PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors

Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of clinical investigation Vol. 124; no. 5; pp. 2246 - 2259
Main Authors Gros, Alena, Robbins, Paul F, Yao, Xin, Li, Yong F, Turcotte, Simon, Tran, Eric, Wunderlich, John R, Mixon, Arnold, Farid, Shawn, Dudley, Mark E, Hanada, Ken-Ichi, Almeida, Jorge R, Darko, Sam, Douek, Daniel C, Yang, James C, Rosenberg, Steven A
Format Journal Article
LanguageEnglish
Published United States American Society for Clinical Investigation 01.05.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
AbstractList Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8 + lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8 + TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8 + lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8 + TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8 + lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8 + PD-1 + compared with CD8 + PD-1 – TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8 + and the CD8 + PD-1 + populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8 + TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.
Author Wunderlich, John R
Mixon, Arnold
Douek, Daniel C
Gros, Alena
Darko, Sam
Hanada, Ken-Ichi
Yao, Xin
Yang, James C
Tran, Eric
Li, Yong F
Robbins, Paul F
Almeida, Jorge R
Dudley, Mark E
Turcotte, Simon
Farid, Shawn
Rosenberg, Steven A
AuthorAffiliation 1 National Cancer Institute and 2 Vaccine Research Center, NIH, Bethesda, Maryland, USA
AuthorAffiliation_xml – name: 1 National Cancer Institute and 2 Vaccine Research Center, NIH, Bethesda, Maryland, USA
Author_xml – sequence: 1
  givenname: Alena
  surname: Gros
  fullname: Gros, Alena
– sequence: 2
  givenname: Paul F
  surname: Robbins
  fullname: Robbins, Paul F
– sequence: 3
  givenname: Xin
  surname: Yao
  fullname: Yao, Xin
– sequence: 4
  givenname: Yong F
  surname: Li
  fullname: Li, Yong F
– sequence: 5
  givenname: Simon
  surname: Turcotte
  fullname: Turcotte, Simon
– sequence: 6
  givenname: Eric
  surname: Tran
  fullname: Tran, Eric
– sequence: 7
  givenname: John R
  surname: Wunderlich
  fullname: Wunderlich, John R
– sequence: 8
  givenname: Arnold
  surname: Mixon
  fullname: Mixon, Arnold
– sequence: 9
  givenname: Shawn
  surname: Farid
  fullname: Farid, Shawn
– sequence: 10
  givenname: Mark E
  surname: Dudley
  fullname: Dudley, Mark E
– sequence: 11
  givenname: Ken-Ichi
  surname: Hanada
  fullname: Hanada, Ken-Ichi
– sequence: 12
  givenname: Jorge R
  surname: Almeida
  fullname: Almeida, Jorge R
– sequence: 13
  givenname: Sam
  surname: Darko
  fullname: Darko, Sam
– sequence: 14
  givenname: Daniel C
  surname: Douek
  fullname: Douek, Daniel C
– sequence: 15
  givenname: James C
  surname: Yang
  fullname: Yang, James C
– sequence: 16
  givenname: Steven A
  surname: Rosenberg
  fullname: Rosenberg, Steven A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24667641$$D View this record in MEDLINE/PubMed
BookMark eNpVUMtOwzAQtFARfYDEF6AcuQTiZ5wLEmp5FFWCA5wj19m0rhIn2E4ljvwWn8OXEKkFldOuZmdnRjNGA9tYQOgcJ1cYp-T6aTpPqaDZERphzmUsCZWDg32Ixt5vkgQzxtkJGhImRCoYHqH8ZRbjyBRggykN-CisIWpVMD0Q-xZ0j-poOpPfn19R6OrGxQ6UDmYLkYMWXGiMg8jY0lTB9X92Fa27Wtkd2Z-i41JVHs72c4Le7u9ep4_x4vlhPr1dxBsicRanIpOFKEmBlRQZFakCUdAypYWWdJmxssBMasUTSjKmqIYCVIZJogVLYJlqOkE3O922W9ZQ6D6-U1XeOlMr95E3yuT_L9as81WzzVnfCue8F7jcC7jmvQMf8tp4DVWlLDSdzzEnmFLMBempF4defya_rdIfbm583w
ContentType Journal Article
Copyright Copyright © 2014, American Society for Clinical Investigation 2014
Copyright_xml – notice: Copyright © 2014, American Society for Clinical Investigation 2014
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1172/JCI73639
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-8238
EndPage 2259
ExternalDocumentID PMC4001555
24667641
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
.GJ
.XZ
08G
08P
29K
2WC
354
36B
3O-
53G
5GY
5RE
5RS
7RV
7X7
88E
8AO
8F7
8FE
8FH
8FI
8FJ
8R4
8R5
AAKAS
AAWTL
ABOCM
ABPMR
ABUWG
ACGFO
ACIHN
ACNCT
ACPRK
ADBBV
ADZCM
AEAQA
AENEX
AFCHL
AFFNX
AFKRA
AHMBA
AI.
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ASPBG
AVWKF
AZFZN
BAWUL
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BKEYQ
BLC
BPHCQ
BVXVI
CCPQU
CGR
CS3
CUY
CVF
D-I
DIK
DU5
E3Z
EBD
EBS
ECM
EIF
EJD
EMB
EMOBN
EX3
F5P
FEDTE
FRP
FYUFA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HYE
H~9
IAO
IEA
IHR
IHW
INH
IOF
IOV
IPO
ISR
ITC
J5H
KQ8
L7B
LK8
M1P
M5~
M7P
MVM
N4W
NAPCQ
NPM
OBH
OCB
ODZKP
OFXIZ
OGEVE
OHH
OHT
OK1
OVD
OVIDX
OVT
P2P
P6G
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q2X
RPM
S0X
SJFOW
SV3
TEORI
TR2
TVE
UHU
UKHRP
VH1
VVN
W2D
WH7
WOQ
WOW
X7M
XSB
YFH
YHG
YKV
YOC
ZGI
ZXP
ZY1
~H1
7X8
5PM
ID FETCH-LOGICAL-j2819-7698d6f2d1a869367ae6d3f73dc83b94fd148ca503294a3cedea9120c640eb7c3
ISSN 1558-8238
0021-9738
IngestDate Thu Aug 21 14:00:05 EDT 2025
Fri Jul 11 05:12:13 EDT 2025
Mon Jul 21 06:07:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2819-7698d6f2d1a869367ae6d3f73dc83b94fd148ca503294a3cedea9120c640eb7c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://www.jci.org/articles/view/73639/files/pdf
PMID 24667641
PQID 1521331562
PQPubID 23479
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4001555
proquest_miscellaneous_1521331562
pubmed_primary_24667641
PublicationCentury 2000
PublicationDate 2014-May
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-May
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of clinical investigation
PublicationTitleAlternate J Clin Invest
PublicationYear 2014
Publisher American Society for Clinical Investigation
Publisher_xml – name: American Society for Clinical Investigation
References 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54
21282551 - J Clin Oncol. 2011 Mar 1;29(7):917-24
22754759 - Oncoimmunology. 2012 Jul 1;1(4):409-418
21850230 - PLoS One. 2011;6(8):e22523
16227604 - Mol Cell Biol. 2005 Nov;25(21):9543-53
22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54
22267581 - Science. 2012 Feb 10;335(6069):723-7
22205715 - Cancer Res. 2012 Feb 15;72(4):887-96
21408177 - PLoS One. 2011;6(3):e17621
16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61
1396582 - EMBO J. 1992 Nov;11(11):3887-95
12042816 - Nat Med. 2002 Jun;8(6):631-7
23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44
24020931 - Am J Transplant. 2013 Nov;13(11):2842-54
20819927 - J Exp Med. 2010 Sep 27;207(10):2187-94
9858507 - J Exp Med. 1998 Dec 21;188(12):2205-13
19426223 - Immunol Rev. 2009 May;229(1):192-215
22347406 - PLoS One. 2012;7(2):e30852
11590442 - Nat Med. 2001 Oct;7(10):1159-62
1704404 - J Immunol. 1991 Mar 1;146(5):1700-7
20948441 - J Immunother. 2010 Nov-Dec;33(9):956-64
19043418 - Nat Immunol. 2009 Jan;10(1):29-37
17567698 - J Virol. 2007 Sep;81(17):9249-58
12391199 - J Immunol. 2002 Nov 1;169(9):4882-8
15128789 - J Immunol. 2004 May 15;172(10):6057-64
16921384 - Nature. 2006 Sep 21;443(7109):350-4
8671665 - Int Immunol. 1996 May;8(5):765-72
23882160 - Cancer Immun. 2013;13:15
23644506 - Nat Immunol. 2013 Jun;14(6):603-10
23904171 - J Immunol. 2013 Sep 1;191(5):2217-25
19451549 - Blood. 2009 Jul 16;114(3):535-46
19319144 - Nat Rev Immunol. 2009 Apr;9(4):271-85
17885290 - AIDS. 2007 Oct 1;21(15):2005-13
23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33
8642260 - J Exp Med. 1996 Mar 1;183(3):1185-92
15800326 - J Clin Oncol. 2005 Apr 1;23(10):2346-57
21436838 - Nat Rev Immunol. 2011 Apr;11(4):289-95
20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23
23644516 - Nat Med. 2013 Jun;19(6):747-52
17371945 - Blood. 2007 Jul 1;110(1):201-10
16917489 - Nat Med. 2006 Oct;12(10):1198-202
8021739 - J Clin Oncol. 1994 Jul;12(7):1475-83
22422881 - J Immunol. 2012 Apr 15;188(8):3745-56
21943489 - Immunity. 2011 Sep 23;35(3):400-12
21498393 - Clin Cancer Res. 2011 Jul 1;17(13):4550-7
21074066 - Semin Oncol. 2010 Oct;37(5):508-16
21555851 - J Clin Invest. 2011 Jun;121(6):2350-60
24045181 - Clin Cancer Res. 2014 Jan 1;20(1):44-55
12165088 - Clin Exp Immunol. 2002 Aug;129(2):309-17
21739672 - Nat Immunol. 2011 Jun;12(6):492-9
7513441 - Science. 1994 Apr 29;264(5159):716-9
8786310 - J Immunol. 1996 Apr 1;156(7):2495-502
18716842 - Ann Surg Oncol. 2008 Nov;15(11):3014-21
18785267 - Cytometry A. 2008 Nov;73(11):975-83
23772031 - J Immunol. 2013 Jul 15;191(2):540-4
17955486 - Int J Cancer. 2008 Feb 1;122(3):486-94
22837179 - Clin Cancer Res. 2012 Oct 1;18(19):5212-23
15585832 - J Immunol. 2004 Dec 15;173(12):7125-30
10485649 - Immunity. 1999 Aug;11(2):141-51
19423728 - Blood. 2009 Aug 20;114(8):1537-44
14724640 - Nature. 2004 Jan 15;427(6971):252-6
15087405 - Cancer Res. 2004 Apr 15;64(8):2865-73
2673025 - Annu Rev Biochem. 1989;58:875-911
20536563 - Immunol Rev. 2010 May;235(1):172-89
11209085 - Science. 2001 Jan 12;291(5502):319-22
23650429 - J Clin Oncol. 2013 Jun 10;31(17):2152-9
16946036 - Science. 2006 Oct 6;314(5796):126-9
17950003 - Immunity. 2007 Oct;27(4):670-84
12242449 - Science. 2002 Oct 25;298(5594):850-4
9826581 - Semin Immunol. 1998 Dec;10(6):481-9
References_xml – reference: 12165088 - Clin Exp Immunol. 2002 Aug;129(2):309-17
– reference: 16227604 - Mol Cell Biol. 2005 Nov;25(21):9543-53
– reference: 12391199 - J Immunol. 2002 Nov 1;169(9):4882-8
– reference: 20536563 - Immunol Rev. 2010 May;235(1):172-89
– reference: 16921384 - Nature. 2006 Sep 21;443(7109):350-4
– reference: 21074066 - Semin Oncol. 2010 Oct;37(5):508-16
– reference: 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54
– reference: 24045181 - Clin Cancer Res. 2014 Jan 1;20(1):44-55
– reference: 22754759 - Oncoimmunology. 2012 Jul 1;1(4):409-418
– reference: 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33
– reference: 21436838 - Nat Rev Immunol. 2011 Apr;11(4):289-95
– reference: 22837179 - Clin Cancer Res. 2012 Oct 1;18(19):5212-23
– reference: 10485649 - Immunity. 1999 Aug;11(2):141-51
– reference: 21850230 - PLoS One. 2011;6(8):e22523
– reference: 21498393 - Clin Cancer Res. 2011 Jul 1;17(13):4550-7
– reference: 22267581 - Science. 2012 Feb 10;335(6069):723-7
– reference: 15800326 - J Clin Oncol. 2005 Apr 1;23(10):2346-57
– reference: 8786310 - J Immunol. 1996 Apr 1;156(7):2495-502
– reference: 23904171 - J Immunol. 2013 Sep 1;191(5):2217-25
– reference: 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23
– reference: 23650429 - J Clin Oncol. 2013 Jun 10;31(17):2152-9
– reference: 1396582 - EMBO J. 1992 Nov;11(11):3887-95
– reference: 19319144 - Nat Rev Immunol. 2009 Apr;9(4):271-85
– reference: 2673025 - Annu Rev Biochem. 1989;58:875-911
– reference: 22205715 - Cancer Res. 2012 Feb 15;72(4):887-96
– reference: 11590442 - Nat Med. 2001 Oct;7(10):1159-62
– reference: 19043418 - Nat Immunol. 2009 Jan;10(1):29-37
– reference: 18785267 - Cytometry A. 2008 Nov;73(11):975-83
– reference: 8671665 - Int Immunol. 1996 May;8(5):765-72
– reference: 22347406 - PLoS One. 2012;7(2):e30852
– reference: 17885290 - AIDS. 2007 Oct 1;21(15):2005-13
– reference: 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54
– reference: 20948441 - J Immunother. 2010 Nov-Dec;33(9):956-64
– reference: 23882160 - Cancer Immun. 2013;13:15
– reference: 18716842 - Ann Surg Oncol. 2008 Nov;15(11):3014-21
– reference: 14724640 - Nature. 2004 Jan 15;427(6971):252-6
– reference: 9826581 - Semin Immunol. 1998 Dec;10(6):481-9
– reference: 17371945 - Blood. 2007 Jul 1;110(1):201-10
– reference: 8021739 - J Clin Oncol. 1994 Jul;12(7):1475-83
– reference: 21282551 - J Clin Oncol. 2011 Mar 1;29(7):917-24
– reference: 15087405 - Cancer Res. 2004 Apr 15;64(8):2865-73
– reference: 22422881 - J Immunol. 2012 Apr 15;188(8):3745-56
– reference: 20819927 - J Exp Med. 2010 Sep 27;207(10):2187-94
– reference: 17950003 - Immunity. 2007 Oct;27(4):670-84
– reference: 17955486 - Int J Cancer. 2008 Feb 1;122(3):486-94
– reference: 21943489 - Immunity. 2011 Sep 23;35(3):400-12
– reference: 9858507 - J Exp Med. 1998 Dec 21;188(12):2205-13
– reference: 12042816 - Nat Med. 2002 Jun;8(6):631-7
– reference: 19423728 - Blood. 2009 Aug 20;114(8):1537-44
– reference: 12242449 - Science. 2002 Oct 25;298(5594):850-4
– reference: 15128789 - J Immunol. 2004 May 15;172(10):6057-64
– reference: 24020931 - Am J Transplant. 2013 Nov;13(11):2842-54
– reference: 16946036 - Science. 2006 Oct 6;314(5796):126-9
– reference: 23772031 - J Immunol. 2013 Jul 15;191(2):540-4
– reference: 15585832 - J Immunol. 2004 Dec 15;173(12):7125-30
– reference: 1704404 - J Immunol. 1991 Mar 1;146(5):1700-7
– reference: 11209085 - Science. 2001 Jan 12;291(5502):319-22
– reference: 23644506 - Nat Immunol. 2013 Jun;14(6):603-10
– reference: 17567698 - J Virol. 2007 Sep;81(17):9249-58
– reference: 8642260 - J Exp Med. 1996 Mar 1;183(3):1185-92
– reference: 23644516 - Nat Med. 2013 Jun;19(6):747-52
– reference: 7513441 - Science. 1994 Apr 29;264(5159):716-9
– reference: 21739672 - Nat Immunol. 2011 Jun;12(6):492-9
– reference: 19426223 - Immunol Rev. 2009 May;229(1):192-215
– reference: 16917489 - Nat Med. 2006 Oct;12(10):1198-202
– reference: 21408177 - PLoS One. 2011;6(3):e17621
– reference: 23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44
– reference: 19451549 - Blood. 2009 Jul 16;114(3):535-46
– reference: 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61
– reference: 21555851 - J Clin Invest. 2011 Jun;121(6):2350-60
SSID ssj0014454
Score 2.6310833
Snippet Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and...
