Bone Induction by α-tricalcium Phosphate Microparticle Emulsion Containing Simvastatin

To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP) bone paste. Simvastatin, a lipophilic hyperlipidemia treatment agent, reportedly enhances the expression of bone morphogenetic protein-2 and s...

Full description

Saved in:
Bibliographic Details
Published inNano Biomedicine Vol. 9; no. 2; pp. 69 - 76
Main Authors TATEYAMA, Akito, KATO, Akihito, MIYAJI, Hirofumi, NISHIDA, Erika, IWASAKI, Yasuhiko, FUJII, Syuji, KAWAMOTO, Kohei, SHITOMI, Kanako, FURIHATA, Tomokazu, MAYUMI, Kayoko, SUGAYA, Tsutomu
Format Journal Article
LanguageEnglish
Published Nano Biomedical Society 30.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP) bone paste. Simvastatin, a lipophilic hyperlipidemia treatment agent, reportedly enhances the expression of bone morphogenetic protein-2 and subsequent bone formation. Accordingly, we assessed the bone forming effects of α-TCP bone-paste containing simvastatin in rat cranial bone defects.Bone paste exhibited porous structure and generation of hydroxyapatite after solidification. X-ray image analysis and histological examination were carried out after implantation of bone paste into rat skull defect. The results showed that new bone was formed after implantation of bone paste containing simvastatin. In particular, bone volume in the 0.1 mg simvastatin group was significantly promoted when compared to controls (no implantation). No bone paste residue was observed in the bone defect at 4 weeks after surgery. Therefore, α-TCP bone paste containing simvastatin is degradable and beneficial for bone tissue engineering.
AbstractList To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP) bone paste. Simvastatin, a lipophilic hyperlipidemia treatment agent, reportedly enhances the expression of bone morphogenetic protein-2 and subsequent bone formation. Accordingly, we assessed the bone forming effects of α-TCP bone-paste containing simvastatin in rat cranial bone defects.Bone paste exhibited porous structure and generation of hydroxyapatite after solidification. X-ray image analysis and histological examination were carried out after implantation of bone paste into rat skull defect. The results showed that new bone was formed after implantation of bone paste containing simvastatin. In particular, bone volume in the 0.1 mg simvastatin group was significantly promoted when compared to controls (no implantation). No bone paste residue was observed in the bone defect at 4 weeks after surgery. Therefore, α-TCP bone paste containing simvastatin is degradable and beneficial for bone tissue engineering.
Author FUJII, Syuji
MIYAJI, Hirofumi
KAWAMOTO, Kohei
SHITOMI, Kanako
FURIHATA, Tomokazu
TATEYAMA, Akito
SUGAYA, Tsutomu
KATO, Akihito
IWASAKI, Yasuhiko
MAYUMI, Kayoko
NISHIDA, Erika
Author_xml – sequence: 1
  fullname: TATEYAMA, Akito
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 2
  fullname: KATO, Akihito
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 3
  fullname: MIYAJI, Hirofumi
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 4
  fullname: NISHIDA, Erika
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 5
  fullname: IWASAKI, Yasuhiko
  organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan
– sequence: 6
  fullname: FUJII, Syuji
  organization: Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
– sequence: 7
  fullname: KAWAMOTO, Kohei
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 8
  fullname: SHITOMI, Kanako
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 9
  fullname: FURIHATA, Tomokazu
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 10
  fullname: MAYUMI, Kayoko
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
– sequence: 11
  fullname: SUGAYA, Tsutomu
  organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
BookMark eNo9UNtKw0AQXaSCtfbFL9gfSNxLstl98EFL1UJFQcXHZbLZNFuSTUg2Qj_LH_GbTLE4MAwczjlzZi7RzLfeInRNSUwpT5IbD76NVSzUGZozKtMoyXgyQ3MqJY9SquQFWg7DnkwliGRCzNHn_eSBN74YTXCtx_kB_3xHoXcGauPGBr9W7dBVECx-dqZvO-iDM7XF62ash6Ni1foAzju_w2-u-YIhQHD-Cp2XUA92eZoL9PGwfl89RduXx83qbhvtWSpDpLjNMkKMEAVPuASSZCbLJXBeppSBYCkpFc2LnOSqVLmk0ykEuKUZ4xNd8AW6_fPdT3t3Vne9a6A_6FNMfXyJVppNrbRQ_7ipoNfW81-IcGEg
ContentType Journal Article
Copyright 2017 Nano Biomedical Society
Copyright_xml – notice: 2017 Nano Biomedical Society
DOI 10.11344/nano.9.69
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2185-4734
EndPage 76
ExternalDocumentID article_nano_9_2_9_9_69_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JMI
JSF
JSH
KQ8
RJT
RZJ
ID FETCH-LOGICAL-j258t-93e7700c66d3438a047c7b8a33f512a6250f91bdb0b9f9b811880a3e172338a63
ISSN 1883-5198
IngestDate Wed Apr 05 14:06:34 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j258t-93e7700c66d3438a047c7b8a33f512a6250f91bdb0b9f9b811880a3e172338a63
OpenAccessLink https://www.jstage.jst.go.jp/article/nano/9/2/9_9_69/_article/-char/en
PageCount 8
ParticipantIDs jstage_primary_article_nano_9_2_9_9_69_article_char_en
PublicationCentury 2000
PublicationDate 2017-12-30
PublicationDateYYYYMMDD 2017-12-30
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-30
  day: 30
PublicationDecade 2010
PublicationTitle Nano Biomedicine
PublicationTitleAlternate Nano Biomed
PublicationYear 2017
Publisher Nano Biomedical Society
Publisher_xml – name: Nano Biomedical Society
References 11) Iwasaki Y, Takahata Y, Fujii S. Self-setting particle-stabilized emulsion for hard-tissue engineering. Colloids Surf B Biointerfaces 2015; 126: 394-400.
16) Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 2003; 308: 458-462.
5) Carrodeguas RG, De Aza S. α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater 2011; 7: 3536-3546.
4) Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 2010; 20: 1-12.
3) Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci 2008; 43: 3028-3057.
14) Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, Koyano K. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 336-342.
10) Félix Lanao RP, Leeuwenburgh SC, Wolke JG, Jansen JA. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles. Biomaterials 2011; 32: 8839-8847.
6) Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000; 4: 37-47.
2) Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K. The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg Br 1990; 72: 298-302.
7) Ginebra MP, Fernández E, Driessens FCM, Planell JA. Modeling of the hydrolysis of α-tricalcium phosphate. J Am Ceram Soc 1999; 82: 2808-2812.
17) Wong RW, Rabie AB. Statin collagen grafts used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg 2003; 41: 244-248.
9) Montufar EB, Traykova T, Gil C, Harr I, Almirall A, Aguirre A, Engel E, Planell JA, Ginebra MP. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater 2010; 6: 876-885.
13) Papadimitriou K, Karkavelas G, Vouros I, Kessopoulou E, Konstantinidis A. Effects of local application of simvastatin on bone regeneration in femoral bone defects in rabbit. J Craniomaxillofac Surg 2015; 43: 232-237.
18) Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, Marx DB, Cullen DM, Reinhardt RA. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol 2005; 76: 1861-1870.
15) Nyan M, Sato D, Oda M, Machida T, Kobayashi H, Nakamura T, Kasugai S. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J Pharmacol Sci 2007; 104: 384-386.
1) Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990; 24: 379-396.
8) Almirall A, Larrecq G, Delgado JA, Martínez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials 2004; 25: 3671-3680.
12) Garrett IR, Gutierrez G, Mundy GR. Statins and bone formation. Curr Pharm Des 2001; 7: 715-736.
References_xml
SSID ssj0000608266
Score 2.0856862
Snippet To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP)...
SourceID jstage
SourceType Publisher
StartPage 69
SubjectTerms bone paste
bone tissue engineering
simvastatin
water-oil emulsion
α-tricalcium phosphate (TCP)
Title Bone Induction by α-tricalcium Phosphate Microparticle Emulsion Containing Simvastatin
URI https://www.jstage.jst.go.jp/article/nano/9/2/9_9_69/_article/-char/en
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nano Biomedicine, 2017, Vol.9(2), pp.69-76
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeIEHNP6JwUB-YE9TShK7sf2YbUXb0ECITGxPkZ0majfaTiNFgu_BB-GL8Jl2F7uuBzyMPTSqTkns5n49313ufibkdcYbZVhdRbypMXVT60imIo4MTwxYzKQSHPudj95n-8f88GRw0uv9DKqWFq3pVz_-2VdyG62CDPSKXbL_oVl_UxDAd9AvHEHDcLyRjnfmMyx9HFkGWPQkt3aHWztJ1HbEH9UEq9zH868XY_AosUL-EkJke5vt4XTxBTNl2PPX2m0itj9Npt80thg5Om7ntIIFnuOmlX--hy_yYniKKXq0L-dgGrz1zosPTjgOxEcHp_nhQbfYTcD8L6YTn4rGtNle7gzzuQ5zEbC-IeNhvCrVCKeDZCZzz2bizKuULAKf0VrcupOBjzEAkLiUprPJKoBeGthXu62LW6ntxjF_rwGMcySVhcn0VX95xTVObfeoSzynVGUKH1VmqlzKseMNAHaH3E3BfmGl4LuP0qfu4gz8pu4tuP89jvgWh37jBwan5gx0tiwP7DyWYp08cKEGze1oD0mvnj0i9wMCysfkMyKIegRR853-_hWgh3r00GvooUv00BV6aICeJ-T47bDY3Y_cVhvRWTqQbaRYLUQcV1k2YpxJHXNRCSM1Yw14hBqC5LhRiRmZ2Cj4c8sEafw0q8H9ZXB6xp6StRnM-Bmh4PEmjYAw1jDNxahSlYSgQNeMiwaiBbFBMvtUygvLp1LeUBvPb3vhC3JvBdZNstZeLuqX4Eq25lWn2CtDo32N
link.rule.ids 315,783,787,27938,27939
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+Induction+by+%CE%B1-tricalcium+Phosphate+Microparticle+Emulsion+Containing+Simvastatin&rft.jtitle=Nano+Biomedicine&rft.au=TATEYAMA%2C+Akito&rft.au=KATO%2C+Akihito&rft.au=MIYAJI%2C+Hirofumi&rft.au=NISHIDA%2C+Erika&rft.date=2017-12-30&rft.pub=Nano+Biomedical+Society&rft.issn=1883-5198&rft.eissn=2185-4734&rft.volume=9&rft.issue=2&rft.spage=69&rft.epage=76&rft_id=info:doi/10.11344%2Fnano.9.69&rft.externalDocID=article_nano_9_2_9_9_69_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1883-5198&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1883-5198&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1883-5198&client=summon