ビタミンD受容体とキラリティが異なるリガンド間の特異的相互作用: ab initioフラグメント分子軌道計算

ビタミンD受容体(VDR)とキラリティーが異なる2種類のリガンド間の結合親和性が実験により解析され、リガンドのキラリティーの違いにより、VDRへの結合親和性が大きく変化することが見出された。この原因を明らかにするため、VDRと2種類のリガンド間の特異的相互作用を、ab initio フラグメント分子軌道(FMO)計算を用いて調べた。 その結果、リガンド中でキラリティーが異なる部位が、VDRのヒスチジン残基側鎖のイミダゾール環と強く相互作用し、VDRとリガンド間の結合特性性がヒスチジンのプロトン化状態に依存することが明らかになった。...

Full description

Saved in:
Bibliographic Details
Published inChem-Bio Informatics Journal Vol. 18; pp. 32 - 43
Main Authors 栗田, 典之, 小林, 一徹, 上村, みどり, 鈴木, 理恵, 橘高, 敦史, 武田, 涼介, 河合, 健太郎
Format Journal Article
LanguageEnglish
Published 情報計算化学生物学会(CBI学会) 2018
Subjects
Online AccessGet full text
ISSN1347-6297
1347-0442
DOI10.1273/cbij.18.32

Cover

Abstract ビタミンD受容体(VDR)とキラリティーが異なる2種類のリガンド間の結合親和性が実験により解析され、リガンドのキラリティーの違いにより、VDRへの結合親和性が大きく変化することが見出された。この原因を明らかにするため、VDRと2種類のリガンド間の特異的相互作用を、ab initio フラグメント分子軌道(FMO)計算を用いて調べた。 その結果、リガンド中でキラリティーが異なる部位が、VDRのヒスチジン残基側鎖のイミダゾール環と強く相互作用し、VDRとリガンド間の結合特性性がヒスチジンのプロトン化状態に依存することが明らかになった。
AbstractList ビタミンD受容体(VDR)とキラリティーが異なる2種類のリガンド間の結合親和性が実験により解析され、リガンドのキラリティーの違いにより、VDRへの結合親和性が大きく変化することが見出された。この原因を明らかにするため、VDRと2種類のリガンド間の特異的相互作用を、ab initio フラグメント分子軌道(FMO)計算を用いて調べた。 その結果、リガンド中でキラリティーが異なる部位が、VDRのヒスチジン残基側鎖のイミダゾール環と強く相互作用し、VDRとリガンド間の結合特性性がヒスチジンのプロトン化状態に依存することが明らかになった。
Author 武田, 涼介
小林, 一徹
栗田, 典之
橘高, 敦史
鈴木, 理恵
上村, みどり
河合, 健太郎
Author_xml – sequence: 1
  fullname: 栗田, 典之
  organization: 豊橋技術科学大学
– sequence: 1
  fullname: 小林, 一徹
  organization: 豊橋技術科学大学
– sequence: 1
  fullname: 上村, みどり
  organization: 帝人ファーマ株式会社
– sequence: 1
  fullname: 鈴木, 理恵
  organization: 豊橋技術科学大学
– sequence: 1
  fullname: 橘高, 敦史
  organization: 帝京大学
– sequence: 1
  fullname: 武田, 涼介
  organization: 豊橋技術科学大学
– sequence: 1
  fullname: 河合, 健太郎
  organization: 科研製薬株式会社 新薬創生センター
BookMark eNpFkE9LAkEYxocoSK1Ln8AvsDY7uzu7Bh3C_oLQpc7LzO5Yu5iGeum4OyFaQpGZUEFEF5MUoUsW0ocZl9VvkZbQ5X1fnud9focnCuZz-RwDYEWGCRnpyqpFHTchGwkFzYGIrKi6BFUVzc9ujJL6IogWiy6ESFM1FAEXgteF_y34k-Dvm8FVM-j2h4O68FrC7wj-Knhb8LLwX4RXCxs94bWFfzkV_bdJQPDq-G7y3A2r_Ykb3p-HDx_Dz5vh4DG8ba3FCY07Oafk5AVvTGF-T_Dn31wlqJSDzvXoqzb26qNWJew2l8BChmSLbHm2Y-Bwe-sgtSul93f2UhtpyUVYgZINNYti22AGlhGhqo51HRq2imzDYjRJsGFBplk2orZtM6RTDVOSwYRlCMRUpUoMrP9x3WKJHDHztOCckMKZSQolx8oyc9qhKRsmnA4F_evHpGC6RPkBIgKb0A
ContentType Journal Article
Copyright 本論文著者
Copyright_xml – notice: 本論文著者
DOI 10.1273/cbij.18.32
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1347-0442
EndPage 43
ExternalDocumentID article_cbij_18_0_18_32_article_char_ja
GroupedDBID 29B
2WC
53G
5GY
6J9
AAKPC
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
EBS
EJD
GX1
HH5
JSF
JSH
KQ8
OK1
OVT
RJT
RNS
RZJ
TR2
XSB
ID FETCH-LOGICAL-j2630-d05cb6d8e8612ab4767708d42d8ceb9a68c0e5cd2bddde27b56baf6aefa06b4b3
ISSN 1347-6297
IngestDate Wed Sep 03 06:28:55 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2630-d05cb6d8e8612ab4767708d42d8ceb9a68c0e5cd2bddde27b56baf6aefa06b4b3
OpenAccessLink https://www.jstage.jst.go.jp/article/cbij/18/0/18_32/_article/-char/ja
PageCount 12
ParticipantIDs jstage_primary_article_cbij_18_0_18_32_article_char_ja
PublicationCentury 2000
PublicationDate 20180000
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 20180000
PublicationDecade 2010
PublicationTitle Chem-Bio Informatics Journal
PublicationTitleAlternate Chem-Bio Informatics Journal
PublicationYear 2018
Publisher 情報計算化学生物学会(CBI学会)
Publisher_xml – name: 情報計算化学生物学会(CBI学会)
References [2] Walters, M. R. Newly identified actions of the vitamin D endocrine system. Endocr. Rev. 1992, 13, 719-764.
[7] Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayashi, M. Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 1999, 313 (3-4), 701-706.
[24] Tsukamoto, T.; Kato, K.; Kato, A.; Nakano, T.; Mochizuki, Y.; Fukuzawa, K. Implementation of pair interaction energy decomposition analysis and its applications to protein-ligand systems. J. Comp. Chem. Jpn. 2015, 14, 1-9.
[6] Takeda, R.; Kobayashi, I.; Shimamura, K.; Ishimura, H.; Kadoya, R.; et al. Specific interactions between vitamin-D receptor and its ligands: ab initio molecular orbital calculations in water. J. Steroid Biochem. Mol. Biol. 2017, 171, 75-79.
[11] Matsuo, M.; Hasegawa, A.; Takano, M.; Saito, H.; Kakuda, S.; et al. Synthesis of 2α-Heteroarylalkyl active vitamin D3 with therapeutic effect on enhancing bone mineral density in vivo. ACS Med. Chem. Lett. 2013, 4, 671-674.
[3] Kàllay, E.; Bareis, P.; Bajna, E.; Kriwanek, S.; Bonner, E.; et al. Vitamin D receptor activity and prevention of colonic hyperproliferation and oxidative stress. Food Chem. Toxicol. 2002, 40, 1191-1196.
[23] Fedorov, D. G.; Kitaura, K. Pair interaction energy decomposition analysis. J. Comput. Chem. 2007, 28, 222-237.
[8] FMO Drug Design Consortium. http://eniac.scitec.kobe-u.ac.jp/fmodd
[5] Hourai, S.; Rodrigues, L. C.; Antony, P.; Reina-San-Martin, B.; Ciesielski, F.; et al. Structure-based design of a superagonist ligand for the vitamin D nuclear receptor. Chem. Biol. 2008, 15, 383-392.
[4] Deeb, K. K.; Trump, D. L.; Johnson, C. S. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer 2007, 7, 684-700.
[10] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
[13] Søndergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa Values. J. Chem. Theory Comput. 2011, 7, 2284-2295.
[21] Mochizuki, Y.; Yamashita, K.; Nakano, T.; Okiyama, Y.; Fukuzawa, K.; et al. Higher-order correlated calculations based on fragment molecular orbital scheme. Theor. Chem. Acc. 2011, 130, 515-530.
[12] Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klaholz, B.; Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell 2000, 5, 173-179.
[1] Odrzywolska, M.; Chodyn´ski, M.; Zorgdrager, J.; Velde, Jan-Paul, V. D.; Kutner, A. Diastereoselective synthesis, binding affinity for vitamin D receptor, and chiral stationary phase chromatography of hydroxy analogs of 1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol. Chirality 1999, 11, 701-706.
[17] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
[15] Case, D. A.; et al. AMBER 12. University of California, San Francisco, 2012.
[18] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174.
[14] Olsson, M. H. M.; Søndergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 2011, 7, 525-537.
[16] Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950-1958.
[22] Fukuzawa, K.; Nakano, T.; Kato, A.; Mochizuki, Y.; Tanaka, S. Applications of the fragment molecular orbital method for bio-macromolecules. J. Comp. Chem. Jpn. 2007, 6, 185-198.
[9] Frisch M. J.; et al. Gaussian09. Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
[19] Mochizuki, Y.; Nakano, T.; Koikegami, S.; Tanimori, S.; Abe, Y.; et al. A parallelized integral-direct second-order Møller-Plesset perturbation theory method with a fragment molecular orbital scheme. Theor. Chem. Acc. 2004, 112, 442-452.
[25] Yamagishi, K.; Tokiwa, H.; Makishima, M.; Yamada, S. Interactions between 1α,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: A correlated fragment molecular orbital study. J. Steroid Biochem. Mol. Biol. 2010, 121, 63-67.
[20] Mochizuki, Y.; Koikegami, S.; Nakano, T.; Amari, S.; Kitaura, K. Large scale MP2 calculations with fragment molecular orbital scheme. Chem. Phys. Lett. 2004, 396, 473-479.
References_xml – reference: [1] Odrzywolska, M.; Chodyn´ski, M.; Zorgdrager, J.; Velde, Jan-Paul, V. D.; Kutner, A. Diastereoselective synthesis, binding affinity for vitamin D receptor, and chiral stationary phase chromatography of hydroxy analogs of 1,25-dihydroxycholecalciferol and 25-hydroxycholecalciferol. Chirality 1999, 11, 701-706.
– reference: [6] Takeda, R.; Kobayashi, I.; Shimamura, K.; Ishimura, H.; Kadoya, R.; et al. Specific interactions between vitamin-D receptor and its ligands: ab initio molecular orbital calculations in water. J. Steroid Biochem. Mol. Biol. 2017, 171, 75-79.
– reference: [2] Walters, M. R. Newly identified actions of the vitamin D endocrine system. Endocr. Rev. 1992, 13, 719-764.
– reference: [7] Kitaura, K.; Ikeo, E.; Asada, T.; Nakano, T.; Uebayashi, M. Fragment molecular orbital method: an approximate computational method for large molecules. Chem. Phys. Lett. 1999, 313 (3-4), 701-706.
– reference: [8] FMO Drug Design Consortium. http://eniac.scitec.kobe-u.ac.jp/fmodd/
– reference: [23] Fedorov, D. G.; Kitaura, K. Pair interaction energy decomposition analysis. J. Comput. Chem. 2007, 28, 222-237.
– reference: [24] Tsukamoto, T.; Kato, K.; Kato, A.; Nakano, T.; Mochizuki, Y.; Fukuzawa, K. Implementation of pair interaction energy decomposition analysis and its applications to protein-ligand systems. J. Comp. Chem. Jpn. 2015, 14, 1-9.
– reference: [13] Søndergaard, C. R.; Olsson, M. H. M.; Rostkowski, M.; Jensen, J. H. Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa Values. J. Chem. Theory Comput. 2011, 7, 2284-2295.
– reference: [5] Hourai, S.; Rodrigues, L. C.; Antony, P.; Reina-San-Martin, B.; Ciesielski, F.; et al. Structure-based design of a superagonist ligand for the vitamin D nuclear receptor. Chem. Biol. 2008, 15, 383-392.
– reference: [18] Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157-1174.
– reference: [25] Yamagishi, K.; Tokiwa, H.; Makishima, M.; Yamada, S. Interactions between 1α,25(OH)2D3 and residues in the ligand-binding pocket of the vitamin D receptor: A correlated fragment molecular orbital study. J. Steroid Biochem. Mol. Biol. 2010, 121, 63-67.
