免疫反応を制御可能な未来型バイオマテリアルの設計―Immunobioengineering
近年バイオマテリアルの研究分野において炎症・抗炎症などの生体反応を積極的に制御可能な新たな材料開発がみられるようになってきた。免疫応答をうまく制御することは、直接的に病気を治すという戦略だけでなく、従来の薬物治療の効果をより促進する戦略としても有用である。また、安価で合目的に設計された材料自身が生体機能に積極的に働きかけることができれば、現在の医療費を大幅に削減することが可能となる。本稿では、このような新たなバイオマテリアルの開発(immunobioengineering)に注目し、最近の研究例を概説する。...
Saved in:
Published in | Drug Delivery System Vol. 28; no. 2; pp. 135 - 148 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
日本DDS学会
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0913-5006 1881-2732 |
DOI | 10.2745/dds.28.135 |
Cover
Abstract | 近年バイオマテリアルの研究分野において炎症・抗炎症などの生体反応を積極的に制御可能な新たな材料開発がみられるようになってきた。免疫応答をうまく制御することは、直接的に病気を治すという戦略だけでなく、従来の薬物治療の効果をより促進する戦略としても有用である。また、安価で合目的に設計された材料自身が生体機能に積極的に働きかけることができれば、現在の医療費を大幅に削減することが可能となる。本稿では、このような新たなバイオマテリアルの開発(immunobioengineering)に注目し、最近の研究例を概説する。 |
---|---|
AbstractList | 近年バイオマテリアルの研究分野において炎症・抗炎症などの生体反応を積極的に制御可能な新たな材料開発がみられるようになってきた。免疫応答をうまく制御することは、直接的に病気を治すという戦略だけでなく、従来の薬物治療の効果をより促進する戦略としても有用である。また、安価で合目的に設計された材料自身が生体機能に積極的に働きかけることができれば、現在の医療費を大幅に削減することが可能となる。本稿では、このような新たなバイオマテリアルの開発(immunobioengineering)に注目し、最近の研究例を概説する。 |
Author | 荏原, 充宏 齋藤, 充弘 |
Author_xml | – sequence: 1 fullname: 荏原, 充宏 organization: 物質・材料研究機構・国際ナノアーキテクトニクス研究拠点 – sequence: 1 fullname: 齋藤, 充弘 organization: 大阪大学医学部附属病院 未来医療開発部未来医療センター |
BookMark | eNo9kD1Lw1AYhS9Swba6-D9Scz-S3AwOUvwoFFx0Dre5b2tCm0pSBzeboBRKqQg61YKiUFLUzU39L15S-zOsKC7nwHngDE8B5YJ2AAitY71ELGZsSBmVCC9haiyhPOYca8SiJIfyuo2pZui6uYIKUeTrOltAnEdOdj74uplmw0H2MVLxVdZ7zd7vsuHLPHlT3XQ2Sme3j9m4r5JLFT-oOFXJWCUXKklVfK-Sqeo-zydP80nv8-y60mqdBO2a14ag4QUAoRc0VtFyXTQjWPvrIjrc2T4o72nV_d1Keauq-cQiTBPCtGrSJMyUmBHgtgsGNyTjNdNlnFAqQIB0CRgulSbY0pbc1QU2LA5QJ4QW0ebvrx91RAOc49BrifDUEWHHc5vgLMQ4hDvkJxZ2_nf3SISOL-g3Dr57pg |
ContentType | Journal Article |
Copyright | 2013 日本DDS学会 |
Copyright_xml | – notice: 2013 日本DDS学会 |
DOI | 10.2745/dds.28.135 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1881-2732 |
EndPage | 148 |
ExternalDocumentID | article_dds_28_2_28_135_article_char_ja |
GroupedDBID | .55 2WC 3O- 53G 5GY ACIWK ACPRK AFRAH ALMA_UNASSIGNED_HOLDINGS AUIBY CS3 JSF JSH OK1 RJT RZJ X7M |
ID | FETCH-LOGICAL-j2724-aa67bd6246d142e89ce585d48b6c48233aeaedc2e5c3d6e9d9d8c0a1578eef223 |
ISSN | 0913-5006 |
IngestDate | Wed Sep 03 06:29:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2724-aa67bd6246d142e89ce585d48b6c48233aeaedc2e5c3d6e9d9d8c0a1578eef223 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/dds/28/2/28_135/_article/-char/ja |
PageCount | 14 |
ParticipantIDs | jstage_primary_article_dds_28_2_28_135_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20130000 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 20130000 |
PublicationDecade | 2010 |
PublicationTitle | Drug Delivery System |
PublicationTitleAlternate | DDS |
PublicationYear | 2013 |
Publisher | 日本DDS学会 |
Publisher_xml | – name: 日本DDS学会 |
References | 12)Ebara, M., Uto, K., Idota, N., Hoffman, J. M., Aoyagi, T. Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv. Mater. 24:273-278, 2012. 19)金田安史 体内細胞動員による再生医療 Drug Delivery System 27:246-256, 2012. 28)Cohen, J. A. et al. T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: the effect of particle size. Bioconjug. Chem. 20:111119, 2009. 25)Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayerprotected nanoparticles. Nature Mater. 7:88595, 2008. 23)Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA 104:14821487, 2007. 9)Yoshida, R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv. Mater. 22:3463-3483, 2010. 57)荏原充宏 スマートポリマーを用いた途上国医療への取組み 高分子論文集69:545-554, 2012. 11)Kim, Y.-J., Ebara, M., Aoyagi, T. A smart nanofiber web that captures and release cells. Angew. Chem. Intl. Ed. 51:10537-10541, 2012. 31)Manickam, D. S., Oupický, D. Multiblock reducible copolypeptides containing histidinerich and nuclear localization sequences for gene delivery. Bioconjug. Chem. 17:13951403, 2006. 50)Wang, C., Stewart, R. J., Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains, Nature 397: 417420, 1999. 21)Roy, P., Noad, R. Virus-like particles as a vaccine delivery system: myths and facts. Hum. Vaccin. 4:512, 2008. 24)Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106:870875, 2009. 40)Berguig, G. Y., Convertine, A. J., Shi, J. et al. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate Mol. Pharmaceutics 9:35063514, 2012. 17)Matsumoto, A., Ishii, T., Nishida, J., Matsumoto, H., Kataoka, K., Miyahara, Y. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Intl. Ed. 51: 2124-2128, 2012. 48)Wu, K., Liu, J., Johnson, R.N., Yang, J., Kopecek, J. Drug-free macromolecular therapeutics: Induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface, Angew. Chem. Int. Ed. 49: 14511455, 2010. 46)Decher, G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science 277:1232-1237, 1997. 34)Hori, Y., Winans, A. M. & Irvine, D. J. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 5: 969982, 2009. 3)Kataoka, K., Harada, A., Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance, Adv. Drug Deliv. Rev. 47:113131, 2001. 22)Cone, R. A., Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:7585, 2009. 13)Nakayama, M., Okano, T., Miyazaki, T., Kohori, F., Sakai, K., Yokoyama, M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 115:46-56, 2006. 43)Kurooka, M., Kaneda, Y. Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 67: 227-36, 2007. 41)Garbern, J. C., Hoffman, A. S., Stayton, P. S. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid)copolymers for delivery of angiogenic growth factors. Biomacromolecules 11:18331839, 2010. 44)Mima, H., Yamamoto, S., Ito, M., et al. Targeted chemotherapy against intraperitoneally disseminated colon carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol. Cancer Ther. 5:1021-1028, 2006. 33)Kwon, Y. J., Standley, S. M., Goodwin, A. P., Gillies, E. R., Fréchet, J. J. M. Directed antigen presentation using polymeric microparticulate carriers degradable at lysosomal pH for controlled immune responses. Macro. Pharm. 2: 83-91, 2005. 51)Scorsin, M., Menasché, P., et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 119:1169-75, 2000. 14)Kotsuchibashi, Y., Ebara, M., Idota, N., Narain, R., Aoyagi, T. A "smart" approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polym. Chem. 3:1150-1157, 2012. 58)Cho, S. H., White, S. R., Braun P. V. Self-healing polymer coatings. Adv. Mater. 21:645649, 2009. 45)Okada, T., Uto, K., Sasai, M., Lee, C. M., Ebara, M., Aoyagi, T. Nano-decoration of Hemagglutinating Virus of Japan Envelope(HVJ-E)using layer-by-layer assembly technique. Langmuir, in press. 2)Mansouri, S., Fatisson, J., Miao, Z., Merhi, Y., Winnik, F. M., Tabrizian, M. Poly(2-dimethylamino ethylmethacrylate)-based polymers to camouflage red blood cell antigens. Langmuir, 25:1407114078, 2009. 32)Kwon, Y. J., James, E., Shastri, N. & Fréchet, J. J. M. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc. Natl Acad. Sci. USA 102: 1826418268, 2005. 8)Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., Okano, T. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res. 45:355-362, 1999. 56)Berg, J. von, Prokop, S., Miller, K. R. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med. 18:1812-1821, 2012. 55)Bruchard, M., Mignot1, G., Derangère, V. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19:57-64, 2013. 36)Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S., Hoffman, A. S., The design and synthesis of polymers for eukaryotic membrane disruption. J. Controlled Release 61: 137-143, 1999. 42)Kaneda, Y., Yamamoto, S., Nakajima, T. Development of HVJ envelope vector and its application to gene therapy. Adv Genet 53: 307-32, 2005 20)Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol. 25:11591164, 2007. 18)Hubbell, J. A., Thomas, S. N., Swartz, M. A. Materials engineering for immunomodulation. Nature 462:449-460, 2009. 27)Jeong, W, Napier, M. E., Desimone, J. M. Challenging nature's monopoly on the creation of well-defined nanoparticles. Nanomedicine 5: 633-639, 2010. 37)Yin, X., Hoffman, A. S., Stayton, P. S. Poly(N-isopropylacrylamide-co-propylacrylic acid)copolymers that respond sharply to temperature and pH. Biomacromolecules 7: 1381-1385, 2006 4)Matsumura, Y., Maeda, M. A new concept for macromolecular therapeutics in cancer-chemotherapy: mechanisms of tumoritropic accumulation of proteins and the antitumor agent SMANCS, Cancer Res. 46:63876392, 1986. 15)Palanca-Wessels, M. C., Convertine, A. J., Cutler-Strom, R., Booth, G. C., Lee, F., Berguig, G. Y., Stayton, P. S., Press, O. W. Anti-CD22 antibody targeting of pH-responsive micelles enhances small interfering RNA delivery and gene silencing in lymphoma cells. Mol. Ther. 19:1529-1537, 2011. 5)Hossen, M. N., Kajimoto, K., Akita, H., Hyodo, M., Harashima, H. Vascular-targeted nanotherapy for obesity: Unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. J. Control. Release 163:101-110, 2012. 29)Heffernan, M. J., Kasturi, S. P., Yang, S. C., Pulendran, B. & Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30: 910918, 2009. 53)Geng, Y. J. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann. N Y Acad. Sci. 1010:687-697, 2003. 35)Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater. 8:151158, 2009. 59)Huebsch, N., Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462:426-432, 2009. 47)Shan, D., Ledbetter, J. A., Press, O. W. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:16441652, 1998. 7)Miyata, T., Asami, N., Uragami, T. A reversible antigen-responsive hydrogel. Nature 399:766-769, 1999. 52)Sawa, Y., Miyagawa, S., Sakaguchi, T., Fujita, T., Matsuyama, A., Saito, A., Shimizu, T., Okano, T. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 42:181-184, 2012. 26)Champion, J. A., Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103:49304934, 2006. 54)Voll, R. E., Herrmann, M., Roth, E. A. et al. Immunosuppressive effects of apoptotic cells. Nature 390:350 -351, 1997. 30)Napoli, A., Valentini, M., Tirelli, N., Muller, M., Hubbell, J. A. Oxidation-responsive polymeric vesicles. Nature Mater. 3:183189, 2004. 6)Ding, Z., Fong, R. B., Long, C. J., Stayton, P. S., Hoffman A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411: 59-62, 2001. 39)Foster, S., Duvall, C. L., Crownover, E. F., Hoffman, A. S., Stayton, P. S. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjugate Chem. 21:22052212, 2010. 38)Flanary, S., Hoffman, A. S., Stayton, P. S. Antigen delivery with poly(propylacrylic acid)conjugation enhances MHC-1 presentation and T-cell activation. Bioconjugate Chem. 20:241248, 2009. 16)Chen, Y. C., Liao, L. C., Lu, P. L., Lo, C. L., Tsai, H. C., Huang, C. Y., Wei, K. C., Yen, T. C., Hsiue, G. H. The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials 33:4576-4588, 2012. 1)Harris, J. M., Martin, N. E., Modi, M. |
References_xml | – reference: 18)Hubbell, J. A., Thomas, S. N., Swartz, M. A. Materials engineering for immunomodulation. Nature 462:449-460, 2009. – reference: 21)Roy, P., Noad, R. Virus-like particles as a vaccine delivery system: myths and facts. Hum. Vaccin. 4:512, 2008. – reference: 7)Miyata, T., Asami, N., Uragami, T. A reversible antigen-responsive hydrogel. Nature 399:766-769, 1999. – reference: 37)Yin, X., Hoffman, A. S., Stayton, P. S. Poly(N-isopropylacrylamide-co-propylacrylic acid)copolymers that respond sharply to temperature and pH. Biomacromolecules 7: 1381-1385, 2006 – reference: 53)Geng, Y. J. Molecular mechanisms for cardiovascular stem cell apoptosis and growth in the hearts with atherosclerotic coronary disease and ischemic heart failure. Ann. N Y Acad. Sci. 1010:687-697, 2003. – reference: 1)Harris, J. M., Martin, N. E., Modi, M. Pegylation - A novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40:539551, 2001. – reference: 5)Hossen, M. N., Kajimoto, K., Akita, H., Hyodo, M., Harashima, H. Vascular-targeted nanotherapy for obesity: Unexpected passive targeting mechanism to obese fat for the enhancement of active drug delivery. J. Control. Release 163:101-110, 2012. – reference: 38)Flanary, S., Hoffman, A. S., Stayton, P. S. Antigen delivery with poly(propylacrylic acid)conjugation enhances MHC-1 presentation and T-cell activation. Bioconjugate Chem. 20:241248, 2009. – reference: 57)荏原充宏 スマートポリマーを用いた途上国医療への取組み 高分子論文集69:545-554, 2012. – reference: 10)Ebara, M., Hoffman, J. M., Hoffman, A. S., Stayton, P. S. Switchable surface traps for injectable bead-based chromatography in PDMS microfluidic channels. Lab Chip 6:843-848, 2006. – reference: 19)金田安史 体内細胞動員による再生医療 Drug Delivery System 27:246-256, 2012. – reference: 9)Yoshida, R. Self-oscillating gels driven by the Belousov-Zhabotinsky reaction as novel smart materials. Adv. Mater. 22:3463-3483, 2010. – reference: 35)Ali, O. A., Huebsch, N., Cao, L., Dranoff, G. & Mooney, D. J. Infection-mimicking materials to program dendritic cells in situ. Nature Mater. 8:151158, 2009. – reference: 51)Scorsin, M., Menasché, P., et al. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J. Thorac. Cardiovasc. Surg. 119:1169-75, 2000. – reference: 40)Berguig, G. Y., Convertine, A. J., Shi, J. et al. Intracellular delivery and trafficking dynamics of a lymphoma-targeting antibody-polymer conjugate Mol. Pharmaceutics 9:35063514, 2012. – reference: 56)Berg, J. von, Prokop, S., Miller, K. R. Inhibition of IL-12/IL-23 signaling reduces Alzheimer's disease-like pathology and cognitive decline. Nat. Med. 18:1812-1821, 2012. – reference: 11)Kim, Y.-J., Ebara, M., Aoyagi, T. A smart nanofiber web that captures and release cells. Angew. Chem. Intl. Ed. 51:10537-10541, 2012. – reference: 29)Heffernan, M. J., Kasturi, S. P., Yang, S. C., Pulendran, B. & Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30: 910918, 2009. – reference: 44)Mima, H., Yamamoto, S., Ito, M., et al. Targeted chemotherapy against intraperitoneally disseminated colon carcinoma using a cationized gelatin-conjugated HVJ envelope vector. Mol. Cancer Ther. 5:1021-1028, 2006. – reference: 25)Verma, A. et al. Surface-structure-regulated cell-membrane penetration by monolayerprotected nanoparticles. Nature Mater. 7:88595, 2008. – reference: 23)Lai, S. K. et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl Acad. Sci. USA 104:14821487, 2007. – reference: 16)Chen, Y. C., Liao, L. C., Lu, P. L., Lo, C. L., Tsai, H. C., Huang, C. Y., Wei, K. C., Yen, T. C., Hsiue, G. H. The accumulation of dual pH and temperature responsive micelles in tumors. Biomaterials 33:4576-4588, 2012. – reference: 36)Murthy, N., Robichaud, J. R., Tirrell, D. A., Stayton, P. S., Hoffman, A. S., The design and synthesis of polymers for eukaryotic membrane disruption. J. Controlled Release 61: 137-143, 1999. – reference: 27)Jeong, W, Napier, M. E., Desimone, J. M. Challenging nature's monopoly on the creation of well-defined nanoparticles. Nanomedicine 5: 633-639, 2010. – reference: 3)Kataoka, K., Harada, A., Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance, Adv. Drug Deliv. Rev. 47:113131, 2001. – reference: 45)Okada, T., Uto, K., Sasai, M., Lee, C. M., Ebara, M., Aoyagi, T. Nano-decoration of Hemagglutinating Virus of Japan Envelope(HVJ-E)using layer-by-layer assembly technique. Langmuir, in press. – reference: 52)Sawa, Y., Miyagawa, S., Sakaguchi, T., Fujita, T., Matsuyama, A., Saito, A., Shimizu, T., Okano, T. Tissue engineered myoblast sheets improved cardiac function sufficiently to discontinue LVAS in a patient with DCM: report of a case. Surg Today. 42:181-184, 2012. – reference: 50)Wang, C., Stewart, R. J., Kopecek, J. Hybrid hydrogels assembled from synthetic polymers and coiled-coil protein domains, Nature 397: 417420, 1999. – reference: 24)Sharp, F. A. et al. Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc. Natl Acad. Sci. USA 106:870875, 2009. – reference: 14)Kotsuchibashi, Y., Ebara, M., Idota, N., Narain, R., Aoyagi, T. A "smart" approach towards the formation of multifunctional nano-assemblies by simple mixing of block copolymers having a common temperature sensitive segment. Polym. Chem. 3:1150-1157, 2012. – reference: 20)Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nature Biotechnol. 25:11591164, 2007. – reference: 15)Palanca-Wessels, M. C., Convertine, A. J., Cutler-Strom, R., Booth, G. C., Lee, F., Berguig, G. Y., Stayton, P. S., Press, O. W. Anti-CD22 antibody targeting of pH-responsive micelles enhances small interfering RNA delivery and gene silencing in lymphoma cells. Mol. Ther. 19:1529-1537, 2011. – reference: 8)Kushida, A., Yamato, M., Konno, C., Kikuchi, A., Sakurai, Y., Okano, T. Decrease in culture temperature releases monolayer endothelial cell sheets together with deposited fibronectin matrix from temperature-responsive culture surfaces. J. Biomed. Mater. Res. 45:355-362, 1999. – reference: 34)Hori, Y., Winans, A. M. & Irvine, D. J. Modular injectable matrices based on alginate solution/microsphere mixtures that gel in situ and co-deliver immunomodulatory factors. Acta Biomater. 5: 969982, 2009. – reference: 54)Voll, R. E., Herrmann, M., Roth, E. A. et al. Immunosuppressive effects of apoptotic cells. Nature 390:350 -351, 1997. – reference: 46)Decher, G. Fuzzy nanoassemblies:Toward layered polymeric multicomposites. Science 277:1232-1237, 1997. – reference: 55)Bruchard, M., Mignot1, G., Derangère, V. Chemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growth. Nat. Med. 19:57-64, 2013. – reference: 22)Cone, R. A., Barrier properties of mucus. Adv. Drug Deliv. Rev. 61:7585, 2009. – reference: 43)Kurooka, M., Kaneda, Y. Inactivated Sendai virus particles eradicate tumors by inducing immune responses through blocking regulatory T cells. Cancer Res. 67: 227-36, 2007. – reference: 48)Wu, K., Liu, J., Johnson, R.N., Yang, J., Kopecek, J. Drug-free macromolecular therapeutics: Induction of apoptosis by coiled-coil-mediated cross-linking of antigens on the cell surface, Angew. Chem. Int. Ed. 49: 14511455, 2010. – reference: 6)Ding, Z., Fong, R. B., Long, C. J., Stayton, P. S., Hoffman A. S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature 411: 59-62, 2001. – reference: 39)Foster, S., Duvall, C. L., Crownover, E. F., Hoffman, A. S., Stayton, P. S. Intracellular delivery of a protein antigen with an endosomal-releasing polymer enhances CD8 T-cell production and prophylactic vaccine efficacy. Bioconjugate Chem. 21:22052212, 2010. – reference: 47)Shan, D., Ledbetter, J. A., Press, O. W. Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:16441652, 1998. – reference: 13)Nakayama, M., Okano, T., Miyazaki, T., Kohori, F., Sakai, K., Yokoyama, M. Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. J. Control. Release 115:46-56, 2006. – reference: 32)Kwon, Y. J., James, E., Shastri, N. & Fréchet, J. J. M. In vivo targeting of dendritic cells for activation of cellular immunity using vaccine carriers based on pH-responsive microparticles. Proc. Natl Acad. Sci. USA 102: 1826418268, 2005. – reference: 12)Ebara, M., Uto, K., Idota, N., Hoffman, J. M., Aoyagi, T. Shape-memory surface with dynamically tunable nano-geometry activated by body heat. Adv. Mater. 24:273-278, 2012. – reference: 31)Manickam, D. S., Oupický, D. Multiblock reducible copolypeptides containing histidinerich and nuclear localization sequences for gene delivery. Bioconjug. Chem. 17:13951403, 2006. – reference: 17)Matsumoto, A., Ishii, T., Nishida, J., Matsumoto, H., Kataoka, K., Miyahara, Y. A synthetic approach toward a self-regulated insulin delivery system. Angew. Chem. Intl. Ed. 51: 2124-2128, 2012. – reference: 41)Garbern, J. C., Hoffman, A. S., Stayton, P. S. Injectable pH- and temperature-responsive poly(N-isopropylacrylamide-co-propylacrylic acid)copolymers for delivery of angiogenic growth factors. Biomacromolecules 11:18331839, 2010. – reference: 2)Mansouri, S., Fatisson, J., Miao, Z., Merhi, Y., Winnik, F. M., Tabrizian, M. Poly(2-dimethylamino ethylmethacrylate)-based polymers to camouflage red blood cell antigens. Langmuir, 25:1407114078, 2009. – reference: 28)Cohen, J. A. et al. T-cell activation by antigen-loaded pH-sensitive hydrogel particles in vivo: the effect of particle size. Bioconjug. Chem. 20:111119, 2009. – reference: 30)Napoli, A., Valentini, M., Tirelli, N., Muller, M., Hubbell, J. A. Oxidation-responsive polymeric vesicles. Nature Mater. 3:183189, 2004. – reference: 58)Cho, S. H., White, S. R., Braun P. V. Self-healing polymer coatings. Adv. Mater. 21:645649, 2009. – reference: 33)Kwon, Y. J., Standley, S. M., Goodwin, A. P., Gillies, E. R., Fréchet, J. J. M. Directed antigen presentation using polymeric microparticulate carriers degradable at lysosomal pH for controlled immune responses. Macro. Pharm. 2: 83-91, 2005. – reference: 42)Kaneda, Y., Yamamoto, S., Nakajima, T. Development of HVJ envelope vector and its application to gene therapy. Adv Genet 53: 307-32, 2005; – reference: 26)Champion, J. A., Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl Acad. Sci. USA 103:49304934, 2006. – reference: 59)Huebsch, N., Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462:426-432, 2009. – reference: 4)Matsumura, Y., Maeda, M. A new concept for macromolecular therapeutics in cancer-chemotherapy: mechanisms of tumoritropic accumulation of proteins and the antitumor agent SMANCS, Cancer Res. 46:63876392, 1986. – reference: 49)Wu, K., Yang, J., Liu, J., Kopecek, J. Coiled-coil based drug-free macromolecular therapeutics: In vivo efficacy, J. Control. Rel. 157: 126131, 2012. |
SSID | ssj0048811 ssib058492641 ssib007483962 ssib001535732 ssib002484529 |
Score | 1.9064655 |
Snippet | ... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 135 |
SubjectTerms | Antigen-presenting cells Immunoengineering Materials therapy Phosphatidylserine Smart polymers |
Title | 免疫反応を制御可能な未来型バイオマテリアルの設計―Immunobioengineering |
URI | https://www.jstage.jst.go.jp/article/dds/28/2/28_135/_article/-char/ja |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Drug Delivery System, 2013/03/25, Vol.28(2), pp.135-148 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-1XryIn_jNHpyemjWZfMzMRUg2WaqiVNxCbyHJpMIiVfpxqCe7i1KQUhH0VAuKQtmi3ryp_4shtX-GbyaT3bT0UAthmMy8ycy8N5l58_F-o2k3iZPEJodpCWZmqouNOJ2lc4ZOOEmgN4TOUhrS3n_gTs3Yd2ed2bETt2unlpaXkmb6_FC7kuNIFcJArsJK9j8kO_woBIAf5AsuSBjcI8kYhQ6i8AQoJIi5yPNlSFuGOMhvI9ZCoYUoRgzLKIp8V0aFyDMVsddGIUXUQn4giU3keSh0RVrlCZDnCGIWIupLGgsxQ33ZsyuPV0WFykNd5VFRQIOrEL_KKxS5e_AEygOFVCcwnDvCekUARWUj2MS6Oh0sLD-GLvOJOFyyotDXqyYkKxWICopqhoi1RXOqWCbrA3nT9oieCQ6IClLEiKjXQXq_hcrLrKt1ktLAVbZpySgiGVWyrhUEj2QmwD3ggy1Te_WlUdPSHcNQEN3lwECpKcyY9o0cmNb-EFwbBswSgkVpFGaJJXpwsMLEFrgenC82MW0Ok-wD_1ZNKwKiCNMICwcooypcmOZFXZgfnMSEmOJI672H9V1QyyF1eDqbin324TuxQT0ewUXCj8pAPx4ekYK-Xd5fPeRHCe8ryn1rVGpQ3bowkakOQUq9rHNGO60mVA2vLOpZbawbn9MmpktE9pXJRmdkYLg42ZhoTI-w2lfOa1Hxcv3v-51iY734vZn33hZrP4pfH4uN73v9n_nqYHdzsPvhS7H1Ou-_yXuf894g72_l_Vd5f5D3PuX9nXz12972173ttT8v3h3WWC9oM-2w05rS1Z0jehcTbOtx7JKEu9h2uWnjjLI0gwk1t2nipjbFlhVnccZTnDmpxd2MccZpasQmDHxZNge69kVtfP7pfHZJaxAjjS3KkyRmoEPzDIbzmBlx7IhVAJaSy5pbMi56VgLLREeU9pXjJryqncLyNhexgnhNG19aWM6ug069lNyQDecfeHi5hA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%85%8D%E7%96%AB%E5%8F%8D%E5%BF%9C%E3%82%92%E5%88%B6%E5%BE%A1%E5%8F%AF%E8%83%BD%E3%81%AA%E6%9C%AA%E6%9D%A5%E5%9E%8B%E3%83%90%E3%82%A4%E3%82%AA%E3%83%9E%E3%83%86%E3%83%AA%E3%82%A2%E3%83%AB%E3%81%AE%E8%A8%AD%E8%A8%88%E2%80%95Immunobioengineering&rft.jtitle=Drug+Delivery+System&rft.au=%E8%8D%8F%E5%8E%9F%2C+%E5%85%85%E5%AE%8F&rft.au=%E9%BD%8B%E8%97%A4%2C+%E5%85%85%E5%BC%98&rft.date=2013&rft.pub=%E6%97%A5%E6%9C%ACDDS%E5%AD%A6%E4%BC%9A&rft.issn=0913-5006&rft.eissn=1881-2732&rft.volume=28&rft.issue=2&rft.spage=135&rft.epage=148&rft_id=info:doi/10.2745%2Fdds.28.135&rft.externalDocID=article_dds_28_2_28_135_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0913-5006&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0913-5006&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0913-5006&client=summon |