SourceID pubmedcentral
proquest
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2246
SubjectTerms Adoptive Transfer
Antigens, CD - genetics
Antigens, CD - immunology
CD8-Positive T-Lymphocytes - immunology
CD8-Positive T-Lymphocytes - pathology
Cell Line, Tumor
Female
Hepatitis A Virus Cellular Receptor 2
Humans
Male
Melanoma - genetics
Melanoma - immunology
Melanoma - pathology
Melanoma - therapy
Membrane Proteins - genetics
Membrane Proteins - immunology
Programmed Cell Death 1 Receptor - genetics
Programmed Cell Death 1 Receptor - immunology
Receptors, Antigen, T-Cell, alpha-beta - genetics
Receptors, Antigen, T-Cell, alpha-beta - immunology
Tumor Microenvironment - genetics
Tumor Microenvironment - immunology
Tumor Necrosis Factor Receptor Superfamily, Member 9 - genetics
Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology
Title PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors
URI https://www.ncbi.nlm.nih.gov/pubmed/24667641
https://www.proquest.com/docview/1521331562
https://pubmed.ncbi.nlm.nih.gov/PMC4001555
Volume 124
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owFLZoK017qXYfu6BM2p6QGbEdO3lsabvSiQpVrcQeJhQ7zsbUhorLy_7a_tyOL7lA-7D1JQJj4uDzcXxsf-czQh-V6ucQh0c41nmKmeonOCU0wzD4xRmLSJwrk-88OuenV-xsEk1arT8N1tJ6JXvq9715JQ-xKpSBXU2W7H9YtropFMBrsC9cwcJw_Scbj49w2J1ljvBjtBpM2pMTSsUmhdLQgLqDo_gTOeyu1jfzBYYQ0To4s1egF6s5ODzDx5pdW_Xc4oc_s89WXjYD1zqFzAavVULlrNbpqDf0vywcee8AhrTK7V_MpfSL24aO2D3pVR4nteu1k1lND7Icg2_mHCRfzS9MhKymATZyAYyTatBPB-XTDe88XZlcEOJEOMGXnvY-OYpxTHxZ6bRd5rVHZ9R0wcSvaWr_1imO3x0qhJGePRsMBeV0owoY-fbGQgZuxQV3ylxbstzj0YDZgDPaQXsE5ih2Pj_8Wm1hMRZ5CXD3i7zyMTT7uWzUKFH7Fu6b4GzzdBuBz-UTtO-NHhw4-D1FLV08Q49GnpPxHH03KAxqFAaAwmAbhQGgsBtsYjCoMRg0MRhYDLrKyxfo6uT4cnCK_aEd-JfZk8WCJ3HGc5KFacwTykWqeUZzQTMVU5mwPIMJuDmHg5KEpVTpTKdJSPqKs76WQtGXaLeYF_o1CmAmE6VhlKu-UoyESuapFJLnoSQyYiJtow9ln03BKZqdrrTQ8_VyaoJSSkOI7dvolevD6a1Tb5mWPd5GYqN3qwpGcH3zk2L20wqve4O_efA336LH9T_lHdpdLdb6PQS1K9lBO2IiOmjv8Ph8fNGxUPoLER-qmg
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PD-1+identifies+the+patient-specific+CD8%2B+tumor-reactive+repertoire+infiltrating+human+tumors&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Gros%2C+Alena&rft.au=Robbins%2C+Paul+F.&rft.au=Yao%2C+Xin&rft.au=Li%2C+Yong+F.&rft.date=2014-05-01&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.eissn=1558-8238&rft.volume=124&rft.issue=5&rft.spage=2246&rft.epage=2259&rft_id=info:doi/10.1172%2FJCI73639&rft_id=info%3Apmid%2F24667641&rft.externalDocID=PMC4001555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon