デジタル画像相関法によるNi基超合金のき裂先端ひずみ場の測定

Saved in:
Bibliographic Details
Published in日本機械学会論文集 Vol. 84; no. 866; p. 18-00246
Main Authors 井上, 裕嗣, 黒川, 悠, 阪口, 基己, 大塚, 勇貴
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本機械学会 2018
Subjects
Online AccessGet full text
ISSN2187-9761
DOI10.1299/transjsme.18-00246

Cover

Loading…
Author 阪口, 基己
井上, 裕嗣
黒川, 悠
大塚, 勇貴
Author_xml – sequence: 1
  fullname: 井上, 裕嗣
  organization: 東京工業大学 工学院 機械系
– sequence: 1
  fullname: 黒川, 悠
  organization: 東京工業大学 工学院 機械系
– sequence: 1
  fullname: 阪口, 基己
  organization: 東京工業大学 工学院 機械系
– sequence: 1
  fullname: 大塚, 勇貴
  organization: 東京工業大学 工学院 機械系
BookMark eNo9kMtKw0AARQdRsNb-gP-QmslkXkspPim6UbdhJp1oQlsl6cZlUkoLIiqoi7pQdBmpoCJFF_2YIX38hU-6Oot7OYuzAGbrR3UFwBI0i9DifLkRinoURDVVhMwwTcsmMyBnQUYNTgmcB4Uo8qWJiIUZojgH9nWzrZO-Tga6mY6uPrPm-ei2P7l5GL5e6zjVSUcnp9t-dvcxfm9lF51J-1LHPR2fjR-TrNUZpc86ftFxV8eD7P7texr2n7JedxHMeaIaqcI_82BvbXW3tGGUd9Y3SytlI7AoIQaFkHOJJMMeQpJLjrGlbCwJt5GrKMMSV4TAAnmmcCsUQeFygpXludw1JYEoD7b-vEHUEAfKOQ79mghPHBE2fLeqnGkOh9kOI-QHkDm_YaYn91CETiDQF0n0gGQ
ContentType Journal Article
Copyright 2018 一般社団法人日本機械学会
Copyright_xml – notice: 2018 一般社団法人日本機械学会
DOI 10.1299/transjsme.18-00246
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2187-9761
EndPage 18-00246
ExternalDocumentID article_transjsme_84_866_84_18_00246_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
JSF
KQ8
RJT
ID FETCH-LOGICAL-j2766-71199b3b85f33b9b9552e45b6943ce785b5daa5a3f0acd731ac965e2fc9c0b613
IngestDate Wed Sep 03 06:29:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 866
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2766-71199b3b85f33b9b9552e45b6943ce785b5daa5a3f0acd731ac965e2fc9c0b613
OpenAccessLink https://www.jstage.jst.go.jp/article/transjsme/84/866/84_18-00246/_article/-char/ja
ParticipantIDs jstage_primary_article_transjsme_84_866_84_18_00246_article_char_ja
PublicationCentury 2000
PublicationDate 20180000
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationTitle 日本機械学会論文集
PublicationYear 2018
Publisher 一般社団法人 日本機械学会
Publisher_xml – name: 一般社団法人 日本機械学会
References Berke, B. R. and Lambros, J., Ultraviolet digital image correlation (UV-DIC) for high temperature applications, Review of Scientific Instruments, Vol.85 (2014), 045121.
Grant, B. M. B., Stone, H. J., Withers, P. J. and Preuss, M., High-temperature strain field measurement using digital image correlation, The Journal of Strain Analysis for Engineering Design, Vol.44 (2009), pp.263–271.
Siebörger, D., Knake, H. and Glatzel, U., Temeprature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phase, Materials Science and Engineering, A298 (2001), pp.26–33.
Suzuki, S., Sakaguchi, M. and Inoue, H., Temperature dependent fatigue crack propagation in a single crystal Ni-based superalloy affected by primary and secondary orientations, Materials Science & Engineering A, Vol. 724 (2018), pp.559–565.
Leplay, P., Lafforgue, O. and Hild, F., Analysis of asymmetrical creep of a ceramic at 1350°C by digital image correlation, Journal of the American Ceramic Society, Vol.98 (2015), pp.2240–2247.
Blaber, J., Adair, B. and Antoniou, A., Ncorr: open-source 2D digital image correlation matlab software, Experimental Mechanics, Vol.55 (2015), pp.1105–1122.
Higaki, M., Sakaguchi, M., Matsunami, M., Kaneko, H., Karato, T., Suzuki, K. and Inoue, H., Influence of crystal orientastions and grain boundary on crack propagation behavior at room temperature in a polycrystalline Ni-base superalloy, Transactions of the JSME (in Japanese), Vol.84, No.859 (2018), DOI: 10.1299/transjsme.17-00578.
Sakaguchi, M., Higaki, M., Komamura, K., Inoue, H. and Okazaki, M., Crystal plasticity assessment to stage I fatigue crack propagation in a single crystal nickel-base superalloy, Proceedings of Low Cycle Fatigue 8th (2017), pp. 249–255.
Tohgo, K., Analysis of material strength, Uchida Rokakuho Publishing (2004), pp.186–189 (in Japanese).
Leverant, G. R. and Gell, M., The influence of temperature and cyclic frequency on the fatigue fracture of cube oriented nickel-base superalloy single crystals, Metallurgical Transactions, Vol. 6A (1975), pp.367–371.
Peralta, P., Choi, S.-H. and Gee, J., Experimental quantification of the plastic blunting process for stage II fatigue crack growth in one-phase metallic materials, International Journal of Plasticity, Vol.23 (2007), pp.1763–1795.
Kunio, T., Nakazawa, H., Hayashi, I. and Okamura, H., Experimental methods for fracture mechanics, Asakura Publishing (1984), pp.30–72 (in Japanese).
Suresh, S., Fatigue of Materials, Cambridge University Press (2008), pp.277–313, pp.330–332.
Bettge, D. and Österle, W., “Cube slip” in near-[111] oriented specimens of a single-crystal nickel-base superalloy, Scripta Materialia, Vol.40, No.4 (1999), pp.389–395.
Sakuraba, K., Defining the design rule of the fatigue strength of stainless steel, Bulletin of Tokyo Metropolitan Industrial Technology Research Institute, No. 4 (2009), pp.66–67.
Yoneyama, S., Kitagawa, A., Iwata, S., Tani, K. and Kikuta, H., Bridge deflection measurement using digital image correlation, Experimental Techniques, Vol.34 (2007), pp.34–40.
Carrol, J. D., Abuzaid, W., Lambros, J. and Sehitoglu, H., High resolution digital image correlation measurements of strain accumulation in fatigue crack growth, International Journal of Fatigue, Vol.57 (2013), pp.140–150.
Okazaki, M., Ohsima, S. and Nohmi, S., Investigation on small fatigue crack growth based on crack opening-closing measurement in Ni-base superalloys at high temperature, Journal of the society of materials science, Japan, Vol.43, No.490 (1994), pp.860–866 (in Japanese).
Telesman, J. and Ghosn, L. J., Fatigue crack growth behavior of PWA 1484 single crystal superalloy at elevated temperatures, Journal of Engineering for Gas Turbines and Power, Vol. 118 (1996), pp.399–405.
ASTM International, standard test method for measurement of fatigue crack growth rates, E647-11 (2011), p.13.
Novak, D. M. and Zok, W. F., High-temperature materials testing with full-field strain measurement: Experimental design and practice, Review of Scientific Instruments, Vol.82 (2011), 115101.
Jo, T., Kitada, M. and Nishikawa, I., Evaluation of fracture mechanics parameters for mixed mode crack using digital image correlation method, Proceedings of M&M conference (2017), pp.74–76 (in Japanese).
Ke, X., Sutton, M. A., Lessner, S. M. and Yost, M., Robust stereo vision and calibration methodology for accurate three-dimensional Digital Image Correlation measurements on submerged objects, The Journal of Strain Analysis for Engineering Design, Vol. 43 (2008), pp.689–704.
Telesman, J. and Ghosn, L. J., The unusual near-threshold FCG behavior of a single crystal superalloy and the resolved shear stress as the crack driving force, Engineering Fracture Mechanics, Vol.34 (1989), pp.1183–1196.
Lyons, J. S., Liu, J. and Sutton, M. A., High-temperature deformation measurements using digital-image correlation, Experimental Mechanics, Vol. 36 (1996), pp.64–70.
Pan, B., Wu, D., Wang, Z. and Xia, Y., High-temperature digital image correlation method for full-field deformation measurement at 1200°C, Measurement Science and Technology, Vol.22 (2011), 015701.
Peters, W. H. and Ranson, W. F., Digital imaging techniques in experimental stress analysis, Optical Engineering, Vol.21, No.2 (1982), pp.427–431.
Sakaguchi, M., Kouyama, D., Yokoguchi, T., Komamura, R. and Inoue, H., Effect of crystallographic orientations on stage I fatigue crack propagation in a Ni-base single crystal superalloy, Journal of the society of materials science, Japan, Vol.66, No.10 (2017), pp.731–737 (in Japanese).
References_xml – reference: Okazaki, M., Ohsima, S. and Nohmi, S., Investigation on small fatigue crack growth based on crack opening-closing measurement in Ni-base superalloys at high temperature, Journal of the society of materials science, Japan, Vol.43, No.490 (1994), pp.860–866 (in Japanese).
– reference: Jo, T., Kitada, M. and Nishikawa, I., Evaluation of fracture mechanics parameters for mixed mode crack using digital image correlation method, Proceedings of M&M conference (2017), pp.74–76 (in Japanese).
– reference: Pan, B., Wu, D., Wang, Z. and Xia, Y., High-temperature digital image correlation method for full-field deformation measurement at 1200°C, Measurement Science and Technology, Vol.22 (2011), 015701.
– reference: Berke, B. R. and Lambros, J., Ultraviolet digital image correlation (UV-DIC) for high temperature applications, Review of Scientific Instruments, Vol.85 (2014), 045121.
– reference: Peters, W. H. and Ranson, W. F., Digital imaging techniques in experimental stress analysis, Optical Engineering, Vol.21, No.2 (1982), pp.427–431.
– reference: Suzuki, S., Sakaguchi, M. and Inoue, H., Temperature dependent fatigue crack propagation in a single crystal Ni-based superalloy affected by primary and secondary orientations, Materials Science & Engineering A, Vol. 724 (2018), pp.559–565.
– reference: Blaber, J., Adair, B. and Antoniou, A., Ncorr: open-source 2D digital image correlation matlab software, Experimental Mechanics, Vol.55 (2015), pp.1105–1122.
– reference: Siebörger, D., Knake, H. and Glatzel, U., Temeprature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phase, Materials Science and Engineering, A298 (2001), pp.26–33.
– reference: Peralta, P., Choi, S.-H. and Gee, J., Experimental quantification of the plastic blunting process for stage II fatigue crack growth in one-phase metallic materials, International Journal of Plasticity, Vol.23 (2007), pp.1763–1795.
– reference: Carrol, J. D., Abuzaid, W., Lambros, J. and Sehitoglu, H., High resolution digital image correlation measurements of strain accumulation in fatigue crack growth, International Journal of Fatigue, Vol.57 (2013), pp.140–150.
– reference: Bettge, D. and Österle, W., “Cube slip” in near-[111] oriented specimens of a single-crystal nickel-base superalloy, Scripta Materialia, Vol.40, No.4 (1999), pp.389–395.
– reference: Higaki, M., Sakaguchi, M., Matsunami, M., Kaneko, H., Karato, T., Suzuki, K. and Inoue, H., Influence of crystal orientastions and grain boundary on crack propagation behavior at room temperature in a polycrystalline Ni-base superalloy, Transactions of the JSME (in Japanese), Vol.84, No.859 (2018), DOI: 10.1299/transjsme.17-00578.
– reference: Ke, X., Sutton, M. A., Lessner, S. M. and Yost, M., Robust stereo vision and calibration methodology for accurate three-dimensional Digital Image Correlation measurements on submerged objects, The Journal of Strain Analysis for Engineering Design, Vol. 43 (2008), pp.689–704.
– reference: Sakuraba, K., Defining the design rule of the fatigue strength of stainless steel, Bulletin of Tokyo Metropolitan Industrial Technology Research Institute, No. 4 (2009), pp.66–67.
– reference: Grant, B. M. B., Stone, H. J., Withers, P. J. and Preuss, M., High-temperature strain field measurement using digital image correlation, The Journal of Strain Analysis for Engineering Design, Vol.44 (2009), pp.263–271.
– reference: Leverant, G. R. and Gell, M., The influence of temperature and cyclic frequency on the fatigue fracture of cube oriented nickel-base superalloy single crystals, Metallurgical Transactions, Vol. 6A (1975), pp.367–371.
– reference: Lyons, J. S., Liu, J. and Sutton, M. A., High-temperature deformation measurements using digital-image correlation, Experimental Mechanics, Vol. 36 (1996), pp.64–70.
– reference: ASTM International, standard test method for measurement of fatigue crack growth rates, E647-11 (2011), p.13.
– reference: Yoneyama, S., Kitagawa, A., Iwata, S., Tani, K. and Kikuta, H., Bridge deflection measurement using digital image correlation, Experimental Techniques, Vol.34 (2007), pp.34–40.
– reference: Suresh, S., Fatigue of Materials, Cambridge University Press (2008), pp.277–313, pp.330–332.
– reference: Kunio, T., Nakazawa, H., Hayashi, I. and Okamura, H., Experimental methods for fracture mechanics, Asakura Publishing (1984), pp.30–72 (in Japanese).
– reference: Telesman, J. and Ghosn, L. J., The unusual near-threshold FCG behavior of a single crystal superalloy and the resolved shear stress as the crack driving force, Engineering Fracture Mechanics, Vol.34 (1989), pp.1183–1196.
– reference: Sakaguchi, M., Kouyama, D., Yokoguchi, T., Komamura, R. and Inoue, H., Effect of crystallographic orientations on stage I fatigue crack propagation in a Ni-base single crystal superalloy, Journal of the society of materials science, Japan, Vol.66, No.10 (2017), pp.731–737 (in Japanese).
– reference: Tohgo, K., Analysis of material strength, Uchida Rokakuho Publishing (2004), pp.186–189 (in Japanese).
– reference: Novak, D. M. and Zok, W. F., High-temperature materials testing with full-field strain measurement: Experimental design and practice, Review of Scientific Instruments, Vol.82 (2011), 115101.
– reference: Leplay, P., Lafforgue, O. and Hild, F., Analysis of asymmetrical creep of a ceramic at 1350°C by digital image correlation, Journal of the American Ceramic Society, Vol.98 (2015), pp.2240–2247.
– reference: Telesman, J. and Ghosn, L. J., Fatigue crack growth behavior of PWA 1484 single crystal superalloy at elevated temperatures, Journal of Engineering for Gas Turbines and Power, Vol. 118 (1996), pp.399–405.
– reference: Sakaguchi, M., Higaki, M., Komamura, K., Inoue, H. and Okazaki, M., Crystal plasticity assessment to stage I fatigue crack propagation in a single crystal nickel-base superalloy, Proceedings of Low Cycle Fatigue 8th (2017), pp. 249–255.
SSID ssib036258375
ssib016970096
ssib051641555
ssj0002911760
Score 2.10232
SourceID jstage
SourceType Publisher
StartPage 18-00246
SubjectTerms Digital image correlation
Fatigue crack
High temperature
Ni-base superalloy
Octahedral slip system
Opening mode
Shearing mode
Strain field
Title デジタル画像相関法によるNi基超合金のき裂先端ひずみ場の測定
URI https://www.jstage.jst.go.jp/article/transjsme/84/866/84_18-00246/_article/-char/ja
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本機械学会論文集, 2018, Vol.84(866), pp.18-00246-18-00246
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEB5CvOhBfOKbHOyTbDKvfh2nN7MEITklktsws5mBLBhFNxcPwm4ICYiooB7iQdFjJIKKBD3kxwybx7-wqmZmMyEeNAjLbG3319XVVdNbVc10j2XddhI8aM8RDT8GM_hcJw3NIWv1M99byFKRCYm7kadnxNScf3eez4-MTtSeWlruJuPtJ3_cV3ISq0IZ2BV3yf6DZYdMoQBosC9cwcJw_Ssbs9BjCj6SCJcZVRGtsiowLJRM-8wAwQncohJDYM20YIHLQsGMxzSnVg61Ij6qYqjMzCIy0C1mAhYqZgRTnEpsQmmUQjsVg7Ak1CSCA-KB_XMCS-whaJUY45aEDqqSFoIDmxm_xlCgyEGTqkIA1-NqrNXAlhPRJBiMTKPAIQ3R2NRwkgWChaCPJnWnUBLQAbYSpEiNulHD9UrCBqQaH_tXAd6U5aB0oQHo1zvEa9S1puEaUMlkgReogcCuwzTwCEgrLWRGsKGGqbFxDvEgu88CSQSpqsQrQ2IrVKPx64s4pcfBCVcJbyNQFVqUyNCE1KdBAQ5vAhqyCe6cTKuFzyfnApGdbEAo6tQ9YfGyvnLGK1F3bI5qYDgnaoFSveiYI4YoB2ZPF-OtzuP76fjR9kcOOC-nTzQER8qPoHf8clREzaIKhHsRow4kRKdcyAvRE08_DSsH4ggtMSevfkNwxpV3GB9zR2D8zIeLsC64einscjMdyDxxXGIITTuQqFUPeVLcOXvOOlsmjGNBIdl5a6QTX7DO1I4RvWjdy1fW8v523t_JVzb3Xv8arLzYe7d98Pbj7rc3eW8z76_n_Wczi4P3P_d_rA5erh-svcp7W3nv-f6n_mB1fW_zS977mvc28t7O4MN3qNrd_jzY2rhkzbXC2eZUo3xfSqPjSiEa0nG0TrxE8czz4D9Yc-6mPk-E9r12KhVP-EIc89jL7Li9ID0nbmvBUzdr67adQFx_2RpderCUXrHG7BjSIm0nmS1jP5OA9NuSKzfNZOZBxnXVahZKiR4Wh-JEJ7Hitf_C5bp1GqdUsS56wxrtPlpOb0Km0E1u0d3xG7Le4pk
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%87%E3%82%B8%E3%82%BF%E3%83%AB%E7%94%BB%E5%83%8F%E7%9B%B8%E9%96%A2%E6%B3%95%E3%81%AB%E3%82%88%E3%82%8BNi%E5%9F%BA%E8%B6%85%E5%90%88%E9%87%91%E3%81%AE%E3%81%8D%E8%A3%82%E5%85%88%E7%AB%AF%E3%81%B2%E3%81%9A%E3%81%BF%E5%A0%B4%E3%81%AE%E6%B8%AC%E5%AE%9A&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%A9%9F%E6%A2%B0%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E4%BA%95%E4%B8%8A%2C+%E8%A3%95%E5%97%A3&rft.au=%E9%BB%92%E5%B7%9D%2C+%E6%82%A0&rft.au=%E9%98%AA%E5%8F%A3%2C+%E5%9F%BA%E5%B7%B1&rft.au=%E5%A4%A7%E5%A1%9A%2C+%E5%8B%87%E8%B2%B4&rft.date=2018&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%A9%9F%E6%A2%B0%E5%AD%A6%E4%BC%9A&rft.eissn=2187-9761&rft.volume=84&rft.issue=866&rft.spage=18-00246&rft.epage=18-00246&rft_id=info:doi/10.1299%2Ftransjsme.18-00246&rft.externalDocID=article_transjsme_84_866_84_18_00246_article_char_ja