732a72cdedf1f2f84aceee0639f853c9d0d43e8607d6f1b70b4a3683
PageCount 10
ParticipantIDs pascalfrancis_primary_17135693
springer_books_10_1007_11539087_56
PublicationCentury 2000
PublicationDate 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part I
PublicationTitle Advances in Natural Computation
PublicationYear 2005
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Tygar, Dough
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, CA, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, MA, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: New York University, NY, USA
– sequence: 13
  givenname: Dough
  surname: Tygar
  fullname: Tygar, Dough
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany
SSID ssj0002792
ssj0000316024
Score 1.8161454
Snippet To realize mutual association function, we propose a hippoca- mpus-neocortex model with multi-layered chaotic neural network (MCNN). The model is based on Ito...
SourceID pascalfrancis
springer
SourceType Index Database
Publisher
StartPage 439
SubjectTerms Applied sciences
Artificial intelligence
Association Cortex
Chaotic Neural Network
Computer science; control theory; systems
Connection Weight
Exact sciences and technology
Input Pattern
Mutual Association
Title A Chaotic Model of Hippocampus-Neocortex
URI http://link.springer.com/10.1007/11539087_56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF4a91J66JumjyBKD4WgImullXTowZQUkyY-OSU3sU9IA5Kp5EPy6zuzs3KkJJS2F2HWsrWa0Tw0j28Y-yiSQnOwq7ERWR4jhlSs4CUsTgutXQEKUfn5KacrsTzLjs_z85tUjO8u6dVnfX1vX8n_cBXWgK_YJfsPnN39KSzAZ-AvHIHDcLzl_E7DrFReTNl7X8-6kgSfQTMapsl1jAC2fljS4Vpe4uyknRcdVrvtVTta_g4ifoXneSWwbS4u5fV2F4wdfXcqO9nIdvzULTB_3yIILA5Z837u8mKzAYMJG-vilW01VvdS7STSyHZfTkIaY9X2dDfDpIlB8UwiE_mtyMQQmTz8A3BXCDzhvKRJmJODnoY3HVJ9llSzQMBFTgCnQd1mBIQULHdGmJ13jALVgYDry6ukLOpc7LG9osxn7OHi6Pjkxy4kB_pNJNgsEww5YitSEoo2E1qD_GYJU3K0-dD7iW2Zoythqa3sQNocjUm5k2_3bsz6KXuMrS0R9pwAeZ-xB7Z5zp4M5I4CuV-wT4sosDHybIxaF93Lxpfs7NvR-usyDiM14p9pmfcxiKxLpZibgqeySLWxxs1d6spMgrdk0V914MDpyiQm47YEUTbCzVWRqExyUfJXbNa0jX3NoqRyWoL_I6s8yUwulUkr-I1S2qlEunKfHUxuvd4QfEo9x6mQouL77MNAixqlqKsHCO0RAd_8zUlv2aOb5-8dm_W_tvY9-Iq9Ogg8_g09nmLw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Natural+Computation&rft.au=Kuremoto%2C+Takashi&rft.au=Eto%2C+Tsuyoshi&rft.au=Kobayashi%2C+Kunikazu&rft.au=Obayashi%2C+Masanao&rft.atitle=A+Chaotic+Model+of+Hippocampus-Neocortex&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540283232&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=439&rft.epage=448&rft_id=info:doi/10.1007%2F11539087_56
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon