機械学習を活用した抵抗スポット溶接条件 − ナゲット形状関係の整理

In this study, the effects of resistance spot welding conditions on the nugget diameter, which was one of the major influencing factors of resistance spot weld joint strength, was modeled by a machine learning method which had been proposed by the authors in recent years. Then, the applicability of...

Full description

Saved in:
Bibliographic Details
Published in溶接学会論文集 Vol. 38; no. 2; pp. 53 - 59
Main Authors 北野, 萌一, 佐藤, 彰, 伊與田, 宗慶, 中村, 照美
Format Journal Article
LanguageJapanese
Published 一般社団法人 溶接学会 2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, the effects of resistance spot welding conditions on the nugget diameter, which was one of the major influencing factors of resistance spot weld joint strength, was modeled by a machine learning method which had been proposed by the authors in recent years. Then, the applicability of constructed model and the effect of resistance spot welding conditions on the nugget diameters were discussed. The feature of the machine learning method used in this study was that the relationship between input and output could be derived as an easy-to-understand mathematical expression. A resistance spot welding condition-nugget diameter database was created through experiments using 590MPa class steel plates, and a nugget diameter prediction model was constructed to reproduce the database appropriately. As a result, it was indicated that the nugget diameter prediction model can predict the nugget diameter under welding conditions used for model construction and those not used precisely. Furthermore, it was found that the nugget diameter prediction model was composed of two terms that were presumed to reflect the spread of material melting due to heat input and the phenomenon at the beginning of energization.
AbstractList In this study, the effects of resistance spot welding conditions on the nugget diameter, which was one of the major influencing factors of resistance spot weld joint strength, was modeled by a machine learning method which had been proposed by the authors in recent years. Then, the applicability of constructed model and the effect of resistance spot welding conditions on the nugget diameters were discussed. The feature of the machine learning method used in this study was that the relationship between input and output could be derived as an easy-to-understand mathematical expression. A resistance spot welding condition-nugget diameter database was created through experiments using 590MPa class steel plates, and a nugget diameter prediction model was constructed to reproduce the database appropriately. As a result, it was indicated that the nugget diameter prediction model can predict the nugget diameter under welding conditions used for model construction and those not used precisely. Furthermore, it was found that the nugget diameter prediction model was composed of two terms that were presumed to reflect the spread of material melting due to heat input and the phenomenon at the beginning of energization.
Author 中村, 照美
北野, 萌一
伊與田, 宗慶
佐藤, 彰
Author_xml – sequence: 1
  fullname: 北野, 萌一
  organization: 国立研究開発法人 物質・材料研究機構
– sequence: 2
  fullname: 佐藤, 彰
  organization: 大阪工業大学
– sequence: 3
  fullname: 伊與田, 宗慶
  organization: 大阪工業大学
– sequence: 4
  fullname: 中村, 照美
  organization: 国立研究開発法人 物質・材料研究機構
BookMark eNo9kMtKw0AARQepYK1d-QP9gdR5ZJjJRpDiCwpudB1m0kQb6ispiMsmICULkaJ2VYoFRReKSC1okf6L007wL0Qrbs5dHLiLMw8yB4cHLgCLCBYxhmzp2PdPwiLhRUpmQBabxDQ4pjgDshBzbpiMoTmQD8OqhJBaEHHGs8DWD13de5483qWjlopauj9ML-9Vo60aXZ286qStojcVd1Qcq7ip3wf6_FZ3bsbDQeGz2SqoOFHRy1ROPnppMvi67o1HkWo86at-enG2AGY9UQvd_N_mwM7a6nZpwyhvrW-WVsqGj01eNziEkjnCEQwhj0gkJcUcEuwJ6SCIaYViS3oVyCxpOVhYhJkWdDhHiBBJqUdyYHn664d1sevaR0F1XwSntgjqVafm2r9xbMJt_ANK_oWzJwLbF-Qb_dGCUQ
ContentType Journal Article
Copyright 2020 社団法人 溶接学会
Copyright_xml – notice: 2020 社団法人 溶接学会
DOI 10.2207/qjjws.38.53
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2434-8252
EndPage 59
ExternalDocumentID article_qjjws_38_2_38_53_article_char_ja
GroupedDBID 123
2WC
ALMA_UNASSIGNED_HOLDINGS
CS3
E3Z
JSF
KQ8
OK1
RJT
ID FETCH-LOGICAL-j248t-800b7caca711f3b1bb528032fabc1025d529bfd079b9c2a937490c881133b55f3
ISSN 0288-4771
IngestDate Wed Apr 05 02:09:56 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j248t-800b7caca711f3b1bb528032fabc1025d529bfd079b9c2a937490c881133b55f3
OpenAccessLink https://www.jstage.jst.go.jp/article/qjjws/38/2/38_53/_article/-char/ja
PageCount 7
ParticipantIDs jstage_primary_article_qjjws_38_2_38_53_article_char_ja
PublicationCentury 2000
PublicationDate 2020
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle 溶接学会論文集
PublicationYear 2020
Publisher 一般社団法人 溶接学会
Publisher_xml – name: 一般社団法人 溶接学会
References 8) H. Kitano and T. Nakamura: Combined Artificial Neural Network and Least Squares Method for Exploring Relationships between Welding Conditions and Weld Characteristics, Welding Letters, 36, 4 (2018), 5WL-8WL.
17) R. Ikeda, Y. Okitano, M. Ono, K. Yasuda and T. Terasaki: Development of Advanced Resistance Spot Welding Process Using Control of Electrode Force and Welding Current during Welding, QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 28, 1 (2010), 141-148. (in Japanese
12) M. T. Hagan, M. Menhaj: Training feed-forward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5, 6 (1994), 989-993.
15) M. Iyota, Y. Mikami, T. Hashimoto, K. Taniguchi, R. Ikeda and M. Mochizuki: Numerical Simulation of Nugget Size and Residual Stress of Resistance Spot Welded HT980 Steel Sheet, QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 29, 2 (2011), 86-95. (in Japanese
6) D. Afshari, M. Sedighi, M. R. Karimi and Z. Barsoum: Prediction of the nugget size in resistance spot welding with a combination of a finite-element analysis and an artificial neural network, Materials and technology, 48-1 (2014), 33-38.
10) H. Kitano: Numeric Law Discovery and Knowledge Extraction from Welding Phenomena Using Machine Learning Technique, Materia Japan, 58, 8 (2019), 449-452. (in Japanese
11) David E. Rumelhart, Geoffrey E. Hinton and Ronald J. Williams: Learning representations by back-propagating errors, Nature, 323 (1986), 533-536.
19) M. Matsushita, R. Ikeda and K. Oi: Development of Single-Side Resistance Spot Welding Technology Applying In-Process Welding Current and Electrode Force Controls, QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 32, 3 (2014), 191-200. (in Japanese
9) H. Kitano and T. Nakamura: Automatic Derivation of Empirical Formulas for Characteristics of Weld Joints Using Machine Learning Based Technique, JOURNAL OF THE JAPAN WELDING SOCIETY, 88, 7 (2019), 532-535. (in Japanese
1) M. Kabasawa, Y. Funakawa, K. Ogawa and M. Temura: Estimation of Tensile Shear Strength of Spot Welded Joint of Steel Sheets, Quarterly Journal of the Japan Welding Society, 14-4 (1996), 754-761. (in Japanese
16) R. Ikeda, Y. Okita, M. Ono and K. Yasuda: Development of Resistance Spot Welding Process for Three Sheet Joints Using Electrode Force Control “Intelligent Spot Welding”, Materia Japan, 48 (2009),76-78. (in Japanese
3) M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi and M. Goodarzi: Effect of weld nugget size on overload failure mode of resistance spot welds, Science and Technology of Welding and Joining, 12, 3 (2007), 217-225.
5) T. Yiming, F. Ping, Z. Yong and Y. Siqian: Evaluating Nugget Sizes of Spot Welds by Using Artificial Neural Network, Proceedings of International Conference on Computational Intelligence, (1999), 53-58.
7) K. Saito and R. Nakano: Law Discovery using Neural Networks, Proceedings of the 15th International Joint Conference on Artificial Intelligence, (1997), 1078-1083.
14) David J.C. MacKay: Bayesian Interpolation, Neural Computation, 4, 3 (1992), 415-447.
13) K. Saito and R. Nakano: Partial BFGS Update and Efficient Step-Length Calculation for Three-Layer Neural Networks, Neural Computation, 9, 1 (1997), 123-141.
18) H. Nishibata, S. Kikuchi, M. Fukumoto and M. Uchihara: Single-Side resistance Spot Welding process for joining pipes and sheets, International Journal of Automation Technology., 7, 1 (2013), 114-119.
2) H. Oikawa, G. Murayama, S. Hiwatashi and K. Matsuyama: Resistance Spot Weldability of High Strength Steel Sheets for Automobiles and the Quality Assurance of Joints, Welding in the World, 51-3-4 (2007), 7-18.
4) D. Q. Sun, B. Lang, D. X. Sun and J. B. Li: Microstructures and mechanical properties of resistance spot welded magnesium alloy joints, Materials Science and Engineering: A, 460-461 (2007), 494-498.
20) H. Nishibata, S. Kikuchi, M. Uchihara, Y. Sato and H. Kokawa: Influencing Factors on Nugget Formation during Multipoint Welding by Single Side Resistance Spot Welding, QUARTERLY JOURNAL OF THE JAPAN WELDING SOCIETY, 34, 1 (2014), 42-49. (in Japanese
References_xml
SSID ssib005901878
ssib000937286
ssib044765221
ssj0033573
ssib031741155
ssib000961621
ssib023161316
ssib023168149
ssib002224207
ssib029852163
Score 2.273949
Snippet In this study, the effects of resistance spot welding conditions on the nugget diameter, which was one of the major influencing factors of resistance spot weld...
SourceID jstage
SourceType Publisher
StartPage 53
SubjectTerms Machine learning technique
Nugget diameter
Prediction model
Resistance spot welding
Welding condition
Title 機械学習を活用した抵抗スポット溶接条件 − ナゲット形状関係の整理
URI https://www.jstage.jst.go.jp/article/qjjws/38/2/38_53/_article/-char/ja
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 溶接学会論文集, 2020, Vol.38(2), pp.53-59
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Na9RANJR60YP4id-s4JzKrslMJpk5JtssRainCr2FTDZ72EP92iJ4ELoLUvYgUtSeSrGg6EERqQUt0v9i2iz-C9-bZHezpYdaWMJs5n2_JPPeMPPGMO40ueM2qeVUqbJY1VaCV4VqJdWIC2lGdtQyBW4Unr_vzD2w7y3yxanp26VVS8sdVYufH7mv5CRehXvgV9wl-x-eHRGFG9AG_8IVPAzXY_mYBA7xJJEN3aDEN0nAiTdLPIcELvEbRFISMCKobjjEt4nvY5e0iSd0l0WkO2xoOsIjPi8aRRdQlrrBiJwtGvArGkJTBixHYwXE0-gA6Vkk0Bx9Z0avqhAgx8wQzxvSpkeR5MSfRZ1AWJHTBkW1lkiygYi51F6guXFUDjUzSVH1uj020mHpRkYCUnUiQRJBPB_pIykAczU7f0gKnkhEEnVtEYn9Qi8jRUTkWNekBBHmGN5GDaATQVzi2Tm81sufBKtrYwjUGzlr94AvC3hQELmCVIDrTCAK1CO3tbRyeBfBPE3FD0DK8rQONUev4Ejegq9XRwwQEpCAJ6juMW05hqZFYDChN3McY5bGFipwUjU__aaW6HvUZnZVUD4xODJR-gjQ0kiXl3guYqa8qPvh0ZhSvQDncbv97GmNidoQZaK8efHyhBoqZCKkeOEsHHbg7sOwDSnQKQpjCa7anX8RlCfkXFqqgIgnGDnliBRCVGpObrUW4wp2kN1APDvOkPC_sMYzElQKiG_HFeog2rYhhxoNgbbtOpDBjFaVMcbzRS1D--ZbgtESd0t2gHC3DcnfcOGojmUXzhlniyS04uW6nzem2tEF40ypNOlFI8w-b2Zb3w6-fBzsraXdtWx7d_DmU7qynq5sZv0fWX897f5Mextpr5f2VrNfO9mrD9nG-_3dncqf1bVK2uun3e9558HvrUF_5--7rf29brryNXu7PXj98pLxoBEs1OeqxWEs1Ta1RQciWVO5cRRHrmW1mLKU4niwHW1FKoYkhTc5larVNF2pZEwjcIstzVgIy2JMcd5il43ppYdLyRWjEqtEcUmt2JHCZomQiZKqmbTwpLzETuKrhptbJ3yUV9wJj_uQXDsx5nXjNL6F-eTqDWO682Q5uQnpRkfd0g_cPxXN8zw
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%82%92%E6%B4%BB%E7%94%A8%E3%81%97%E3%81%9F%E6%8A%B5%E6%8A%97%E3%82%B9%E3%83%9D%E3%83%83%E3%83%88%E6%BA%B6%E6%8E%A5%E6%9D%A1%E4%BB%B6+%E2%88%92+%E3%83%8A%E3%82%B2%E3%83%83%E3%83%88%E5%BD%A2%E7%8A%B6%E9%96%A2%E4%BF%82%E3%81%AE%E6%95%B4%E7%90%86&rft.jtitle=%E6%BA%B6%E6%8E%A5%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E5%8C%97%E9%87%8E%2C+%E8%90%8C%E4%B8%80&rft.au=%E4%BD%90%E8%97%A4%2C+%E5%BD%B0&rft.au=%E4%BC%8A%E8%88%87%E7%94%B0%2C+%E5%AE%97%E6%85%B6&rft.au=%E4%B8%AD%E6%9D%91%2C+%E7%85%A7%E7%BE%8E&rft.date=2020&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%BA%B6%E6%8E%A5%E5%AD%A6%E4%BC%9A&rft.issn=0288-4771&rft.eissn=2434-8252&rft.volume=38&rft.issue=2&rft.spage=53&rft.epage=59&rft_id=info:doi/10.2207%2Fqjjws.38.53&rft.externalDocID=article_qjjws_38_2_38_53_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0288-4771&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0288-4771&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0288-4771&client=summon