AIを用いたパノラマX線画像からのカルテ入力支援システムの開発

Saved in:
Bibliographic Details
Published in歯科放射線 Vol. 62; no. 1; pp. 24 - 34
Main Authors 北, 研二, 鳥井, 浩平, 誉田, 栄一
Format Journal Article
LanguageJapanese
Published 特定非営利活動法人 日本歯科放射線学会 2022
Subjects
Online AccessGet full text
ISSN0389-9705
2185-6311
DOI10.11242/dentalradiology.62.24

Cover

Author 北, 研二
誉田, 栄一
鳥井, 浩平
Author_xml – sequence: 1
  fullname: 北, 研二
  organization: 徳島大学大学院社会産業理工学研究部
– sequence: 1
  fullname: 鳥井, 浩平
  organization: 徳島大学大学院先端技術科学教育部
– sequence: 1
  fullname: 誉田, 栄一
  organization: 徳島大学大学院医歯薬学研究部
BookMark eNpdkM1Kw0AcxBepYK19Bd8gdb-ySY6lqC0UvCh6C5tkU1NiK0kvPSZRQQsWpQgqqBdBEfQiFPVx_rTBt7CieBCGGRh-zGEWUaHT7SiElgmuEEI5XfFUpyfDSHpBN-y2-hVBK5TPoSIlpq4JRkgBFTEzLc0ysL6AynEcOBgbJuOYW0W0XW1Aep6PHiA5gOQWsjPITiF7hOxmJx9f5aOPSTaEZADpMSTPkD5BNtPR5PB-cnI9Hb1Mh6-QjiF9m5WQ3c2Yz4tBfvm-hOZ9Gcaq_JsltLW2ulmra82N9Uat2tTaVBem5iisY-4yz_EptijFBrMwFY7wCMdM-YIxU7pMF0Ipw_csh-meSXVDWZ5U3OGshOo_u-24J1vK3o-CPRn1bRn1AjdU9r97bEFt8m2U_yHurozstmRfjDODWg
ContentType Journal Article
Copyright 2022 特定非営利活動法人 日本歯科放射線学会
Copyright_xml – notice: 2022 特定非営利活動法人 日本歯科放射線学会
DOI 10.11242/dentalradiology.62.24
DeliveryMethod fulltext_linktorsrc
EISSN 2185-6311
EndPage 34
ExternalDocumentID article_dentalradiology_62_1_62_24_article_char_ja
GroupedDBID 2WC
ABJNI
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
MOJWN
OK1
RJT
ID FETCH-LOGICAL-j2568-be0504c3dbf209220739026b6d1403ef6338ac3566ee7fd9b35d8257e9dae4b43
ISSN 0389-9705
IngestDate Wed Sep 03 06:30:52 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2568-be0504c3dbf209220739026b6d1403ef6338ac3566ee7fd9b35d8257e9dae4b43
OpenAccessLink https://www.jstage.jst.go.jp/article/dentalradiology/62/1/62_24/_article/-char/ja
PageCount 11
ParticipantIDs jstage_primary_article_dentalradiology_62_1_62_24_article_char_ja
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle 歯科放射線
PublicationTitleAlternate 歯科放射線
PublicationYear 2022
Publisher 特定非営利活動法人 日本歯科放射線学会
Publisher_xml – name: 特定非営利活動法人 日本歯科放射線学会
References 22. Winter GB. Principles of Exodontia as Applied to the Impacted Mandibular Tird Molar: A Complete Treatise on the Operative Technic with Clinical Diagnoses and Radiographic Interpretations. American Medical Books. 1926.
5. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, Zha Y, Liang W, Wang C, Wang K, Ye L, Gao M, Zhou Z, Li L, Wang J, Yang Z, Cai H, Xu J, Yang L, Cai W, Xu W, Wu S, Zhang W, Jiang S, Zheng L, Zhang X, Wang L, Lu L, Li J, Yin H, Wang W, Li O, Zhang C, Liang L, Wu T, Deng R, Wei K, Zhou Y, Chen T, Lau JY, Fok M, He J, Lin T, Li W, Wang G. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of Covid-19 Pneumonia Using Computed Tomography. Cell. 2020;181:1423-1433.
10. Zhu H, Cao Z, Lian L, Ye G, Gao H, Wu J. CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Computing and Applications. 2022. doi: 10.1007/s00521-021-06684-2
15. Abdulla W. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. GitHub Repository. 2017. https://github.com/matterport/Mask_RCNN
12. 志村一男.理想のX線画像を目指して—マルチ周波数処理について—.日本放射線技術学会雑誌.2001;57(7):796-802.
8. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiology. 2019. doi: 10.1259/dmfr.20180051
16. Suzuki S, Abe K. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing. 1985;30:32-46.
18. Ridnik T, Ben-Baruch E, Noy A, Zelnik L. ImageNet-21K Pretraining for the Masses. NeurIPS Datasets and Benchmarks. 2021. doi: 10.48550/arXiv.2104.10972
19. Kingma DP, Adam JB. A Method for Stochastic Optimization. International Conference for Learning Representations. 2015. doi: 10.48550/arXiv.1412.6980
3. Zhao W, Jiang W, Qiu X. Deep Learning for COVID-19 detection based on CT images. Nature Scientific Reports. 2021;11:14353.
1. Ferrucci DA. Introduction to “This is Watson”. IBM Journal of Research and Development. 2012;56:1-15.
17. Tan M, Le Q. EfficientNetV2: Smaller Models and Faster Training. International Conference on Machine Learning. International Conference on Machine Learning. 2021. doi: 10.48550/arXiv.2104.00298
7. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Nature Scientific Reports. 2019;9:3840.
14. Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P. Microsoft COCO: Common Objects in Context. European Conference on Computer Vision. 2014. doi: 10.48550/arXiv.1405.0312
23. Sukegawa S, Matsuyama T, Tanaka F, Hara T, Yoshii K, Yamashita K, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Furuki Y. Evaluation of multi‑task learning in deep learning‑based positioning classifcation of mandibular third molars. Nature Scientific Reports. 2022;12:684.
13. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. Computer Vision and Pattern Recognition. 2017. doi: 10.48550/arXiv.1703.06870
21. Pell GJ, Gregory GT. Impacted Mandibular Third Molars: Classification and Modified Technique for Removal. Dental Digest. 1933;39(9):330-338.
9. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry. 2018;77:106-111.
2. Erdaw Y, Tachbele E. Machine Learning Model Applied on Chest X-Ray Images Enables Automatic Detection of COVID-19 Cases with High Accuracy. International Journal of General Medicine. 2021;14:4923-4931.
24. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations. 2020. doi: 0.48550/arXiv.2010.11929
20. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. TensorFlow: A system for large-scale machine learning. arXiv preprint. 2016. doi: 10.48550/arXiv.1605.08695
6. Panetta K, Rajendran R, Ramesh A, Rao S, Agaian S. Tufts Dental Database: A Multimodal Panoramic X-ray Dataset for Benchmarking Diagnostic Systems. Institute of Electrical and Electronics Engineers, Journal of Biomedical Health Informatics. 2021. doi: 10.1109/JBHI.2021.3117575
4. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. Conference on Computer Vision and Pattern Recognition. 2017. doi: 10.1109/CVPR.2017.369
11. Wada K. Labelme: Image Polygonal Annotation with Python. GitHub Repository. 2021. doi: 10.5281/zenodo.5711226
References_xml – reference: 15. Abdulla W. Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow. GitHub Repository. 2017. https://github.com/matterport/Mask_RCNN
– reference: 2. Erdaw Y, Tachbele E. Machine Learning Model Applied on Chest X-Ray Images Enables Automatic Detection of COVID-19 Cases with High Accuracy. International Journal of General Medicine. 2021;14:4923-4931.
– reference: 3. Zhao W, Jiang W, Qiu X. Deep Learning for COVID-19 detection based on CT images. Nature Scientific Reports. 2021;11:14353.
– reference: 4. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM. ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. Conference on Computer Vision and Pattern Recognition. 2017. doi: 10.1109/CVPR.2017.369
– reference: 7. Chen H, Zhang K, Lyu P, Li H, Zhang L, Wu J, Lee CH. A deep learning approach to automatic teeth detection and numbering based on object detection in dental periapical films. Nature Scientific Reports. 2019;9:3840.
– reference: 12. 志村一男.理想のX線画像を目指して—マルチ周波数処理について—.日本放射線技術学会雑誌.2001;57(7):796-802.
