はたして細胞や臓器や人体の若返りは可能か
世界は前例のない高齢化社会に入りつつある.DNAメチル化の程度に基づく生物学的年齢を活用することで,個人の生物学的年齢を定量化することができる.カロリー制限(CR),適度な運動,質の良い睡眠は生物学的年齢の加齢プロセスを減速させる.CRの効果はSIR2/SIRT1,mTORの阻害,AMPKなどの作用による.飢餓や疾病に対する生物の防御メカニズムを活性化することで,Hormesisに従った生活習慣の改善によって健康な長寿を目指すことが可能である....
Saved in:
Published in | Organ Biology Vol. 30; no. 2; pp. 112 - 120 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 日本臓器保存生物医学会
2023
日本臓器保存生物医学会 |
Subjects | |
Online Access | Get full text |
ISSN | 1340-5152 2188-0204 |
DOI | 10.11378/organbio.30.112 |
Cover
Abstract | 世界は前例のない高齢化社会に入りつつある.DNAメチル化の程度に基づく生物学的年齢を活用することで,個人の生物学的年齢を定量化することができる.カロリー制限(CR),適度な運動,質の良い睡眠は生物学的年齢の加齢プロセスを減速させる.CRの効果はSIR2/SIRT1,mTORの阻害,AMPKなどの作用による.飢餓や疾病に対する生物の防御メカニズムを活性化することで,Hormesisに従った生活習慣の改善によって健康な長寿を目指すことが可能である. |
---|---|
AbstractList | [要旨] 世界は前例のない高齢化社会に入りつつある. DNAメチル化の程度に基づく生物学的年齢を活用することで, 個人の生物学的年齢を定量化することができる. カロリー制限(CR), 適度な運動, 質の良い睡眠は生物学的年齢の加齢プロセスを減速させる. CRの効果はSIR2/SIRT1, mTORの阻害, AMPKなどの作用による. 飢餓や疾病に対する生物の防御メカニズムを活性化することで, Hormesisに従った生活習慣の改善によって健康な長寿を目指すことが可能である. 世界は前例のない高齢化社会に入りつつある.DNAメチル化の程度に基づく生物学的年齢を活用することで,個人の生物学的年齢を定量化することができる.カロリー制限(CR),適度な運動,質の良い睡眠は生物学的年齢の加齢プロセスを減速させる.CRの効果はSIR2/SIRT1,mTORの阻害,AMPKなどの作用による.飢餓や疾病に対する生物の防御メカニズムを活性化することで,Hormesisに従った生活習慣の改善によって健康な長寿を目指すことが可能である. |
Author | 岩藤, 和広 |
Author_xml | – sequence: 1 fullname: 岩藤, 和広 organization: 東京ネクスト南砂内科透析クリニック |
BookMark | eNo1UD1LA0EUXCSCSbT3T1zcfbt72YCNBo1CwEbrZe8j8Y7LnVxiYXmJIJjCIoLYaKVYGQurQPDHbIL3M9xT08w85j1meFNBpTiJfYS2Ca4RQutiJ0m7KnaCpEYLBdZQGYgQFgbMSqhMKMMWJxw2UKXfDzHmgpFGGe3qbKqzZ5096Oz1-_MjHz3p4XV-M1k-vplhMZst5hOdvefjl_zrXg9vzf3ybpqP5jobb6L1jor6_tY_V9HZ4cFp88hqn7SOm3ttK4Q65pbPgFLFqBImlNkeNBwiACh3GVOeYzMbmC3AYUZnhCgPM8etsw4Bp-ERh9Mqav359nwvcFWUxFEQ-zJMLtPY5EpX0d_vJWCgEmOKMRgSEpsiDJgKgFPKC6f9P6ewP1BdX16kQU-lV1Klg8CNfLkqUVIsoYDCYLV0z1UqQ0V_ABWagUk |
ContentType | Journal Article |
Copyright | 2023 日本臓器保存生物医学会 |
Copyright_xml | – notice: 2023 日本臓器保存生物医学会 |
CorporateAuthor | 国際医療福祉大学 三田病院 移植外科 東京ネクスト南砂内科透析クリニック |
CorporateAuthor_xml | – name: 東京ネクスト南砂内科透析クリニック – name: 国際医療福祉大学 三田病院 移植外科 |
DOI | 10.11378/organbio.30.112 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2188-0204 |
EndPage | 120 |
ExternalDocumentID | ca3organ_2023_003002_008_0112_01204253355 article_organbio_30_2_30_112_article_char_ja |
GroupedDBID | ABDBF ABJNI ALMA_UNASSIGNED_HOLDINGS JMI JSF JSH KQ8 MOJWN RJT RZJ |
ID | FETCH-LOGICAL-j2705-e4233a43a858446d29b182235c44adb64624682b49b1411ad04bc74f12b9d1b53 |
ISSN | 1340-5152 |
IngestDate | Thu Jul 10 16:14:56 EDT 2025 Wed Sep 03 06:31:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2705-e4233a43a858446d29b182235c44adb64624682b49b1411ad04bc74f12b9d1b53 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/organbio/30/2/30_112/_article/-char/ja |
PageCount | 9 |
ParticipantIDs | medicalonline_journals_ca3organ_2023_003002_008_0112_01204253355 jstage_primary_article_organbio_30_2_30_112_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2023 20230000 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Organ Biology |
PublicationTitleAlternate | Organ Biology |
PublicationYear | 2023 |
Publisher | 一般社団法人 日本臓器保存生物医学会 日本臓器保存生物医学会 |
Publisher_xml | – name: 一般社団法人 日本臓器保存生物医学会 – name: 日本臓器保存生物医学会 |
References | 26) Wu JJ, Liu J, Chen EB, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep 2013;4(5):913-920 33) Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191-196. 16) Martinez-Gonzalez MA, Martin-Calvo N. Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Curr Opin Clin Nutr Metab Care. 2016;19(6):401-407 20) Gao X, Huang N, Guo X, Huang T. Role of sleep quality in the acceleration of biological aging and its potential for preventive interaction on air pollution insults: Findings from the UK Biobank cohort. Aging Cell 2022;21(5):e13610 5) Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115 3) Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985;43(2Pt1):405-413 10) Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461-464 18) Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. J Aging Res 2012;2012:243958 25) Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003;426(6967):620 28) Stenesen D, Suh JM, Seo J, et al. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 2013;17(1):101-112. 19) Ho E, Qualls C, Villareal DT. Effect of Diet, Exercise, or Both on Biological Age and Healthy Aging in Older Adults with Obesity: Secondary Analysis of a Randomized Controlled Trial. J Nutr Health Aging 2022;26(6):552-557 9) Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell. 2022:e13664 6) Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49(2):359-367 24) Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289(5487):2126-2128 7) Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303-327 32) Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol 2004;53(4):1003-1009 22) レオナルド・ガレンテ,白澤卓二.「長寿遺伝子」を解き明かす.NHK出版 2007, ISBN 978-4-14-081223-5 14) Fitzgerald KN, Hodges R, Hanes D, et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY) 2021;13(7):9419-9432 12) Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the Rate of Biological Aging in Response to Caloric Restriction: CALERIE Biobank Analysis. J Gerontol A Biol Sci Med Sci 2017;73(1):4-10 13) Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mechanisms of ageing and development. 2006;127(3):240-248 31) Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588(7836):124-129 21) Polsky LR, Rentscher KE, Carroll JE. Stress-induced biological aging: A review and guide for research priorities. Brain Behav Immun 2022;104:97-109 4) Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. Plos One. 2011;6(6):e14821 30) Mkrtchyan GV, Abdelmohsen K, Andreux P, et al. ARDD 2020: from aging mechanisms to interventions. Aging (Albany NY). 2020;12(24):24484-24503 15) 尚 弘子(監修).健康と長寿の島々・沖縄—沖縄の健康食品の素材と薬効を探る.アド・ステイション 2001, ISBN 4877110496 29) Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res Rev. 2017;40:31-44 1) Matsuno Y, Atsumi Y, Shimizu A, et al. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nature communications. 2019;10(1):3925 34) Sinclair DA, Guarente L. Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 2014;54:363-380 11) Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009;325(5937):201-204 23) Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13(19):2570-2580 2) Hayflick L, Perkins F, Stevenson RE. Human Diploid Cell Strains. Science. 1964;143(3609):976 27) Nakamura S, Oba M, Suzuki M, et al. Suppression of autophagic activity by Rubicon is a signature of aging. Nature communications. 2019;10(1):847. 8) Galkin F, Mamoshina P, Aliper A, et al. Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience 2020;23(6):101199 17) Harmon BE, Boushey CJ, Shvetsov YB, Ettienne R, Reedy J, Wilkens LR, Le Marchand L, Henderson BE, Kolonel LN. Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: the Dietary Patterns Methods Project. Am J Clin Nutr 2015;101(3):587-597 |
References_xml | – reference: 28) Stenesen D, Suh JM, Seo J, et al. Adenosine nucleotide biosynthesis and AMPK regulate adult life span and mediate the longevity benefit of caloric restriction in flies. Cell Metab. 2013;17(1):101-112. – reference: 11) Colman RJ, Anderson RM, Johnson SC, et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009;325(5937):201-204 – reference: 19) Ho E, Qualls C, Villareal DT. Effect of Diet, Exercise, or Both on Biological Age and Healthy Aging in Older Adults with Obesity: Secondary Analysis of a Randomized Controlled Trial. J Nutr Health Aging 2022;26(6):552-557 – reference: 4) Bocklandt S, Lin W, Sehl ME, et al. Epigenetic predictor of age. Plos One. 2011;6(6):e14821 – reference: 7) Lu AT, Quach A, Wilson JG, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY). 2019;11(2):303-327 – reference: 12) Belsky DW, Huffman KM, Pieper CF, Shalev I, Kraus WE. Change in the Rate of Biological Aging in Response to Caloric Restriction: CALERIE Biobank Analysis. J Gerontol A Biol Sci Med Sci 2017;73(1):4-10 – reference: 24) Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 2000;289(5487):2126-2128 – reference: 29) Campbell JM, Bellman SM, Stephenson MD, Lisy K. Metformin reduces all-cause mortality and diseases of ageing independent of its effect on diabetes control: A systematic review and meta-analysis. Ageing Res Rev. 2017;40:31-44 – reference: 17) Harmon BE, Boushey CJ, Shvetsov YB, Ettienne R, Reedy J, Wilkens LR, Le Marchand L, Henderson BE, Kolonel LN. Associations of key diet-quality indexes with mortality in the Multiethnic Cohort: the Dietary Patterns Methods Project. Am J Clin Nutr 2015;101(3):587-597 – reference: 16) Martinez-Gonzalez MA, Martin-Calvo N. Mediterranean diet and life expectancy; beyond olive oil, fruits, and vegetables. Curr Opin Clin Nutr Metab Care. 2016;19(6):401-407 – reference: 31) Lu Y, Brommer B, Tian X, et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 2020;588(7836):124-129 – reference: 13) Klemera P, Doubal S. A new approach to the concept and computation of biological age. Mechanisms of ageing and development. 2006;127(3):240-248 – reference: 9) Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell. 2022:e13664 – reference: 15) 尚 弘子(監修).健康と長寿の島々・沖縄—沖縄の健康食品の素材と薬効を探る.アド・ステイション 2001, ISBN 4877110496 – reference: 30) Mkrtchyan GV, Abdelmohsen K, Andreux P, et al. ARDD 2020: from aging mechanisms to interventions. Aging (Albany NY). 2020;12(24):24484-24503 – reference: 3) Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell 1985;43(2Pt1):405-413 – reference: 14) Fitzgerald KN, Hodges R, Hanes D, et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: a pilot randomized clinical trial. Aging (Albany NY) 2021;13(7):9419-9432 – reference: 34) Sinclair DA, Guarente L. Small-molecule allosteric activators of sirtuins. Annu Rev Pharmacol Toxicol 2014;54:363-380 – reference: 23) Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 1999;13(19):2570-2580 – reference: 27) Nakamura S, Oba M, Suzuki M, et al. Suppression of autophagic activity by Rubicon is a signature of aging. Nature communications. 2019;10(1):847. – reference: 32) Lamming DW, Wood JG, Sinclair DA. Small molecules that regulate lifespan: evidence for xenohormesis. Mol Microbiol 2004;53(4):1003-1009 – reference: 2) Hayflick L, Perkins F, Stevenson RE. Human Diploid Cell Strains. Science. 1964;143(3609):976 – reference: 5) Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115 – reference: 10) Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461-464 – reference: 6) Hannum G, Guinney J, Zhao L, et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol Cell 2013;49(2):359-367 – reference: 22) レオナルド・ガレンテ,白澤卓二.「長寿遺伝子」を解き明かす.NHK出版 2007, ISBN 978-4-14-081223-5 – reference: 33) Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature 2003;425(6954):191-196. – reference: 18) Reimers CD, Knapp G, Reimers AK. Does physical activity increase life expectancy? A review of the literature. J Aging Res 2012;2012:243958 – reference: 1) Matsuno Y, Atsumi Y, Shimizu A, et al. Replication stress triggers microsatellite destabilization and hypermutation leading to clonal expansion in vitro. Nature communications. 2019;10(1):3925 – reference: 25) Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F. Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 2003;426(6967):620 – reference: 26) Wu JJ, Liu J, Chen EB, et al. Increased mammalian lifespan and a segmental and tissue-specific slowing of aging after genetic reduction of mTOR expression. Cell Rep 2013;4(5):913-920 – reference: 8) Galkin F, Mamoshina P, Aliper A, et al. Human Gut Microbiome Aging Clock Based on Taxonomic Profiling and Deep Learning. iScience 2020;23(6):101199 – reference: 20) Gao X, Huang N, Guo X, Huang T. Role of sleep quality in the acceleration of biological aging and its potential for preventive interaction on air pollution insults: Findings from the UK Biobank cohort. Aging Cell 2022;21(5):e13610 – reference: 21) Polsky LR, Rentscher KE, Carroll JE. Stress-induced biological aging: A review and guide for research priorities. Brain Behav Immun 2022;104:97-109 |
SSID | ssj0058419 |
Score | 1.8991232 |
Snippet | ... [要旨] 世界は前例のない高齢化社会に入りつつある. DNAメチル化の程度に基づく生物学的年齢を活用することで, 個人の生物学的年齢を定量化することができる. カロリー制限(CR), 適度な運動, 質の良い睡眠は生物学的年齢の加齢プロセスを減速させる. CRの効果はSIR2/SIRT1, mTORの阻害,... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 112 |
SubjectTerms | オートファジー カロリー制限 加齢 寿命 生物学的年齢 |
Title | はたして細胞や臓器や人体の若返りは可能か |
URI | https://www.jstage.jst.go.jp/article/organbio/30/2/30_112/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=ca3organ/2023/003002/008&name=0112-0120j |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Organ Biology, 2023, Vol.30(2), pp.112-120 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9VAMNR6EUQUFesXPbjH1CS7SXbRg8lrHsUvEFroLSSb96AP2oq-XrylFQR78FBBvOhJ8WQ9eCoUf0xafD_DmdkkRu3BKjzCsLszOx_7MrPZnV3LuiFcrQsRaFsJGdhCe64th8PQzguttJCFq2kz5oOHwcKSuLvsL0-duN_ZtbQxzuf0syPzSv7FqlAGdsUs2WNYtiUKBQCDfeEJFobnX9mYJRwiQRb1a0C1QNhUBSwJWSxY7LBEMsmZSqjKY1JQScgUZ4nPlGKR7FQBSoQ_BOapjSGYEFbMIh-BuM-UaLCiDj8-k30CqFOgYKpk3I2GKRG0vg6z_bSPuLHHIoW4IEgkcBgQi9BHj6ojZu6lab5XmGRiGlvEsMQNHNi1ZFEPNQBE4oRoAOcgS8BiUIXfEZMjCmIF1KlPQI_Q_9SSIMHnsSQC5UjsAvSA-g-ZVMS8j8zGcd0GDQFYPaaijh_gwrEh1DOOYkBlEAxJG3OJu86jXlRa6czhjSdw693hJqhwKePvCH_FQ0zCoBu88pX1OU45XT99c7tjsh5jadMy5U7q4QOap00lJuqlI5gtnPTC0MUNrvcetWtqEGnSNTetaM2iPbBw8zcGIBwbweQET504vWoWDM3BLZ3Ya_GsdaaeNM1GhoFz1tQoO2_drsrdqnxflW-q8uP3r18mW--qzeeTFzuHbz8BcLC3d7C_U5WfJ9sfJt9eV5svof3hq93J1n5Vbl-wlvrJYm_Bru8CsUde6Pj2AMJ-ngmeSZBDBIWncpgZe9zXQmRFHojAE4H0cgHlwnWzwhG5DsXQ9XJVuLnPL1rTa-trg0vWbKEc7QzFUOdDX0BslrkDpfJCZqAYqTJnxrplhE8fmwNf0uMof8a684vG0vp98TTVGScCKf4r8ExeCEZSugQWyWASO_hPDvH_5f9i4Ip1CjswnwmvWtPjJxuDaxA4j_PrNB5-AI49p3Q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%81%AF%E3%81%9F%E3%81%97%E3%81%A6%E7%B4%B0%E8%83%9E%E3%82%84%E8%87%93%E5%99%A8%E3%82%84%E4%BA%BA%E4%BD%93%E3%81%AE%E8%8B%A5%E8%BF%94%E3%82%8A%E3%81%AF%E5%8F%AF%E8%83%BD%E3%81%8B&rft.jtitle=Organ+Biology&rft.au=%E5%B2%A9%E8%97%A4%2C+%E5%92%8C%E5%BA%83&rft.date=2023&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA%E3%80%80%E6%97%A5%E6%9C%AC%E8%87%93%E5%99%A8%E4%BF%9D%E5%AD%98%E7%94%9F%E7%89%A9%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=1340-5152&rft.eissn=2188-0204&rft.volume=30&rft.issue=2&rft.spage=112&rft.epage=120&rft_id=info:doi/10.11378%2Forganbio.30.112&rft.externalDocID=article_organbio_30_2_30_112_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-5152&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-5152&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-5152&client=summon |