A unique electronic state in a ferromagnetic semiconductor FeCl2 monolayer

Two-dimensional (2D) van der Waals (vdW) magnetic materials could be an ideal platform for ultracompact spintronic applications. Among them, the FeCl2 monolayer in the triangular lattice is subject to a strong debate. Thus, we critically examine its spin-orbital state, electronic structure, and magn...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. C, Materials for optical and electronic devices Vol. 10; no. 20; pp. 8009 - 8014
Main Authors Lu, Di, Liu, Lu, Ma, Yaozhenghang, Yang, Ke, Wu, Hua
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2022
Subjects
Online AccessGet full text
ISSN2050-7526
2050-7534
DOI10.1039/d2tc00554a

Cover

Loading…
Abstract Two-dimensional (2D) van der Waals (vdW) magnetic materials could be an ideal platform for ultracompact spintronic applications. Among them, the FeCl2 monolayer in the triangular lattice is subject to a strong debate. Thus, we critically examine its spin-orbital state, electronic structure, and magnetic properties, using a set of delicate first-principles calculations, crystal field level analyses, and Monte Carlo simulations. Our work reveals that the FeCl2 monolayer is a ferromagnetic (FM) semiconductor in which the electron correlation of the narrow Fe 3d bands determines the band gap of about 1.2 eV. Note that only when the spin–orbit coupling (SOC) is properly handled, the unique [Formula Omitted] electronic ground state is achieved. Then, both the orbital and spin contributions (0.59 μB plus 3.56 μB) to the total magnetic moment well account for, for the first time, the experimental perpendicular moment of 4.3 μB per Fe. Moreover, we find that a compressive strain further stabilizes the [Formula Omitted] ground state, and that the enhanced magnetic anisotropy and exchange coupling would boost the Curie temperature (TC) from 25 K for the pristine FeCl2 monolayer to 69–102 K under 3–5% compressive strain. Therefore, FeCl2 monolayer is indeed an appealing 2D FM semiconductor.
AbstractList Two-dimensional (2D) van der Waals (vdW) magnetic materials could be an ideal platform for ultracompact spintronic applications. Among them, the FeCl2 monolayer in the triangular lattice is subject to a strong debate. Thus, we critically examine its spin-orbital state, electronic structure, and magnetic properties, using a set of delicate first-principles calculations, crystal field level analyses, and Monte Carlo simulations. Our work reveals that the FeCl2 monolayer is a ferromagnetic (FM) semiconductor in which the electron correlation of the narrow Fe 3d bands determines the band gap of about 1.2 eV. Note that only when the spin–orbit coupling (SOC) is properly handled, the unique [Formula Omitted] electronic ground state is achieved. Then, both the orbital and spin contributions (0.59 μB plus 3.56 μB) to the total magnetic moment well account for, for the first time, the experimental perpendicular moment of 4.3 μB per Fe. Moreover, we find that a compressive strain further stabilizes the [Formula Omitted] ground state, and that the enhanced magnetic anisotropy and exchange coupling would boost the Curie temperature (TC) from 25 K for the pristine FeCl2 monolayer to 69–102 K under 3–5% compressive strain. Therefore, FeCl2 monolayer is indeed an appealing 2D FM semiconductor.
Author Ma, Yaozhenghang
Wu, Hua
Yang, Ke
Liu, Lu
Lu, Di
Author_xml – sequence: 1
  givenname: Di
  surname: Lu
  fullname: Lu, Di
– sequence: 2
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
– sequence: 3
  givenname: Yaozhenghang
  surname: Ma
  fullname: Ma, Yaozhenghang