– reference: 6. Panetta K, Rajendran R, Ramesh A, Rao S, Agaian S. Tufts Dental Database: A Multimodal Panoramic X-ray Dataset for Benchmarking Diagnostic Systems. Institute of Electrical and Electronics Engineers, Journal of Biomedical Health Informatics. 2021. doi: 10.1109/JBHI.2021.3117575
– reference: 11. Wada K. Labelme: Image Polygonal Annotation with Python. GitHub Repository. 2021. doi: 10.5281/zenodo.5711226
– reference: 22. Winter GB. Principles of Exodontia as Applied to the Impacted Mandibular Tird Molar: A Complete Treatise on the Operative Technic with Clinical Diagnoses and Radiographic Interpretations. American Medical Books. 1926.
– reference: 24. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I. An Image is Worth 16×16 Words: Transformers for Image Recognition at Scale. International Conference on Learning Representations. 2020. doi: 0.48550/arXiv.2010.11929
– reference: 1. Ferrucci DA. Introduction to “This is Watson”. IBM Journal of Research and Development. 2012;56:1-15.
– reference: 16. Suzuki S, Abe K. Topological structural analysis of digitized binary images by border following. Computer Vision, Graphics, and Image Processing. 1985;30:32-46.
– reference: 17. Tan M, Le Q. EfficientNetV2: Smaller Models and Faster Training. International Conference on Machine Learning. International Conference on Machine Learning. 2021. doi: 10.48550/arXiv.2104.00298
– reference: 20. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg J, Monga R, Moore S, Murray DG, Steiner B, Tucker P, Vasudevan V, Warden P, Wicke M, Yu Y, Zheng X. TensorFlow: A system for large-scale machine learning. arXiv preprint. 2016. doi: 10.48550/arXiv.1605.08695
– reference: 19. Kingma DP, Adam JB. A Method for Stochastic Optimization. International Conference for Learning Representations. 2015. doi: 10.48550/arXiv.1412.6980
– reference: 5. Zhang K, Liu X, Shen J, Li Z, Sang Y, Wu X, Zha Y, Liang W, Wang C, Wang K, Ye L, Gao M, Zhou Z, Li L, Wang J, Yang Z, Cai H, Xu J, Yang L, Cai W, Xu W, Wu S, Zhang W, Jiang S, Zheng L, Zhang X, Wang L, Lu L, Li J, Yin H, Wang W, Li O, Zhang C, Liang L, Wu T, Deng R, Wei K, Zhou Y, Chen T, Lau JY, Fok M, He J, Lin T, Li W, Wang G. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of Covid-19 Pneumonia Using Computed Tomography. Cell. 2020;181:1423-1433.
– reference: 10. Zhu H, Cao Z, Lian L, Ye G, Gao H, Wu J. CariesNet: a deep learning approach for segmentation of multi-stage caries lesion from oral panoramic X-ray image. Neural Computing and Applications. 2022. doi: 10.1007/s00521-021-06684-2
– reference: 8. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB. Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiology. 2019. doi: 10.1259/dmfr.20180051
– reference: 9. Lee JH, Kim DH, Jeong SN, Choi SH. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm. Journal of Dentistry. 2018;77:106-111.
– reference: 18. Ridnik T, Ben-Baruch E, Noy A, Zelnik L. ImageNet-21K Pretraining for the Masses. NeurIPS Datasets and Benchmarks. 2021. doi: 10.48550/arXiv.2104.10972
– reference: 13. He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. Computer Vision and Pattern Recognition. 2017. doi: 10.48550/arXiv.1703.06870
– reference: 23. Sukegawa S, Matsuyama T, Tanaka F, Hara T, Yoshii K, Yamashita K, Nakano K, Takabatake K, Kawai H, Nagatsuka H, Furuki Y. Evaluation of multi‑task learning in deep learning‑based positioning classifcation of mandibular third molars. Nature Scientific Reports. 2022;12:684.
– reference: 14. Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, Zitnick CL, Dollár P. Microsoft COCO: Common Objects in Context. European Conference on Computer Vision. 2014. doi: 10.48550/arXiv.1405.0312
– reference: 21. Pell GJ, Gregory GT. Impacted Mandibular Third Molars: Classification and Modified Technique for Removal. Dental Digest. 1933;39(9):330-338.
SSID ssib007834049
ssj0058250
ssib000872104
Score 2.2627409
SourceID jstage
SourceType Publisher
StartPage 24
SubjectTerms パノラマX線画像
人工知能
歯科支援システム
画像認識
Title AIを用いたパノラマX線画像からのカルテ入力支援システムの開発
URI https://www.jstage.jst.go.jp/article/dentalradiology/62/1/62_24/_article/-char/ja
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 歯科放射線, 2022, Vol.62(1), pp.24-34
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9VAMJR68SKKivWLHtyTpObtJpvd4-5rHq2iILT4bo_kJTm8Q5XSXry9FxW0YFGKoIJ6ERRBL0JRf87SPvwXzk427dP2YEUIYZidmZ2dybIzm_3wvCslL1phzEufZmXqh6EsfMnz1BdRLkPIV2SG96fcvMUXlsPr3ag7NT0zsWppfS2b698_dF_Jv3gVcOBXu0v2CJ7dEwoIgMG_8AYPw_uvfKwWScKIoERSksREhkQJxLSICB0gOwgwIlsOEIkDlGyKkq7l1yBCOUFakyRC6k4jUbvKhHQYlTiM0o3EBhAc2SOiIgQUkVDEUcWOBUCsDh071OsAOcFeCwwm6pJEclQDNJTEzTC4wNrKVPMoPCYqxtZidTqxCugALeLa2HxlqFqb2FOC21eRMbAsCXApKNgng9oYNgVLZFTTc6IjNGJkNddsn14QpdBOtS2Dhl7VagBKkPpqqWbGhe5n5pYLeDUKhnZbn0DT58FNFgM20LV1BVbOrSGdu7TVzWIYAqitVlg1NFJhmWwT1T6SuVAPIOYosd0Y0O2HE9KXcVCvGSgQB_Fc5HPmhjc3_nF6oJ-7wSycCIvqKeeDAy6EeNBNcty7u5rm9R6rOU7nGu7fDjN3XaX3B32P017LvmjYa0jsrsPeAFKfYzSOW3a17o3bk5lDTCdnEux9MfjDuA7CIkHxcuY9I7jDAay61w5VFiLQAeRjzVpODC-XTnonXF44q2q1TnlTg_S0d0ctmtHz8dYHM3xghm9N9cxUT0310VRvuuPtV-OtHzvVphlumNFjM_xsRp9MBc-jnYfvd5683t36srv51Yy2zegbIE31Dmh-vtgYv_x-xlvuJEvtBd_dhOIPICURflYEURD2WZ6VNJCU2t_rAeUZz-1xm0XJGRNpn0FqVhRxmcuMRTlYIC5knhZhFrKz3vTK3ZXinDfLwoIWedqKWd63yVga8zQqSkFLLnlK0xlP1Xbo3auPu-kd3Wfn_4OMC95x2_fq2c6L3vTa6npxCeL_tewyfgm_APUw2yU
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AI%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E3%83%91%E3%83%8E%E3%83%A9%E3%83%9EX%E7%B7%9A%E7%94%BB%E5%83%8F%E3%81%8B%E3%82%89%E3%81%AE%E3%82%AB%E3%83%AB%E3%83%86%E5%85%A5%E5%8A%9B%E6%94%AF%E6%8F%B4%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E3%81%AE%E9%96%8B%E7%99%BA&rft.jtitle=%E6%AD%AF%E7%A7%91%E6%94%BE%E5%B0%84%E7%B7%9A&rft.au=%E5%8C%97%2C+%E7%A0%94%E4%BA%8C&rft.au=%E9%B3%A5%E4%BA%95%2C+%E6%B5%A9%E5%B9%B3&rft.au=%E8%AA%89%E7%94%B0%2C+%E6%A0%84%E4%B8%80&rft.date=2022&rft.pub=%E7%89%B9%E5%AE%9A%E9%9D%9E%E5%96%B6%E5%88%A9%E6%B4%BB%E5%8B%95%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%AD%AF%E7%A7%91%E6%94%BE%E5%B0%84%E7%B7%9A%E5%AD%A6%E4%BC%9A&rft.issn=0389-9705&rft.eissn=2185-6311&rft.volume=62&rft.issue=1&rft.spage=24&rft.epage=34&rft_id=info:doi/10.11242%2Fdentalradiology.62.24&rft.externalDocID=article_dentalradiology_62_1_62_24_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-9705&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-9705&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-9705&client=summon