PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors
Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The...
Saved in:
Published in | The Journal of clinical investigation Vol. 124; no. 5; pp. 2246 - 2259 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Clinical Investigation
01.05.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment. |
---|---|
AbstractList | Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8
+
lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8
+
TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8
+
lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8
+
TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8
+
lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8
+
PD-1
+
compared with CD8
+
PD-1
–
TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8
+
and the CD8
+
PD-1
+
populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8
+
TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment. Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment.Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment. Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and there are no effective markers to specifically identify and select the repertoire of tumor-reactive and mutation-specific CD8⁺ lymphocytes. The lack of biomarkers limits the ability to study these cells and develop strategies to enhance clinical efficacy and extend this therapy to other malignancies. Here, we evaluated unique phenotypic traits of CD8⁺ TILs and TCR β chain (TCRβ) clonotypic frequency in melanoma tumors to identify patient-specific repertoires of tumor-reactive CD8⁺ lymphocytes. In all 6 tumors studied, expression of the inhibitory receptors programmed cell death 1 (PD-1; also known as CD279), lymphocyte-activation gene 3 (LAG-3; also known as CD223), and T cell immunoglobulin and mucin domain 3 (TIM-3) on CD8⁺ TILs identified the autologous tumor-reactive repertoire, including mutated neoantigen-specific CD8⁺ lymphocytes, whereas only a fraction of the tumor-reactive population expressed the costimulatory receptor 4-1BB (also known as CD137). TCRβ deep sequencing revealed oligoclonal expansion of specific TCRβ clonotypes in CD8⁺PD-1⁺ compared with CD8⁺PD-1- TIL populations. Furthermore, the most highly expanded TCRβ clonotypes in the CD8⁺ and the CD8⁺PD-1⁺ populations recognized the autologous tumor and included clonotypes targeting mutated antigens. Thus, in addition to the well-documented negative regulatory role of PD-1 in T cells, our findings demonstrate that PD-1 expression on CD8⁺ TILs also accurately identifies the repertoire of clonally expanded tumor-reactive cells and reveal a dual importance of PD-1 expression in the tumor microenvironment. |
Author | Wunderlich, John R Mixon, Arnold Douek, Daniel C Gros, Alena Darko, Sam Hanada, Ken-Ichi Yao, Xin Yang, James C Tran, Eric Li, Yong F Robbins, Paul F Almeida, Jorge R Dudley, Mark E Turcotte, Simon Farid, Shawn Rosenberg, Steven A |
AuthorAffiliation | 1 National Cancer Institute and 2 Vaccine Research Center, NIH, Bethesda, Maryland, USA |
AuthorAffiliation_xml | – name: 1 National Cancer Institute and 2 Vaccine Research Center, NIH, Bethesda, Maryland, USA |
Author_xml | – sequence: 1 givenname: Alena surname: Gros fullname: Gros, Alena – sequence: 2 givenname: Paul F surname: Robbins fullname: Robbins, Paul F – sequence: 3 givenname: Xin surname: Yao fullname: Yao, Xin – sequence: 4 givenname: Yong F surname: Li fullname: Li, Yong F – sequence: 5 givenname: Simon surname: Turcotte fullname: Turcotte, Simon – sequence: 6 givenname: Eric surname: Tran fullname: Tran, Eric – sequence: 7 givenname: John R surname: Wunderlich fullname: Wunderlich, John R – sequence: 8 givenname: Arnold surname: Mixon fullname: Mixon, Arnold – sequence: 9 givenname: Shawn surname: Farid fullname: Farid, Shawn – sequence: 10 givenname: Mark E surname: Dudley fullname: Dudley, Mark E – sequence: 11 givenname: Ken-Ichi surname: Hanada fullname: Hanada, Ken-Ichi – sequence: 12 givenname: Jorge R surname: Almeida fullname: Almeida, Jorge R – sequence: 13 givenname: Sam surname: Darko fullname: Darko, Sam – sequence: 14 givenname: Daniel C surname: Douek fullname: Douek, Daniel C – sequence: 15 givenname: James C surname: Yang fullname: Yang, James C – sequence: 16 givenname: Steven A surname: Rosenberg fullname: Rosenberg, Steven A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24667641$$D View this record in MEDLINE/PubMed |
BookMark | eNpVUMtOwzAQtFARfYDEF6AcuQTiZ5wLEmp5FFWCA5wj19m0rhIn2E4ljvwWn8OXEKkFldOuZmdnRjNGA9tYQOgcJ1cYp-T6aTpPqaDZERphzmUsCZWDg32Ixt5vkgQzxtkJGhImRCoYHqH8ZRbjyBRggykN-CisIWpVMD0Q-xZ0j-poOpPfn19R6OrGxQ6UDmYLkYMWXGiMg8jY0lTB9X92Fa27Wtkd2Z-i41JVHs72c4Le7u9ep4_x4vlhPr1dxBsicRanIpOFKEmBlRQZFakCUdAypYWWdJmxssBMasUTSjKmqIYCVIZJogVLYJlqOkE3O922W9ZQ6D6-U1XeOlMr95E3yuT_L9as81WzzVnfCue8F7jcC7jmvQMf8tp4DVWlLDSdzzEnmFLMBempF4defya_rdIfbm583w |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Clinical Investigation 2014 |
Copyright_xml | – notice: Copyright © 2014, American Society for Clinical Investigation 2014 |
DBID | CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1172/JCI73639 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1558-8238 |
EndPage | 2259 |
ExternalDocumentID | PMC4001555 24667641 |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .55 .GJ .XZ 08G 08P 29K 2WC 354 36B 3O- 53G 5GY 5RE 5RS 7RV 7X7 88E 8AO 8F7 8FE 8FH 8FI 8FJ 8R4 8R5 AAKAS AAWTL ABOCM ABPMR ABUWG ACGFO ACIHN ACNCT ACPRK ADBBV ADZCM AEAQA AENEX AFCHL AFFNX AFKRA AHMBA AI. ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS ASPBG AVWKF AZFZN BAWUL BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BLC BPHCQ BVXVI CCPQU CGR CS3 CUY CVF D-I DIK DU5 E3Z EBD EBS ECM EIF EJD EMB EMOBN EX3 F5P FEDTE FRP FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HYE H~9 IAO IEA IHR IHW INH IOF IOV IPO ISR ITC J5H KQ8 L7B LK8 M1P M5~ M7P MVM N4W NAPCQ NPM OBH OCB ODZKP OFXIZ OGEVE OHH OHT OK1 OVD OVIDX OVT P2P P6G PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO Q2X RPM S0X SJFOW SV3 TEORI TR2 TVE UHU UKHRP VH1 VVN W2D WH7 WOQ WOW X7M XSB YFH YHG YKV YOC ZGI ZXP ZY1 ~H1 7X8 5PM |
ID | FETCH-LOGICAL-j2819-7698d6f2d1a869367ae6d3f73dc83b94fd148ca503294a3cedea9120c640eb7c3 |
ISSN | 1558-8238 0021-9738 |
IngestDate | Thu Aug 21 14:00:05 EDT 2025 Fri Jul 11 05:12:13 EDT 2025 Mon Jul 21 06:07:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2819-7698d6f2d1a869367ae6d3f73dc83b94fd148ca503294a3cedea9120c640eb7c3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://www.jci.org/articles/view/73639/files/pdf |
PMID | 24667641 |
PQID | 1521331562 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4001555 proquest_miscellaneous_1521331562 pubmed_primary_24667641 |
PublicationCentury | 2000 |
PublicationDate | 2014-May |
PublicationDateYYYYMMDD | 2014-05-01 |
PublicationDate_xml | – month: 05 year: 2014 text: 2014-May |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of clinical investigation |
PublicationTitleAlternate | J Clin Invest |
PublicationYear | 2014 |
Publisher | American Society for Clinical Investigation |
Publisher_xml | – name: American Society for Clinical Investigation |
References | 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54 21282551 - J Clin Oncol. 2011 Mar 1;29(7):917-24 22754759 - Oncoimmunology. 2012 Jul 1;1(4):409-418 21850230 - PLoS One. 2011;6(8):e22523 16227604 - Mol Cell Biol. 2005 Nov;25(21):9543-53 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54 22267581 - Science. 2012 Feb 10;335(6069):723-7 22205715 - Cancer Res. 2012 Feb 15;72(4):887-96 21408177 - PLoS One. 2011;6(3):e17621 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61 1396582 - EMBO J. 1992 Nov;11(11):3887-95 12042816 - Nat Med. 2002 Jun;8(6):631-7 23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44 24020931 - Am J Transplant. 2013 Nov;13(11):2842-54 20819927 - J Exp Med. 2010 Sep 27;207(10):2187-94 9858507 - J Exp Med. 1998 Dec 21;188(12):2205-13 19426223 - Immunol Rev. 2009 May;229(1):192-215 22347406 - PLoS One. 2012;7(2):e30852 11590442 - Nat Med. 2001 Oct;7(10):1159-62 1704404 - J Immunol. 1991 Mar 1;146(5):1700-7 20948441 - J Immunother. 2010 Nov-Dec;33(9):956-64 19043418 - Nat Immunol. 2009 Jan;10(1):29-37 17567698 - J Virol. 2007 Sep;81(17):9249-58 12391199 - J Immunol. 2002 Nov 1;169(9):4882-8 15128789 - J Immunol. 2004 May 15;172(10):6057-64 16921384 - Nature. 2006 Sep 21;443(7109):350-4 8671665 - Int Immunol. 1996 May;8(5):765-72 23882160 - Cancer Immun. 2013;13:15 23644506 - Nat Immunol. 2013 Jun;14(6):603-10 23904171 - J Immunol. 2013 Sep 1;191(5):2217-25 19451549 - Blood. 2009 Jul 16;114(3):535-46 19319144 - Nat Rev Immunol. 2009 Apr;9(4):271-85 17885290 - AIDS. 2007 Oct 1;21(15):2005-13 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33 8642260 - J Exp Med. 1996 Mar 1;183(3):1185-92 15800326 - J Clin Oncol. 2005 Apr 1;23(10):2346-57 21436838 - Nat Rev Immunol. 2011 Apr;11(4):289-95 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23 23644516 - Nat Med. 2013 Jun;19(6):747-52 17371945 - Blood. 2007 Jul 1;110(1):201-10 16917489 - Nat Med. 2006 Oct;12(10):1198-202 8021739 - J Clin Oncol. 1994 Jul;12(7):1475-83 22422881 - J Immunol. 2012 Apr 15;188(8):3745-56 21943489 - Immunity. 2011 Sep 23;35(3):400-12 21498393 - Clin Cancer Res. 2011 Jul 1;17(13):4550-7 21074066 - Semin Oncol. 2010 Oct;37(5):508-16 21555851 - J Clin Invest. 2011 Jun;121(6):2350-60 24045181 - Clin Cancer Res. 2014 Jan 1;20(1):44-55 12165088 - Clin Exp Immunol. 2002 Aug;129(2):309-17 21739672 - Nat Immunol. 2011 Jun;12(6):492-9 7513441 - Science. 1994 Apr 29;264(5159):716-9 8786310 - J Immunol. 1996 Apr 1;156(7):2495-502 18716842 - Ann Surg Oncol. 2008 Nov;15(11):3014-21 18785267 - Cytometry A. 2008 Nov;73(11):975-83 23772031 - J Immunol. 2013 Jul 15;191(2):540-4 17955486 - Int J Cancer. 2008 Feb 1;122(3):486-94 22837179 - Clin Cancer Res. 2012 Oct 1;18(19):5212-23 15585832 - J Immunol. 2004 Dec 15;173(12):7125-30 10485649 - Immunity. 1999 Aug;11(2):141-51 19423728 - Blood. 2009 Aug 20;114(8):1537-44 14724640 - Nature. 2004 Jan 15;427(6971):252-6 15087405 - Cancer Res. 2004 Apr 15;64(8):2865-73 2673025 - Annu Rev Biochem. 1989;58:875-911 20536563 - Immunol Rev. 2010 May;235(1):172-89 11209085 - Science. 2001 Jan 12;291(5502):319-22 23650429 - J Clin Oncol. 2013 Jun 10;31(17):2152-9 16946036 - Science. 2006 Oct 6;314(5796):126-9 17950003 - Immunity. 2007 Oct;27(4):670-84 12242449 - Science. 2002 Oct 25;298(5594):850-4 9826581 - Semin Immunol. 1998 Dec;10(6):481-9 |
