Bone Induction by α-tricalcium Phosphate Microparticle Emulsion Containing Simvastatin
To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP) bone paste. Simvastatin, a lipophilic hyperlipidemia treatment agent, reportedly enhances the expression of bone morphogenetic protein-2 and s...
Saved in:
Published in | Nano Biomedicine Vol. 9; no. 2; pp. 69 - 76 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Nano Biomedical Society
30.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP) bone paste. Simvastatin, a lipophilic hyperlipidemia treatment agent, reportedly enhances the expression of bone morphogenetic protein-2 and subsequent bone formation. Accordingly, we assessed the bone forming effects of α-TCP bone-paste containing simvastatin in rat cranial bone defects.Bone paste exhibited porous structure and generation of hydroxyapatite after solidification. X-ray image analysis and histological examination were carried out after implantation of bone paste into rat skull defect. The results showed that new bone was formed after implantation of bone paste containing simvastatin. In particular, bone volume in the 0.1 mg simvastatin group was significantly promoted when compared to controls (no implantation). No bone paste residue was observed in the bone defect at 4 weeks after surgery. Therefore, α-TCP bone paste containing simvastatin is degradable and beneficial for bone tissue engineering. |
---|---|
AbstractList | To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP) bone paste. Simvastatin, a lipophilic hyperlipidemia treatment agent, reportedly enhances the expression of bone morphogenetic protein-2 and subsequent bone formation. Accordingly, we assessed the bone forming effects of α-TCP bone-paste containing simvastatin in rat cranial bone defects.Bone paste exhibited porous structure and generation of hydroxyapatite after solidification. X-ray image analysis and histological examination were carried out after implantation of bone paste into rat skull defect. The results showed that new bone was formed after implantation of bone paste containing simvastatin. In particular, bone volume in the 0.1 mg simvastatin group was significantly promoted when compared to controls (no implantation). No bone paste residue was observed in the bone defect at 4 weeks after surgery. Therefore, α-TCP bone paste containing simvastatin is degradable and beneficial for bone tissue engineering. |
Author | FUJII, Syuji MIYAJI, Hirofumi KAWAMOTO, Kohei SHITOMI, Kanako FURIHATA, Tomokazu TATEYAMA, Akito SUGAYA, Tsutomu KATO, Akihito IWASAKI, Yasuhiko MAYUMI, Kayoko NISHIDA, Erika |
Author_xml | – sequence: 1 fullname: TATEYAMA, Akito organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 2 fullname: KATO, Akihito organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 3 fullname: MIYAJI, Hirofumi organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 4 fullname: NISHIDA, Erika organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 5 fullname: IWASAKI, Yasuhiko organization: Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Osaka, Japan – sequence: 6 fullname: FUJII, Syuji organization: Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan – sequence: 7 fullname: KAWAMOTO, Kohei organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 8 fullname: SHITOMI, Kanako organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 9 fullname: FURIHATA, Tomokazu organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 10 fullname: MAYUMI, Kayoko organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan – sequence: 11 fullname: SUGAYA, Tsutomu organization: Department of Periodontology and Endodontology, Division of Oral Health Science, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan |
BookMark | eNo9UNtKw0AQXaSCtfbFL9gfSNxLstl98EFL1UJFQcXHZbLZNFuSTUg2Qj_LH_GbTLE4MAwczjlzZi7RzLfeInRNSUwpT5IbD76NVSzUGZozKtMoyXgyQ3MqJY9SquQFWg7DnkwliGRCzNHn_eSBN74YTXCtx_kB_3xHoXcGauPGBr9W7dBVECx-dqZvO-iDM7XF62ash6Ni1foAzju_w2-u-YIhQHD-Cp2XUA92eZoL9PGwfl89RduXx83qbhvtWSpDpLjNMkKMEAVPuASSZCbLJXBeppSBYCkpFc2LnOSqVLmk0ykEuKUZ4xNd8AW6_fPdT3t3Vne9a6A_6FNMfXyJVppNrbRQ_7ipoNfW81-IcGEg |
ContentType | Journal Article |
Copyright | 2017 Nano Biomedical Society |
Copyright_xml | – notice: 2017 Nano Biomedical Society |
DOI | 10.11344/nano.9.69 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2185-4734 |
EndPage | 76 |
ExternalDocumentID | article_nano_9_2_9_9_69_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JMI JSF JSH KQ8 RJT RZJ |
ID | FETCH-LOGICAL-j258t-93e7700c66d3438a047c7b8a33f512a6250f91bdb0b9f9b811880a3e172338a63 |
ISSN | 1883-5198 |
IngestDate | Wed Apr 05 14:06:34 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j258t-93e7700c66d3438a047c7b8a33f512a6250f91bdb0b9f9b811880a3e172338a63 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/nano/9/2/9_9_69/_article/-char/en |
PageCount | 8 |
ParticipantIDs | jstage_primary_article_nano_9_2_9_9_69_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 2017-12-30 |
PublicationDateYYYYMMDD | 2017-12-30 |
PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-30 day: 30 |
PublicationDecade | 2010 |
PublicationTitle | Nano Biomedicine |
PublicationTitleAlternate | Nano Biomed |
PublicationYear | 2017 |
Publisher | Nano Biomedical Society |
Publisher_xml | – name: Nano Biomedical Society |
References | 11) Iwasaki Y, Takahata Y, Fujii S. Self-setting particle-stabilized emulsion for hard-tissue engineering. Colloids Surf B Biointerfaces 2015; 126: 394-400. 16) Song C, Guo Z, Ma Q, Chen Z, Liu Z, Jia H, Dang G. Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 2003; 308: 458-462. 5) Carrodeguas RG, De Aza S. α-Tricalcium phosphate: Synthesis, properties and biomedical applications. Acta Biomater 2011; 7: 3536-3546. 4) Bohner M. Design of ceramic-based cements and putties for bone graft substitution. Eur Cell Mater 2010; 20: 1-12. 3) Dorozhkin SV. Calcium orthophosphate cements for biomedical application. J Mater Sci 2008; 43: 3028-3057. 14) Ayukawa Y, Yasukawa E, Moriyama Y, Ogino Y, Wada H, Atsuta I, Koyano K. Local application of statin promotes bone repair through the suppression of osteoclasts and the enhancement of osteoblasts at bone-healing sites in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 107: 336-342. 10) Félix Lanao RP, Leeuwenburgh SC, Wolke JG, Jansen JA. Bone response to fast-degrading, injectable calcium phosphate cements containing PLGA microparticles. Biomaterials 2011; 32: 8839-8847. 6) Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000; 4: 37-47. 2) Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K. The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg Br 1990; 72: 298-302. 7) Ginebra MP, Fernández E, Driessens FCM, Planell JA. Modeling of the hydrolysis of α-tricalcium phosphate. J Am Ceram Soc 1999; 82: 2808-2812. 17) Wong RW, Rabie AB. Statin collagen grafts used to repair defects in the parietal bone of rabbits. Br J Oral Maxillofac Surg 2003; 41: 244-248. 9) Montufar EB, Traykova T, Gil C, Harr I, Almirall A, Aguirre A, Engel E, Planell JA, Ginebra MP. Foamed surfactant solution as a template for self-setting injectable hydroxyapatite scaffolds for bone regeneration. Acta Biomater 2010; 6: 876-885. 13) Papadimitriou K, Karkavelas G, Vouros I, Kessopoulou E, Konstantinidis A. Effects of local application of simvastatin on bone regeneration in femoral bone defects in rabbit. J Craniomaxillofac Surg 2015; 43: 232-237. 18) Stein D, Lee Y, Schmid MJ, Killpack B, Genrich MA, Narayana N, Marx DB, Cullen DM, Reinhardt RA. Local simvastatin effects on mandibular bone growth and inflammation. J Periodontol 2005; 76: 1861-1870. 15) Nyan M, Sato D, Oda M, Machida T, Kobayashi H, Nakamura T, Kasugai S. Bone formation with the combination of simvastatin and calcium sulfate in critical-sized rat calvarial defect. J Pharmacol Sci 2007; 104: 384-386. 1) Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res 1990; 24: 379-396. 8) Almirall A, Larrecq G, Delgado JA, Martínez S, Planell JA, Ginebra MP. Fabrication of low temperature macroporous hydroxyapatite scaffolds by foaming and hydrolysis of an alpha-TCP paste. Biomaterials 2004; 25: 3671-3680. 12) Garrett IR, Gutierrez G, Mundy GR. Statins and bone formation. Curr Pharm Des 2001; 7: 715-736. |
References_xml | |
SSID | ssj0000608266 |
Score | 2.0856862 |
Snippet | To improve the degradability and operability of conventional bone graft materials, we fabricated a water-oil emulsion based on α-tricalcium phosphate (α-TCP)... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 69 |
SubjectTerms | bone paste bone tissue engineering simvastatin water-oil emulsion α-tricalcium phosphate (TCP) |
Title | Bone Induction by α-tricalcium Phosphate Microparticle Emulsion Containing Simvastatin |
URI | https://www.jstage.jst.go.jp/article/nano/9/2/9_9_69/_article/-char/en |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Nano Biomedicine, 2017, Vol.9(2), pp.69-76 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKeIEHNP6JwUB-YE9TShK7sf2YbUXb0ECITGxPkZ0majfaTiNFgu_BB-GL8Jl2F7uuBzyMPTSqTkns5n49313ufibkdcYbZVhdRbypMXVT60imIo4MTwxYzKQSHPudj95n-8f88GRw0uv9DKqWFq3pVz_-2VdyG62CDPSKXbL_oVl_UxDAd9AvHEHDcLyRjnfmMyx9HFkGWPQkt3aHWztJ1HbEH9UEq9zH868XY_AosUL-EkJke5vt4XTxBTNl2PPX2m0itj9Npt80thg5Om7ntIIFnuOmlX--hy_yYniKKXq0L-dgGrz1zosPTjgOxEcHp_nhQbfYTcD8L6YTn4rGtNle7gzzuQ5zEbC-IeNhvCrVCKeDZCZzz2bizKuULAKf0VrcupOBjzEAkLiUprPJKoBeGthXu62LW6ntxjF_rwGMcySVhcn0VX95xTVObfeoSzynVGUKH1VmqlzKseMNAHaH3E3BfmGl4LuP0qfu4gz8pu4tuP89jvgWh37jBwan5gx0tiwP7DyWYp08cKEGze1oD0mvnj0i9wMCysfkMyKIegRR853-_hWgh3r00GvooUv00BV6aICeJ-T47bDY3Y_cVhvRWTqQbaRYLUQcV1k2YpxJHXNRCSM1Yw14hBqC5LhRiRmZ2Cj4c8sEafw0q8H9ZXB6xp6StRnM-Bmh4PEmjYAw1jDNxahSlYSgQNeMiwaiBbFBMvtUygvLp1LeUBvPb3vhC3JvBdZNstZeLuqX4Eq25lWn2CtDo32N |
link.rule.ids | 315,783,787,27938,27939 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bone+Induction+by+%CE%B1-tricalcium+Phosphate+Microparticle+Emulsion+Containing+Simvastatin&rft.jtitle=Nano+Biomedicine&rft.au=TATEYAMA%2C+Akito&rft.au=KATO%2C+Akihito&rft.au=MIYAJI%2C+Hirofumi&rft.au=NISHIDA%2C+Erika&rft.date=2017-12-30&rft.pub=Nano+Biomedical+Society&rft.issn=1883-5198&rft.eissn=2185-4734&rft.volume=9&rft.issue=2&rft.spage=69&rft.epage=76&rft_id=info:doi/10.11344%2Fnano.9.69&rft.externalDocID=article_nano_9_2_9_9_69_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1883-5198&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1883-5198&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1883-5198&client=summon |