– reference: [14] Olsson, M. H. M.; Søndergaard, C. R.; Rostkowski, M.; Jensen, J. H. PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 2011, 7, 525-537.
– reference: [16] Lindorff-Larsen, K.; Piana, S.; Palmo, K.; Maragakis, P.; Klepeis, J. L.; et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure, Function, and Bioinformatics 2010, 78, 1950-1958.
– reference: [17] Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926-935.
– reference: [20] Mochizuki, Y.; Koikegami, S.; Nakano, T.; Amari, S.; Kitaura, K. Large scale MP2 calculations with fragment molecular orbital scheme. Chem. Phys. Lett. 2004, 396, 473-479.
– reference: [21] Mochizuki, Y.; Yamashita, K.; Nakano, T.; Okiyama, Y.; Fukuzawa, K.; et al. Higher-order correlated calculations based on fragment molecular orbital scheme. Theor. Chem. Acc. 2011, 130, 515-530.
– reference: [22] Fukuzawa, K.; Nakano, T.; Kato, A.; Mochizuki, Y.; Tanaka, S. Applications of the fragment molecular orbital method for bio-macromolecules. J. Comp. Chem. Jpn. 2007, 6, 185-198.
– reference: [10] Cornell, W. D.; Cieplak, P.; Bayly, C. I.; et al. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995, 117, 5179-5197.
– reference: [19] Mochizuki, Y.; Nakano, T.; Koikegami, S.; Tanimori, S.; Abe, Y.; et al. A parallelized integral-direct second-order Møller-Plesset perturbation theory method with a fragment molecular orbital scheme. Theor. Chem. Acc. 2004, 112, 442-452.
– reference: [9] Frisch M. J.; et al. Gaussian09. Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.
– reference: [11] Matsuo, M.; Hasegawa, A.; Takano, M.; Saito, H.; Kakuda, S.; et al. Synthesis of 2α-Heteroarylalkyl active vitamin D3 with therapeutic effect on enhancing bone mineral density in vivo. ACS Med. Chem. Lett. 2013, 4, 671-674.
– reference: [12] Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klaholz, B.; Moras, D. The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Mol. Cell 2000, 5, 173-179.
– reference: [3] Kàllay, E.; Bareis, P.; Bajna, E.; Kriwanek, S.; Bonner, E.; et al. Vitamin D receptor activity and prevention of colonic hyperproliferation and oxidative stress. Food Chem. Toxicol. 2002, 40, 1191-1196.
– reference: [15] Case, D. A.; et al. AMBER 12. University of California, San Francisco, 2012.
– reference: [4] Deeb, K. K.; Trump, D. L.; Johnson, C. S. Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer 2007, 7, 684-700.
SSID ssj0025452
Score 2.1258886
Snippet ビタミンD受容体(VDR)とキラリティーが異なる2種類のリガンド間の結合親和性が実験により解析され、リガンドのキラリティーの違いにより、VDRへの結合親和性が大きく変化することが見出された。この原因を明らかにするため、VDRと2種類のリガンド間の特異的相互作用を、ab initio...
