Subtle Expression Recognition Using Optical Strain Weighted Features
Optical strain characterizes the relative amount of displacement by a moving object within a time interval. Its ability to compute any small muscular movements on faces can be advantageous to subtle expression research. This paper proposes a novel optical strain weighted feature extraction scheme fo...
Saved in:
Published in | Computer Vision - ACCV 2014 Workshops pp. 644 - 657 |
---|---|
Main Authors | , , , , , |
Format | Book Chapter |
Language | English |
Published |
Cham
Springer International Publishing
2015
|
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Optical strain characterizes the relative amount of displacement by a moving object within a time interval. Its ability to compute any small muscular movements on faces can be advantageous to subtle expression research. This paper proposes a novel optical strain weighted feature extraction scheme for subtle facial micro-expression recognition. Motion information is derived from optical strain magnitudes, which is then pooled spatio-temporally to obtain block-wise weights for the spatial image plane. By simple product with the weights, the resulting feature histograms are intuitively scaled to accommodate the importance of block regions. Experiments conducted on two recent spontaneous micro-expression databases–CASMEII and SMIC, demonstrated promising improvement over the baseline results. |
---|---|
Bibliography: | Work done in project UbeAware funded by TM. |
ISBN: | 9783319166308 3319166301 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-16631-5_47 |