A Method for Estimation of Traffic States Considering Floating Car Data in a Large Network

This study proposes a computationally efficient method for the traffic states estimation by using floating car data. The traffic states in a road network are obtained by solving a full information maximum likelihood estimation (FIMLE) problem under user equilibrium (UE) constraints. Solving the FIML...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Eastern Asia Society for Transportation Studies Vol. 15; pp. 1029 - 1048
Main Authors DUAN, Kaifeng, TANI, Ryuichi, UCHIDA, Kenetsu, ZUSHII, Keita, NAGAOKA, Osamu
Format Journal Article
LanguageEnglish
Published Eastern Asia Society for Transportation Studies 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study proposes a computationally efficient method for the traffic states estimation by using floating car data. The traffic states in a road network are obtained by solving a full information maximum likelihood estimation (FIMLE) problem under user equilibrium (UE) constraints. Solving the FIMLE problem under UE constraints requires much computations time. Therefore, a solution algorithm based on the sensitivity analysis for UE is proposed in this study. We estimate the traffic states in the Asahikawa network in Hokkaido, Japan by applying the method proposed in this study.
AbstractList This study proposes a computationally efficient method for the traffic states estimation by using floating car data. The traffic states in a road network are obtained by solving a full information maximum likelihood estimation (FIMLE) problem under user equilibrium (UE) constraints. Solving the FIMLE problem under UE constraints requires much computations time. Therefore, a solution algorithm based on the sensitivity analysis for UE is proposed in this study. We estimate the traffic states in the Asahikawa network in Hokkaido, Japan by applying the method proposed in this study.
Author TANI, Ryuichi
ZUSHII, Keita
NAGAOKA, Osamu
DUAN, Kaifeng
UCHIDA, Kenetsu
Author_xml – sequence: 1
  fullname: DUAN, Kaifeng
  organization: Graduate School of Engineering, Hokkaido University
– sequence: 2
  fullname: TANI, Ryuichi
  organization: Faculty of Engineering, Hokkaido University
– sequence: 3
  fullname: UCHIDA, Kenetsu
  organization: Faculty of Engineering, Hokkaido University
– sequence: 4
  fullname: ZUSHII, Keita
  organization: DOCON CO., LTD
– sequence: 5
  fullname: NAGAOKA, Osamu
  organization: DOCON CO., LTD
BackLink https://cir.nii.ac.jp/crid/1390582020416136832$$DView record in CiNii
BookMark eNo9kL1PwzAQxS0EEm1hZfbAmuKz4zTZqAIFpAIDZWGJrv5oXYqNbEuI_56EIpZ3J91PT_femBz74A0hF8CmADCTVwZTTlOQU2C8OSIjqGsoAHh5SsYp7RirGtY0I_I2p48mb4OmNkR6m7L7wOyCp8HSVURrnaIvGbNJtA0-OW2i8xu62Ice65cWI73BjNR5inSJcWPok8lfIb6fkROL-2TO_-aEvC5uV-19sXy-e2jny2LHJfBipkEA15WWYLmpLJMzrFEoVTGrUcm10KJk1jScQ1nr0jSq_xwQZMmFWXMxIZcHX-9cp9ygIBoma844K6ECUdViwK4P2C5l3JjuM_ZR43eHMTu1N91vYx3Ijg0y1PZ_UluMnfHiByutaPo
ContentType Journal Article
Copyright 2024 Eastern Asia Society for Transportation Studies
Copyright_xml – notice: 2024 Eastern Asia Society for Transportation Studies
DBID RYH
DOI 10.11175/easts.15.1029
DatabaseName CiNii Complete
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-1124
EndPage 1048
ExternalDocumentID article_easts_15_0_15_1029_article_char_en
GroupedDBID 2WC
ALMA_UNASSIGNED_HOLDINGS
JSF
JSH
KQ8
P2P
RJT
RZJ
TKC
RYH
ID FETCH-LOGICAL-j2512-7d1312d6d51f2e6f057a8a3cc60fdac5b3d340fe922148d4e9c0991a15423eb23
IngestDate Fri Jun 27 00:57:54 EDT 2025
Thu Jul 04 14:00:23 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2512-7d1312d6d51f2e6f057a8a3cc60fdac5b3d340fe922148d4e9c0991a15423eb23
OpenAccessLink https://cir.nii.ac.jp/crid/1390582020416136832
PageCount 20
ParticipantIDs nii_cinii_1390582020416136832
jstage_primary_article_easts_15_0_15_1029_article_char_en
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle Journal of the Eastern Asia Society for Transportation Studies
PublicationTitleAlternate Journal of the Eastern Asia Society for Transportation Studies
PublicationTitle_FL Journal of the Eastern Asia Society for Transportation Studies
PublicationYear 2024
Publisher Eastern Asia Society for Transportation Studies
Publisher_xml – name: Eastern Asia Society for Transportation Studies
References Uchida, K., Kato, T. (2017): A simplified network for travel time reliability analysis in a road network. Journal of advanced transportation.
Ramezani, M., Geroliminis, N. (2012): On the estimation of arterial route travel time distribution with Markov chains. Transportation Research Part B. 46(10),1576-1590
Yang, H., M.GH. Bell. (2009): Sensitivity analysis of network traffic equilibrium revisited: the corrected approach. 4th IMA International Conference on Mathematics in Transport Institute of Mathematics and its Applications, September, London, United Kingdom.
Smith, M.J., (1979): The existence, uniqueness and stability of traffic equilibrium. Transportation Research, 13B, 295-304
Jenelius, E., Koutsopoulos, H.N. (2013): Travel time estimation for urban road networks using low frequency probe vehicle data. Transportation Research Part B. 53, 64-81
Liu, H.X., Ma, W. (2009): A virtual vehicle probe model for time dependent travel time estimation on signalized arterials. Transportation Research Part C. 17(1), 11-26
Tani, R., Owada, T., Uchida, K. (2018): Path travel time estimating method by incomplete traffic data. International Journal of Intelligent Transportation Systems Research
Wei, C., Asakura, Y. (2013): A Bayesian approach to traffic estimation in stochastic user equilibrium networks. Transportation Research Part C. 36, 446-459
Tani, R., Uchida, K. (2021): An Estimation Method for Spatiotemporal Traffic States Based on Incomplete Traffic Observation. The 8th International Symposium on Dynamic Traffic Assignment.
Hara, Y., Suzuki, J., Kuwahara, M. (2018): Network-wide traffic state estimation using a mixture Gaussian graphical model and graphical lasso. Transportation Research Part C. 86, 622-638.
Hazelton, M.L. (2010): Bayesian inference for network-based models with a linear inverse structure. Transportation Research Part B. 44(5), 674-685
Tani, R., Uchida, K. (2018): A stochastic user equilibrium assignment model under stochastic demand and supply following lognormal distribution. Asian Transport Studies, 5(2):326-348.
Tani, R., Sumalee, A., Uchida, K. (2021): Travel time reliability-based optimization problem for CAVs dedicated lanes. Transportmetrica A: Transport Science. 18(3):1-56
Zheng, F., Van Zuylen, H. (2013): Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C. 31, 145-157
Tobin, R.L., Frizes, T.L. (1988): Sensitivity analysis for equilibrium network flows. Transportation Science, 22, 242-250.
References_xml – reference: Tani, R., Owada, T., Uchida, K. (2018): Path travel time estimating method by incomplete traffic data. International Journal of Intelligent Transportation Systems Research
– reference: Tani, R., Uchida, K. (2018): A stochastic user equilibrium assignment model under stochastic demand and supply following lognormal distribution. Asian Transport Studies, 5(2):326-348.
– reference: Tani, R., Uchida, K. (2021): An Estimation Method for Spatiotemporal Traffic States Based on Incomplete Traffic Observation. The 8th International Symposium on Dynamic Traffic Assignment.
– reference: Ramezani, M., Geroliminis, N. (2012): On the estimation of arterial route travel time distribution with Markov chains. Transportation Research Part B. 46(10),1576-1590
– reference: Wei, C., Asakura, Y. (2013): A Bayesian approach to traffic estimation in stochastic user equilibrium networks. Transportation Research Part C. 36, 446-459
– reference: Tobin, R.L., Frizes, T.L. (1988): Sensitivity analysis for equilibrium network flows. Transportation Science, 22, 242-250.
– reference: Hazelton, M.L. (2010): Bayesian inference for network-based models with a linear inverse structure. Transportation Research Part B. 44(5), 674-685
– reference: Hara, Y., Suzuki, J., Kuwahara, M. (2018): Network-wide traffic state estimation using a mixture Gaussian graphical model and graphical lasso. Transportation Research Part C. 86, 622-638.
– reference: Jenelius, E., Koutsopoulos, H.N. (2013): Travel time estimation for urban road networks using low frequency probe vehicle data. Transportation Research Part B. 53, 64-81
– reference: Liu, H.X., Ma, W. (2009): A virtual vehicle probe model for time dependent travel time estimation on signalized arterials. Transportation Research Part C. 17(1), 11-26
– reference: Smith, M.J., (1979): The existence, uniqueness and stability of traffic equilibrium. Transportation Research, 13B, 295-304
– reference: Zheng, F., Van Zuylen, H. (2013): Urban link travel time estimation based on sparse probe vehicle data. Transportation Research Part C. 31, 145-157
– reference: Tani, R., Sumalee, A., Uchida, K. (2021): Travel time reliability-based optimization problem for CAVs dedicated lanes. Transportmetrica A: Transport Science. 18(3):1-56
– reference: Yang, H., M.GH. Bell. (2009): Sensitivity analysis of network traffic equilibrium revisited: the corrected approach. 4th IMA International Conference on Mathematics in Transport Institute of Mathematics and its Applications, September, London, United Kingdom.
– reference: Uchida, K., Kato, T. (2017): A simplified network for travel time reliability analysis in a road network. Journal of advanced transportation.
SSID ssj0069099
Score 2.2428234
Snippet This study proposes a computationally efficient method for the traffic states estimation by using floating car data. The traffic states in a road network are...
SourceID nii
jstage
SourceType Publisher
StartPage 1029
SubjectTerms Floating car data
Full Information Maximum-likelihood estimation
Sensitivity analysis
Title A Method for Estimation of Traffic States Considering Floating Car Data in a Large Network
URI https://www.jstage.jst.go.jp/article/easts/15/0/15_1029/_article/-char/en
https://cir.nii.ac.jp/crid/1390582020416136832
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Eastern Asia Society for Transportation Studies, 2024, Vol.15, pp.1029-1048
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoucAB8RQFinzgtkrJw8kmx2i71S6lKwGNVHGJHNtRXUEWlfQAv55vnDSbRVRAL9bKUVbRzOfMN5N5MPYmC0Mp4lR6FeyBJ4QKvcqYxBMgr_VUV9nU9Sk4WSWLQrw7i882MV1XXdJWB-rnH-tKbqNV7EGvVCX7H5od_hQb-A39YoWGsf6TjvPJiRsA7XIF5zisXwcCCBtEzSF6MjnM5aTAwNGXtXTJzjN5Ca23kmIecvKecsKpAJhStW7grMRS59L1VoBirdxK-hz6pHcP8VuG4mGRrybH0tamt5UULshXy8nHH1dWndvrvWK2WB7mVC9k2m4oi4trF58WyyV2bSvHgYpwE6K8zXOZ7nWcpoEHRii23tfx6IULfpSNjDecy_QGwzClJho0D-n7QRBTx4psh90N4VzQ3IvjD8O3pyQDae7be9Jdb7fuAVG5AG2nfgw7jbUjLnL6kD3oFcLzDhGP2B3TPGb3R60ln7DPOe-wwSECvsEGX9e8xwbvsMFH2ODX2ODABidscNtwyR02eI-Np6w4mp_OFl4_R8O7IPbqTXUQBaFOdBzUoUlqUHSZykipxK-1VHEV6Uj4tcG5hXOshckURBBIsOswMjjEz9hus27Mc8bhnGpZw8uuokRoo2QgJXW409QpTmmxx7JOPOW3rllK2R-O0kmxDOLSp4VEOVyi-kIc5z22D4mWytIKx8SPwU5DnzzwKIHhefGX6y_ZPYJdFx97xXbbyyuzD8bYVq-dgn8Bnn5wEg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Estimation+of+Traffic+States+Considering+Floating+Car+Data+in+a+Large+Network&rft.jtitle=Journal+of+the+Eastern+Asia+Society+for+Transportation+Studies&rft.au=DUAN+Kaifeng&rft.au=TANI+Ryuichi&rft.au=UCHIDA+Kenetsu&rft.au=ZUSHII+Keita&rft.date=2024&rft.pub=Eastern+Asia+Society+for+Transportation+Studies&rft.eissn=1881-1124&rft.volume=15&rft.spage=1029&rft.epage=1048&rft_id=info:doi/10.11175%2Feasts.15.1029