References_xml | – reference: 12165088 - Clin Exp Immunol. 2002 Aug;129(2):309-17 – reference: 16227604 - Mol Cell Biol. 2005 Nov;25(21):9543-53 – reference: 12391199 - J Immunol. 2002 Nov 1;169(9):4882-8 – reference: 20536563 - Immunol Rev. 2010 May;235(1):172-89 – reference: 16921384 - Nature. 2006 Sep 21;443(7109):350-4 – reference: 21074066 - Semin Oncol. 2010 Oct;37(5):508-16 – reference: 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54 – reference: 24045181 - Clin Cancer Res. 2014 Jan 1;20(1):44-55 – reference: 22754759 - Oncoimmunology. 2012 Jul 1;1(4):409-418 – reference: 23724867 - N Engl J Med. 2013 Jul 11;369(2):122-33 – reference: 21436838 - Nat Rev Immunol. 2011 Apr;11(4):289-95 – reference: 22837179 - Clin Cancer Res. 2012 Oct 1;18(19):5212-23 – reference: 10485649 - Immunity. 1999 Aug;11(2):141-51 – reference: 21850230 - PLoS One. 2011;6(8):e22523 – reference: 21498393 - Clin Cancer Res. 2011 Jul 1;17(13):4550-7 – reference: 22267581 - Science. 2012 Feb 10;335(6069):723-7 – reference: 15800326 - J Clin Oncol. 2005 Apr 1;23(10):2346-57 – reference: 8786310 - J Immunol. 1996 Apr 1;156(7):2495-502 – reference: 23904171 - J Immunol. 2013 Sep 1;191(5):2217-25 – reference: 20525992 - N Engl J Med. 2010 Aug 19;363(8):711-23 – reference: 23650429 - J Clin Oncol. 2013 Jun 10;31(17):2152-9 – reference: 1396582 - EMBO J. 1992 Nov;11(11):3887-95 – reference: 19319144 - Nat Rev Immunol. 2009 Apr;9(4):271-85 – reference: 2673025 - Annu Rev Biochem. 1989;58:875-911 – reference: 22205715 - Cancer Res. 2012 Feb 15;72(4):887-96 – reference: 11590442 - Nat Med. 2001 Oct;7(10):1159-62 – reference: 19043418 - Nat Immunol. 2009 Jan;10(1):29-37 – reference: 18785267 - Cytometry A. 2008 Nov;73(11):975-83 – reference: 8671665 - Int Immunol. 1996 May;8(5):765-72 – reference: 22347406 - PLoS One. 2012;7(2):e30852 – reference: 17885290 - AIDS. 2007 Oct 1;21(15):2005-13 – reference: 22658127 - N Engl J Med. 2012 Jun 28;366(26):2443-54 – reference: 20948441 - J Immunother. 2010 Nov-Dec;33(9):956-64 – reference: 23882160 - Cancer Immun. 2013;13:15 – reference: 18716842 - Ann Surg Oncol. 2008 Nov;15(11):3014-21 – reference: 14724640 - Nature. 2004 Jan 15;427(6971):252-6 – reference: 9826581 - Semin Immunol. 1998 Dec;10(6):481-9 – reference: 17371945 - Blood. 2007 Jul 1;110(1):201-10 – reference: 8021739 - J Clin Oncol. 1994 Jul;12(7):1475-83 – reference: 21282551 - J Clin Oncol. 2011 Mar 1;29(7):917-24 – reference: 15087405 - Cancer Res. 2004 Apr 15;64(8):2865-73 – reference: 22422881 - J Immunol. 2012 Apr 15;188(8):3745-56 – reference: 20819927 - J Exp Med. 2010 Sep 27;207(10):2187-94 – reference: 17950003 - Immunity. 2007 Oct;27(4):670-84 – reference: 17955486 - Int J Cancer. 2008 Feb 1;122(3):486-94 – reference: 21943489 - Immunity. 2011 Sep 23;35(3):400-12 – reference: 9858507 - J Exp Med. 1998 Dec 21;188(12):2205-13 – reference: 12042816 - Nat Med. 2002 Jun;8(6):631-7 – reference: 19423728 - Blood. 2009 Aug 20;114(8):1537-44 – reference: 12242449 - Science. 2002 Oct 25;298(5594):850-4 – reference: 15128789 - J Immunol. 2004 May 15;172(10):6057-64 – reference: 24020931 - Am J Transplant. 2013 Nov;13(11):2842-54 – reference: 16946036 - Science. 2006 Oct 6;314(5796):126-9 – reference: 23772031 - J Immunol. 2013 Jul 15;191(2):540-4 – reference: 15585832 - J Immunol. 2004 Dec 15;173(12):7125-30 – reference: 1704404 - J Immunol. 1991 Mar 1;146(5):1700-7 – reference: 11209085 - Science. 2001 Jan 12;291(5502):319-22 – reference: 23644506 - Nat Immunol. 2013 Jun;14(6):603-10 – reference: 17567698 - J Virol. 2007 Sep;81(17):9249-58 – reference: 8642260 - J Exp Med. 1996 Mar 1;183(3):1185-92 – reference: 23644516 - Nat Med. 2013 Jun;19(6):747-52 – reference: 7513441 - Science. 1994 Apr 29;264(5159):716-9 – reference: 21739672 - Nat Immunol. 2011 Jun;12(6):492-9 – reference: 19426223 - Immunol Rev. 2009 May;229(1):192-215 – reference: 16917489 - Nat Med. 2006 Oct;12(10):1198-202 – reference: 21408177 - PLoS One. 2011;6(3):e17621 – reference: 23724846 - N Engl J Med. 2013 Jul 11;369(2):134-44 – reference: 19451549 - Blood. 2009 Jul 16;114(3):535-46 – reference: 16287711 - J Exp Med. 2005 Nov 21;202(10):1349-61 – reference: 21555851 - J Clin Invest. 2011 Jun;121(6):2350-60 |
SSID | ssj0014454 |
Score | 2.6310833 |
Snippet | Adoptive transfer of tumor-infiltrating lymphocytes (TILs) can mediate regression of metastatic melanoma; however, TILs are a heterogeneous population, and... |
SourceID | pubmedcentral proquest pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | 2246 |
SubjectTerms | Adoptive Transfer Antigens, CD - genetics Antigens, CD - immunology CD8-Positive T-Lymphocytes - immunology CD8-Positive T-Lymphocytes - pathology Cell Line, Tumor Female Hepatitis A Virus Cellular Receptor 2 Humans Male Melanoma - genetics Melanoma - immunology Melanoma - pathology Melanoma - therapy Membrane Proteins - genetics Membrane Proteins - immunology Programmed Cell Death 1 Receptor - genetics Programmed Cell Death 1 Receptor - immunology Receptors, Antigen, T-Cell, alpha-beta - genetics Receptors, Antigen, T-Cell, alpha-beta - immunology Tumor Microenvironment - genetics Tumor Microenvironment - immunology Tumor Necrosis Factor Receptor Superfamily, Member 9 - genetics Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology |
Title | PD-1 identifies the patient-specific CD8⁺ tumor-reactive repertoire infiltrating human tumors |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24667641 https://www.proquest.com/docview/1521331562 https://pubmed.ncbi.nlm.nih.gov/PMC4001555 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9owFLZoK017qXYfu6BM2p6QGbEdO3lsabvSiQpVrcQeJhQ7zsbUhorLy_7a_tyOL7lA-7D1JQJj4uDzcXxsf-czQh-V6ucQh0c41nmKmeonOCU0wzD4xRmLSJwrk-88OuenV-xsEk1arT8N1tJ6JXvq9715JQ-xKpSBXU2W7H9YtropFMBrsC9cwcJw_Scbj49w2J1ljvBjtBpM2pMTSsUmhdLQgLqDo_gTOeyu1jfzBYYQ0To4s1egF6s5ODzDx5pdW_Xc4oc_s89WXjYD1zqFzAavVULlrNbpqDf0vywcee8AhrTK7V_MpfSL24aO2D3pVR4nteu1k1lND7Icg2_mHCRfzS9MhKymATZyAYyTatBPB-XTDe88XZlcEOJEOMGXnvY-OYpxTHxZ6bRd5rVHZ9R0wcSvaWr_1imO3x0qhJGePRsMBeV0owoY-fbGQgZuxQV3ylxbstzj0YDZgDPaQXsE5ih2Pj_8Wm1hMRZ5CXD3i7zyMTT7uWzUKFH7Fu6b4GzzdBuBz-UTtO-NHhw4-D1FLV08Q49GnpPxHH03KAxqFAaAwmAbhQGgsBtsYjCoMRg0MRhYDLrKyxfo6uT4cnCK_aEd-JfZk8WCJ3HGc5KFacwTykWqeUZzQTMVU5mwPIMJuDmHg5KEpVTpTKdJSPqKs76WQtGXaLeYF_o1CmAmE6VhlKu-UoyESuapFJLnoSQyYiJtow9ln03BKZqdrrTQ8_VyaoJSSkOI7dvolevD6a1Tb5mWPd5GYqN3qwpGcH3zk2L20wqve4O_efA336LH9T_lHdpdLdb6PQS1K9lBO2IiOmjv8Ph8fNGxUPoLER-qmg |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PD-1+identifies+the+patient-specific+CD8%2B+tumor-reactive+repertoire+infiltrating+human+tumors&rft.jtitle=The+Journal+of+clinical+investigation&rft.au=Gros%2C+Alena&rft.au=Robbins%2C+Paul+F.&rft.au=Yao%2C+Xin&rft.au=Li%2C+Yong+F.&rft.date=2014-05-01&rft.pub=American+Society+for+Clinical+Investigation&rft.issn=0021-9738&rft.eissn=1558-8238&rft.volume=124&rft.issue=5&rft.spage=2246&rft.epage=2259&rft_id=info:doi/10.1172%2FJCI73639&rft_id=info%3Apmid%2F24667641&rft.externalDocID=PMC4001555 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1558-8238&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1558-8238&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1558-8238&client=summon |