– sequence: 4
  givenname: Ke
  surname: Yang
  fullname: Yang, Ke
– sequence: 5
  givenname: Hua
  surname: Wu
  fullname: Wu, Hua
BookMark eNo9T01LxDAUDLKC67oXf0HAc_UladLmuCyuHyx40fPymrxKS5tomh7891YU5zIDA_NxyVYhBmLsWsCtAGXvvMwOQOsSz9hagoai0qpc_WtpLth2mnpYUAtTG7tmzzs-h-5zJk4DuZxi6ByfMmbiXeDIW0opjvgeKP8YNHYuBj-7HBM_0H6QfIwhDvhF6YqdtzhMtP3jDXs73L_uH4vjy8PTfncselnaXFQejG2VcUjgamxMW0mFIEFYT157XXmLi5ZSAHkpWrJonG8q6ZF03agNu_nN_UhxGT7lUx_nFJbKkzTGagHLa_UNmt1RnA
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID 7SP
7U5
8FD
L7M
DOI 10.1039/d2tc00554a
DatabaseName Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2050-7534
EndPage 8014
GroupedDBID 0-7
0R~
4.4
705
7SP
7U5
8FD
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
L7M
O-G
O9-
R7C
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
SKA
SKF
SLH
ID FETCH-LOGICAL-j249t-7d069f36cae0c8ab6f723a02019ded5d57d9a19d2210ed21fe9a6cdb72dae58b3
ISSN 2050-7526
IngestDate Mon Jun 30 03:46:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j249t-7d069f36cae0c8ab6f723a02019ded5d57d9a19d2210ed21fe9a6cdb72dae58b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2669510534
PQPubID 2047521
PageCount 6
ParticipantIDs proquest_journals_2669510534
PublicationCentury 2000
PublicationDate 20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 20220101
  day: 01
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of materials chemistry. C, Materials for optical and electronic devices
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
SSID ssj0000816869
Score 2.3656812
Snippet Two-dimensional (2D) van der Waals (vdW) magnetic materials could be an ideal platform for ultracompact spintronic applications. Among them, the FeCl2...
SourceID proquest
SourceType Aggregation Database
StartPage 8009
SubjectTerms Compressive properties
Curie temperature
Electron spin
Electron states
Electronic structure
Ferromagnetic materials
First principles
Ground state
Iron chlorides
Magnetic anisotropy
Magnetic materials
Magnetic moments
Magnetic properties
Magnetism
Monolayers
Spin-orbit interactions
Title A unique electronic state in a ferromagnetic semiconductor FeCl2 monolayer
URI https://www.proquest.com/docview/2669510534
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKrpDYA4IFxGNBPnCLsiR2nMTHqmq1LGW5pFJvlWM7SxEkqE0Ou_-F_8rYcR5LEQIuUeJEltuZzIy_fDOD0FsqQ5brlPkk1dKPUsL9lIa5TyUhWnOZU2W-6H68ii9W0eWarSeTHyPWUlPn5_L2t3kl_yNVGAO5mizZf5BsPykMwDnIF44gYTj-lYynXuPqrw7NbGyGkEExhFfo3a76Jq5Lk6jo7Q0NvipNfddq5y307CvxYKWwtb1xDN3DGBXC2fZ3eLJrDHfuzdocn-6O4SlW3-u-6sBoLUpbO9STfhpr4bb99dYOLJsBFrceQVS3n3V5baDs3ig5WPuDHsMUhPwCU7RgSMdEtUwTt-zB4JGABX7CiCuNPR5zgGdnsYORZpJgZH8h_OVjXx60GaoHfiKgpsyqIrU0RciikTfsGABXnzaL1XK5yebr7B46JkliWADH03n2ftmDeLZriW2b2K-9K4FL-bth-gNHb6OX7BF66ESKp60OPUYTXZ6ik1ExylN035KB5f4JupziVq_wIEts9QpvSyzwHb3Cd_QKW73CvV49RavFPJtd-K7nhv8FNuK1n6gg5gWNpdCBTEUeFwmhAvYUIVdaMcUSxQWcExIGWpGw0FzEUuUJUUKzNKfP0FFZlfo5wjE8HaY6LBhnERHw2kcSptKwo0_SlIsX6Kz7UzbupdpvIF60MT-NXv759iv0YFCzM3RU7xr9GuLDOn_jpPQTyMZrXw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+unique+electronic+state+in+a+ferromagnetic+semiconductor+FeCl2+monolayer&rft.jtitle=Journal+of+materials+chemistry.+C%2C+Materials+for+optical+and+electronic+devices&rft.au=Lu%2C+Di&rft.au=Liu%2C+Lu&rft.au=Ma%2C+Yaozhenghang&rft.au=Yang%2C+Ke&rft.date=2022-01-01&rft.pub=Royal+Society+of+Chemistry&rft.issn=2050-7526&rft.eissn=2050-7534&rft.volume=10&rft.issue=20&rft.spage=8009&rft.epage=8014&rft_id=info:doi/10.1039%2Fd2tc00554a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-7526&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-7526&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-7526&client=summon