SourceID jstage
SourceType Publisher
StartPage 32
SubjectTerms キラリティー
ビタミンD受容体
フラグメント分子軌道
分子シミュレーション
特異的相互作用
結合親和性
Title ビタミンD受容体とキラリティが異なるリガンド間の特異的相互作用: ab initioフラグメント分子軌道計算
URI https://www.jstage.jst.go.jp/article/cbij/18/0/18_32/_article/-char/ja
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Chem-Bio Informatics Journal, 2018/03/21, Vol.18, pp.32-43
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS9xANIil0EvpJ_1mD52TxCaTZDLTW7IbsR56UvC25EtUqBbRQ3vbTRFthZZaK7SFUnqxUkXopbZIf8y4rP6LvjdJdlf0oF7C4837fjPMBzMvmvYQKxqlCQ11I6RCtxlN9YinsJCDpcGEIwxBE3XL9ykbHrNHxp3xvv5mz62lhfloMH554ruS82QVcJBXfCV7hsx2hAICYMgvfCHD8D1VjklgEW4RYSmAEn-oxJSAb9VI4BA-RISLgBcQX5DAJn6tZDOJxwt-r1aweaIEvALgrKQpuXiVBC4RDvGNUo5X0HD_KDtwVTsGlQJBhSCC9ZgRoEDAo4UdyQB4hNsK8InPlfEeEbT0IjfDRi_w4XY0MIX3oWbLSDhHXaKluYAxj9nEVbC48tbBcAgg5sT3lbcCrURzOSpDYheNzm_-dso9TKbPdH9qdqB46KXKYI_0ZBN6NwkY8QyVEmU6mAQ9Xel2ShdBmd-lV7GALAKjQI05vY3E3FDNmNgufd7iKXrwwszpVZiLTmJ2I8K9LqNAv3xbMVbRTcXoYiAwKExJcHrPioqJDce1arfQCYyeQXzzeKyUl1VMfB5hjxVBwD6r0o92dZrAkSr2AMqr_pOT8KJnWrVsV2e0yEfaxRm2fdJcnE-mxcF3vizLi3kdm_Bh9Q2jNI6mYM7ngyXHkQLqxfCsI1Hd5HUDPxatd_CT4Vx9GvZYF6jrmqpS9HC3XifsMNSNidKDosQx6H3U1QrL12nYzJUXQdXadPSKdrnoXRUvV3VV60tnrmkX89_MvriuvZbZqmz-k9lXmf2qtd6ut7Z39_dWZWNDNrdk9kNmmzJblM3vsrHSXtuRjU3ZfIPI5k9gkNny4Ucg3m4v70Jr-9Or9uff-3_e7-99aX_YeFwJo0o-4mS2hsKaOzL7pviWWkuLra13B39XDhurBxtL7e31G9rYUDBaHdaLf7Do05RZhp4YThyxhKcctkJhZLvMdQ2e2DThcRqJkPHYSJ04oVECCyXqRg6LwgkWphOhwSI7sm5q_TOzM-ktrRIJ0zZBWOg4MfCngsewHXFFmJhJnNL0tsbyINaf54V26qfM3J3zMt7VLuEoyU9U72n983ML6X3YY8xHD1Qn-A-9SwFI
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%83%93%E3%82%BF%E3%83%9F%E3%83%B3D%E5%8F%97%E5%AE%B9%E4%BD%93%E3%81%A8%E3%82%AD%E3%83%A9%E3%83%AA%E3%83%86%E3%82%A3%E3%81%8C%E7%95%B0%E3%81%AA%E3%82%8B%E3%83%AA%E3%82%AC%E3%83%B3%E3%83%89%E9%96%93%E3%81%AE%E7%89%B9%E7%95%B0%E7%9A%84%E7%9B%B8%E4%BA%92%E4%BD%9C%E7%94%A8%3A+ab+initio%E3%83%95%E3%83%A9%E3%82%B0%E3%83%A1%E3%83%B3%E3%83%88%E5%88%86%E5%AD%90%E8%BB%8C%E9%81%93%E8%A8%88%E7%AE%97&rft.jtitle=Chem-Bio+Informatics+Journal&rft.au=%E6%A0%97%E7%94%B0%2C+%E5%85%B8%E4%B9%8B&rft.au=%E5%B0%8F%E6%9E%97%2C+%E4%B8%80%E5%BE%B9&rft.au=%E4%B8%8A%E6%9D%91%2C+%E3%81%BF%E3%81%A9%E3%82%8A&rft.au=%E9%88%B4%E6%9C%A8%2C+%E7%90%86%E6%81%B5&rft.date=2018&rft.pub=%E6%83%85%E5%A0%B1%E8%A8%88%E7%AE%97%E5%8C%96%E5%AD%A6%E7%94%9F%E7%89%A9%E5%AD%A6%E4%BC%9A%28CBI%E5%AD%A6%E4%BC%9A%29&rft.issn=1347-6297&rft.eissn=1347-0442&rft.volume=18&rft.spage=32&rft.epage=43&rft_id=info:doi/10.1273%2Fcbij.18.32&rft.externalDocID=article_cbij_18_0_18_32_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1347-6297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1347-6297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1347-6297&client=summon