Deeply Learning Deformable Facial Action Parts Model for Dynamic Expression Analysis

Expressions are facial activities invoked by sets of muscle motions, which would give rise to large variations in appearance mainly around facial parts. Therefore, for visual-based expression analysis, localizing the action parts and encoding them effectively become two essential but challenging pro...

Full description

Saved in:
Bibliographic Details
Published inComputer Vision -- ACCV 2014 pp. 143 - 157
Main Authors Liu, Mengyi, Li, Shaoxin, Shan, Shiguang, Wang, Ruiping, Chen, Xilin
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2015
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN3319168169
9783319168166
ISSN0302-9743
1611-3349
DOI10.1007/978-3-319-16817-3_10

Cover

Loading…
Abstract Expressions are facial activities invoked by sets of muscle motions, which would give rise to large variations in appearance mainly around facial parts. Therefore, for visual-based expression analysis, localizing the action parts and encoding them effectively become two essential but challenging problems. To take them into account jointly for expression analysis, in this paper, we propose to adapt 3D Convolutional Neural Networks (3D CNN) with deformable action parts constraints. Specifically, we incorporate a deformable parts learning component into the 3D CNN framework, which can detect specific facial action parts under the structured spatial constraints, and obtain the discriminative part-based representation simultaneously. The proposed method is evaluated on two posed expression datasets, CK+, MMI, and a spontaneous dataset FERA. We show that, besides achieving state-of-the-art expression recognition accuracy, our method also enjoys the intuitive appeal that the part detection map can desirably encode the mid-level semantics of different facial action parts.
AbstractList Expressions are facial activities invoked by sets of muscle motions, which would give rise to large variations in appearance mainly around facial parts. Therefore, for visual-based expression analysis, localizing the action parts and encoding them effectively become two essential but challenging problems. To take them into account jointly for expression analysis, in this paper, we propose to adapt 3D Convolutional Neural Networks (3D CNN) with deformable action parts constraints. Specifically, we incorporate a deformable parts learning component into the 3D CNN framework, which can detect specific facial action parts under the structured spatial constraints, and obtain the discriminative part-based representation simultaneously. The proposed method is evaluated on two posed expression datasets, CK+, MMI, and a spontaneous dataset FERA. We show that, besides achieving state-of-the-art expression recognition accuracy, our method also enjoys the intuitive appeal that the part detection map can desirably encode the mid-level semantics of different facial action parts.
Author Wang, Ruiping
Liu, Mengyi
Shan, Shiguang
Li, Shaoxin
Chen, Xilin
Author_xml – sequence: 1
  givenname: Mengyi
  surname: Liu
  fullname: Liu, Mengyi
– sequence: 2
  givenname: Shaoxin
  surname: Li
  fullname: Li, Shaoxin
– sequence: 3
  givenname: Shiguang
  surname: Shan
  fullname: Shan, Shiguang
  email: sgshan@ict.ac.cn
– sequence: 4
  givenname: Ruiping
  surname: Wang
  fullname: Wang, Ruiping
– sequence: 5
  givenname: Xilin
  surname: Chen
  fullname: Chen, Xilin
BookMark eNo1kMFOAjEURatiIiB_4KI_UO2bN23pkoCoCUYXuG465Y0ZHDpkykL-3oK6esl5Nzc3Z8QGsYvE2B3Ie5DSPFgzFSgQrAA9BSPQgbxgk4wxwzPDSzYEDSAQS3vFRv8PbQdsKFEWwpoSb9gkpa2UEpSEUqohWy-I9u2Rr8j3sYmffEF11-981RJf-tD4ls_Coekif_f9IfHXbkMtzxG-OEa_awJ__N73lNIpMou-PaYm3bLr2reJJn93zD6Wj-v5s1i9Pb3MZyuxLXR5EGrjsbZ1HhwIwVSBNJlKmxpsoTZ1aRTaoqyMUsYGQ14pggqU9aUudIAKx6z47U37Pm-n3lVd95WyHXfy5rIghy6bcGdH7uQNfwDrOl1g
ContentType Book Chapter
Copyright Springer International Publishing Switzerland 2015
Copyright_xml – notice: Springer International Publishing Switzerland 2015
DOI 10.1007/978-3-319-16817-3_10
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISBN 9783319168173
3319168177
EISSN 1611-3349
Editor Saito, Hideo
Yang, Ming-Hsuan
Cremers, Daniel
Reid, Ian
Editor_xml – sequence: 1
  givenname: Daniel
  surname: Cremers
  fullname: Cremers, Daniel
  email: cremers@tum.de
– sequence: 2
  givenname: Ian
  surname: Reid
  fullname: Reid, Ian
  email: ian.reid@adelaide.edu.au
– sequence: 3
  givenname: Hideo
  surname: Saito
  fullname: Saito, Hideo
  email: saito@hvrl.ics.keio.ac.jp
– sequence: 4
  givenname: Ming-Hsuan
  surname: Yang
  fullname: Yang, Ming-Hsuan
  email: mhyang@ucmerced.edu
EndPage 157
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
ID FETCH-LOGICAL-j264t-5da3f9f349ce317bce6e7b67f1925df4753924b75579c7ea55e1b159a4626c1b3
ISBN 3319168169
9783319168166
ISSN 0302-9743
IngestDate Tue Jul 29 20:33:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j264t-5da3f9f349ce317bce6e7b67f1925df4753924b75579c7ea55e1b159a4626c1b3
PageCount 15
ParticipantIDs springer_books_10_1007_978_3_319_16817_3_10
PublicationCentury 2000
PublicationDate 2015
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationSeriesSubtitle Image Processing, Computer Vision, Pattern Recognition, and Graphics
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th Asian Conference on Computer Vision, Singapore, Singapore, November 1-5, 2014, Revised Selected Papers, Part IV
PublicationTitle Computer Vision -- ACCV 2014
PublicationYear 2015
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Weikum, Gerhard
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
– sequence: 12
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
SSID ssj0001501405
ssj0002792
Score 2.4701564
Snippet Expressions are facial activities invoked by sets of muscle motions, which would give rise to large variations in appearance mainly around facial parts....
SourceID springer
SourceType Publisher
StartPage 143
SubjectTerms Action Part
Convolutional Neural Network
Expression Recognition
Facial Part
Part Model
Title Deeply Learning Deformable Facial Action Parts Model for Dynamic Expression Analysis
URI http://link.springer.com/10.1007/978-3-319-16817-3_10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF6l4VL1QKGtChS0h94sVxh77fjAIQpBCKWoqkLEzdq1d0OqykHElgj_o_-3M_uwTeACFyterWJ75tvZeezMEPJdMZ6LsAhgfcNyi6Qa-JzDRRZBkQciOlG6fPHPq_jiOrq8YTe93r_OqaW6Ej_yxxfzSt7CVRgDvmKW7Cs42_wpDMBv4C9cgcNw3VB-n7pZTV0B24_Bm-n0cM_3veFoNPNgr20SWiaLWns8ZTlfL9pB7fK85cuHRQMNuDWe0NvFvOZ2O9OOdiMMftfY5HreRdiZlHd_165C6xxEl1aAMRXrnGtP_ND0If_FMSqBXdd0sqR3ti45HskfP9hTuGVTG8UIOSy-vDqd2PDG1bLSp8a85outQOp6LAK24bFwHssNn2frdnti4oYgI4IYo5sdyRgCrsAQMpJRGskdYz3G0NQ_tdI4cDPMnamE_WzP6B4TwZQufBoI3gwT994lA9YnW8Px5WTWuu4wFnvcWllYg9EEq8xbYQqRe-vUFHlqv6KTvvnSI58F5LWeM_1IPmDuC8WkFCDaDunJcpdsW0uFWrKvYMixwo19IlMDB-rgQFs4UAMHauBANRyohgOFKdTCgbZwoA4On8n1-Xg6uvBtyw7_D2jWlc8KHqpUARtyCZqpyGUsExEnCgwJVqgIjGMw-EXCWJLmieSMyUCARs0jMKxBNoRfSL9clvIroVweD8DWFemJErqEUjwIRZDmhcB-W7HaI56jVIaLcJW5CtxA1yzMgK6ZpmuGdN1_1ewD8r4F7jfSr-5reQjKZyWOLBj-AyIpevw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Computer+Vision+--+ACCV+2014&rft.au=Liu%2C+Mengyi&rft.au=Li%2C+Shaoxin&rft.au=Shan%2C+Shiguang&rft.au=Wang%2C+Ruiping&rft.atitle=Deeply+Learning+Deformable+Facial+Action+Parts+Model+for+Dynamic+Expression+Analysis&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2015-01-01&rft.pub=Springer+International+Publishing&rft.isbn=9783319168166&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=143&rft.epage=157&rft_id=info:doi/10.1007%2F978-3-319-16817-3_10
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon