CT画像における結節状陰影検出の性能改良

We have developed an automated computerized schema for the detection of lung nodules in 3D CT images obtained by helical CT. In our previous schema, linear discriminant analysis (LDA) and a rule-based method with 53 image features were employed in order to reduce false positives. However, several fa...

Full description

Saved in:
Bibliographic Details
Published in日本放射線技術学会雑誌 Vol. 64; no. 3; pp. 316 - 324
Main Authors 水戸川, 芳巳, 川下, 郁生, 大倉, 保彦, 石田, 隆行, 山本, めぐみ, 秋山, 實利, 影本, 正行, 祖母井, 努, 石根, 正博, 藤川, 光一, 伊藤, 勝陽
Format Journal Article
LanguageJapanese
Published 公益社団法人 日本放射線技術学会 2008
Subjects
Online AccessGet full text
ISSN0369-4305
1881-4883
DOI10.6009/jjrt.64.316

Cover

Abstract We have developed an automated computerized schema for the detection of lung nodules in 3D CT images obtained by helical CT. In our previous schema, linear discriminant analysis (LDA) and a rule-based method with 53 image features were employed in order to reduce false positives. However, several false positives have remained. Therefore, in this study, we improved the false-positive reduction technique by using the edge image and radial image analysis. Overall performance for the detection of lung nodules was greatly improved. Sensitivity was higher than that of our previous study. Moreover, we evaluated the overall performance of the new scheme by using 69 cases acquired from four hospitals. The average number of false positives was 5.2 per case at a percent sensitivity of 95.8%. Our new scheme would assist in the detection of early lung cancer.
AbstractList We have developed an automated computerized schema for the detection of lung nodules in 3D CT images obtained by helical CT. In our previous schema, linear discriminant analysis (LDA) and a rule-based method with 53 image features were employed in order to reduce false positives. However, several false positives have remained. Therefore, in this study, we improved the false-positive reduction technique by using the edge image and radial image analysis. Overall performance for the detection of lung nodules was greatly improved. Sensitivity was higher than that of our previous study. Moreover, we evaluated the overall performance of the new scheme by using 69 cases acquired from four hospitals. The average number of false positives was 5.2 per case at a percent sensitivity of 95.8%. Our new scheme would assist in the detection of early lung cancer.
Author 影本, 正行
祖母井, 努
石田, 隆行
水戸川, 芳巳
伊藤, 勝陽
秋山, 實利
藤川, 光一
川下, 郁生
石根, 正博
山本, めぐみ
大倉, 保彦
Author_xml – sequence: 1
  fullname: 水戸川, 芳巳
  organization: 国家公務員共済組合連合会呉共済病院放射線科
– sequence: 1
  fullname: 川下, 郁生
  organization: 広島国際大学保健医療学部診療放射線学科
– sequence: 1
  fullname: 大倉, 保彦
  organization: 広島国際大学大学院総合人間科学研究科医療工学専攻
– sequence: 1
  fullname: 石田, 隆行
  organization: 広島国際大学大学院総合人間科学研究科医療工学専攻
– sequence: 1
  fullname: 山本, めぐみ
  organization: 広島国際大学大学院総合人間科学研究科医療工学専攻
– sequence: 1
  fullname: 秋山, 實利
  organization: 広島国際大学大学院総合人間科学研究科医療工学専攻
– sequence: 1
  fullname: 影本, 正行
  organization: 広島市立広島市民病院放射線科
– sequence: 1
  fullname: 祖母井, 努
  organization: 国家公務員共済組合連合会吉島病院放射線科
– sequence: 1
  fullname: 石根, 正博
  organization: 広島市立安佐市民病院放射線科(現:医療法人一陽会原田病院放射線科)
– sequence: 1
  fullname: 藤川, 光一
  organization: JA広島厚生連廣島総合病院画像診断部
– sequence: 1
  fullname: 伊藤, 勝陽
  organization: 広島大学大学院医歯薬学総合研究科展開医科学専攻
BookMark eNo9j89Kw0AYxBepYKw9-RypX7LfbjY3JfgPCl7qOWySVRNqlSQXb409iPWgQi-CR8GDYPWgoNKnCUnqWxipeJmBmWHgt0wa_ZO-ImTVgDYHsNeiKE7bHNvU4AtEM4QwdBSCNogGlNs6UmBLpJUkoQf1vI4ANSKcbjX-KobXefaUZ6M8u83Pr6q3m2oyqEbv33cvxfS1fLgvLj7z7LkcPM6G03L8MbucrJDFA9lLVOvPm2R_a7Pr7Oidve1dZ6OjRyYK0FGZAB71PIsxwSS1UHqBYsJmniWRSYurgAWAlEMgfRaYAZiIgIbPLckZ0iZZn_9GSSoPlXsah8cyPnNlnIZ-T7m_1C5Hl86lhv-v_CMZu5GkP_InZus
ContentType Journal Article
Copyright 2008 公益社団法人 日本放射線技術学会
Copyright_xml – notice: 2008 公益社団法人 日本放射線技術学会
DOI 10.6009/jjrt.64.316
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1881-4883
EndPage 324
ExternalDocumentID article_jjrt_64_3_64_3_316_article_char_ja
GroupedDBID .LE
2WC
ABJNI
ACGFS
ALMA_UNASSIGNED_HOLDINGS
KQ8
OK1
RJT
ID FETCH-LOGICAL-j2480-4e200b3bb75585a374abde5895b7a45a76ed5d04360dac5d2d0244041c67a6543
ISSN 0369-4305
IngestDate Wed Sep 03 06:29:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2480-4e200b3bb75585a374abde5895b7a45a76ed5d04360dac5d2d0244041c67a6543
OpenAccessLink https://www.jstage.jst.go.jp/article/jjrt/64/3/64_3_316/_article/-char/ja
PageCount 9
ParticipantIDs jstage_primary_article_jjrt_64_3_64_3_316_article_char_ja
PublicationCentury 2000
PublicationDate 20080000
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 20080000
PublicationDecade 2000
PublicationTitle 日本放射線技術学会雑誌
PublicationTitleAlternate 日放技学誌
PublicationYear 2008
Publisher 公益社団法人 日本放射線技術学会
Publisher_xml – name: 公益社団法人 日本放射線技術学会
References 3)重本加奈恵,滝沢穂高,山本眞司,他:3 次元結節・血管モデルとテンプレートマッチングを用いた胸部X線CT画像からの結節陰影の高速認識.Med Imag Tech,21(2),147-155,(2003
10) Jiang H, Yamamoto S, Iisaku S, et al.: Computer-aided diagnosis system for lung cancer screening by CT. in Doi K, et al. (eds) : Computer-Aided Diagnosis in Medical Imaging. pp.25-30, (1999).
2)上巻第55表病院数(重複計上)台数,診療機器・一般病院(再掲)・開設者別,厚生労働省データベース,医療施設調査,(1999
7) Arimura H, Katsuragawa S, Suzuki K, et al.: Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol, 11 (6), 617-629, (2004).
14) Gurcan MN, Sahiner B, Petrick N, et al.: Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys, 29 (11), 2552-2558. (2002).
4)李 鎔範,原 武史,藤田広志:胸部ヘリカルCT画像を用いたシミュレーションによるGAテンプレートマッチング法の評価.医用画像情報通信学会雑誌,17(3),118-129,(2000
6) Li Q, Sone S, Doi K: Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys, 30 (8), 2040-2051, (2003).
1)上巻第87表病院数(重複計上)台数・取り扱延件数・診療機器・一般病院(再掲)・開設者別,厚生労働省データベース,医療施設調査,(1999
8) Giger ML, Doi K, MacMahon H: Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys, 15 (2), 158-166, (1988).
17) Lachenbruch PA: Discriminant Analysis. New York: Hafner, Chaps. 1 and 2, pp.1-32, Macmillan, (1975).
18) Li Q, Doi K: Analysis and minimization of overtraining effect in rule-base classifiers for computer-aided diagnosis, Med Phys, 33 (2), 320-328, (2006).
16)山本めぐみ,石田隆行,川下郁生,他:胸部三次元CT画像における結節状陰影の自動検出法の開発.日放技学誌,62(4),555-564,(2006
9) Yamamoto S, Tanaka I, Senda M, et al.: Image processing for computer-aided diagnosis of lung cancer by CT (LSCT). Systems and Computers in Japan, 25 (2), 67-80, (1994).
5) Lee Y, Hara T, Fujita H, et al.: Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging, 20 (7), 595-604, (2001).
15) Brown MS, Goldin JG, Suh RD, et al.: Lung micronodules: automated method for detection at thin-section CT-initial experience. Radiology, 226 (1), 256-262, (2003).
11) Ukai Y, Niki N, Satoh H, et al.: Computer aided diagnosis system for lung cancer based on retrospective helical CT image. Proc. SPIE, 3979, 1028-1039, (2000).
13) Wormanns D, Fiebich M, Saidi M, et al.: Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur Radiol, 12 (5), 1052-1057, (2002).
12) Armato SG 3rd, Li F, Giger ML, et al.: Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology, 225 (3), 685-692, (2002).
References_xml – reference: 5) Lee Y, Hara T, Fujita H, et al.: Automated detection of pulmonary nodules in helical CT images based on an improved template-matching technique. IEEE Trans Med Imaging, 20 (7), 595-604, (2001).
– reference: 9) Yamamoto S, Tanaka I, Senda M, et al.: Image processing for computer-aided diagnosis of lung cancer by CT (LSCT). Systems and Computers in Japan, 25 (2), 67-80, (1994).
– reference: 2)上巻第55表病院数(重複計上)台数,診療機器・一般病院(再掲)・開設者別,厚生労働省データベース,医療施設調査,(1999).
– reference: 3)重本加奈恵,滝沢穂高,山本眞司,他:3 次元結節・血管モデルとテンプレートマッチングを用いた胸部X線CT画像からの結節陰影の高速認識.Med Imag Tech,21(2),147-155,(2003).
– reference: 6) Li Q, Sone S, Doi K: Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Med Phys, 30 (8), 2040-2051, (2003).
– reference: 18) Li Q, Doi K: Analysis and minimization of overtraining effect in rule-base classifiers for computer-aided diagnosis, Med Phys, 33 (2), 320-328, (2006).
– reference: 11) Ukai Y, Niki N, Satoh H, et al.: Computer aided diagnosis system for lung cancer based on retrospective helical CT image. Proc. SPIE, 3979, 1028-1039, (2000).
– reference: 12) Armato SG 3rd, Li F, Giger ML, et al.: Lung cancer: performance of automated lung nodule detection applied to cancers missed in a CT screening program. Radiology, 225 (3), 685-692, (2002).
– reference: 17) Lachenbruch PA: Discriminant Analysis. New York: Hafner, Chaps. 1 and 2, pp.1-32, Macmillan, (1975).
– reference: 14) Gurcan MN, Sahiner B, Petrick N, et al.: Lung nodule detection on thoracic computed tomography images: preliminary evaluation of a computer-aided diagnosis system. Med Phys, 29 (11), 2552-2558. (2002).
– reference: 4)李 鎔範,原 武史,藤田広志:胸部ヘリカルCT画像を用いたシミュレーションによるGAテンプレートマッチング法の評価.医用画像情報通信学会雑誌,17(3),118-129,(2000).
– reference: 13) Wormanns D, Fiebich M, Saidi M, et al.: Automatic detection of pulmonary nodules at spiral CT: clinical application of a computer-aided diagnosis system. Eur Radiol, 12 (5), 1052-1057, (2002).
– reference: 7) Arimura H, Katsuragawa S, Suzuki K, et al.: Computerized scheme for automated detection of lung nodules in low-dose computed tomography images for lung cancer screening. Acad Radiol, 11 (6), 617-629, (2004).
– reference: 15) Brown MS, Goldin JG, Suh RD, et al.: Lung micronodules: automated method for detection at thin-section CT-initial experience. Radiology, 226 (1), 256-262, (2003).
– reference: 10) Jiang H, Yamamoto S, Iisaku S, et al.: Computer-aided diagnosis system for lung cancer screening by CT. in Doi K, et al. (eds) : Computer-Aided Diagnosis in Medical Imaging. pp.25-30, (1999).
– reference: 1)上巻第87表病院数(重複計上)台数・取り扱延件数・診療機器・一般病院(再掲)・開設者別,厚生労働省データベース,医療施設調査,(1999).
– reference: 8) Giger ML, Doi K, MacMahon H: Image feature analysis and computer-aided diagnosis in digital radiography. 3. Automated detection of nodules in peripheral lung fields. Med Phys, 15 (2), 158-166, (1988).
– reference: 16)山本めぐみ,石田隆行,川下郁生,他:胸部三次元CT画像における結節状陰影の自動検出法の開発.日放技学誌,62(4),555-564,(2006).
SSID ssib000936904
ssib002223925
ssj0055458
ssib005879721
ssib031740840
ssib000959831
ssib000753122
ssib008799587
ssib002484555
ssib023160873
Score 1.7481997
Snippet We have developed an automated computerized schema for the detection of lung nodules in 3D CT images obtained by helical CT. In our previous schema, linear...
SourceID jstage
SourceType Publisher
StartPage 316
SubjectTerms computed tomography (CT)
computer-aided diagnosis (CAD)
cross-correlation
lung cancer
lung nodule
Title CT画像における結節状陰影検出の性能改良
URI https://www.jstage.jst.go.jp/article/jjrt/64/3/64_3_316/_article/-char/ja
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本放射線技術学会雑誌, 2008/03/20, Vol.64(3), pp.316-324
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1Na9RANJQK0ov4id_04JwkNcl8HyfbLEWpIGyht5Bstoc9VCnbi6euPYj1oEIvgkfBg2D1oKDSX7N0t_4L35tJtlPxUD8uwzB532-SeZPMewmCW12YAxxC-VAUsF1lVSXDIlFlmHAqhOxKWtnancv3xdIKu7vKV2dm57xTS5uDcqH7-Ld5JX_jVRgDv2KW7B94dkoUBqAP_oUWPAztiXzc6pBMEs1ImpKME0WJapMM2piYtO4oU3d0bDsJUSlipZzoCDumjacdoAOQqSCZJlqTNEKC6SJJAUsQw4huWRaA2BA0GV4CXCNJppA7wMMIyqPtiAbifvRrrwJHbjstYloNfGbZRUQxKxsoZSxxY2VTxID8FGHMIjEgJKC0LAxIm1rVAAaAp-98ERvopcySUSRVlgMQXsRZZcUDfWk9mtIjxAYMmSi0loXX1rxxbXDd9uHBPGgDjsKC0hYekNuWijWjEUfwQKBtOTvXRQ19UEeJWtlakeZ1jJreOpYLt5aTqDq6V6IAzoQwYqjVnRLNrRSgpbn93y3vLSBU6BBLurm13i1wSsUhPLSpvwK6OvL1nU695YzGwouMqMt2_3XRhZAZa9b2-xuDBcEWpjjHqpjX90iOULlgOXUNAOfNJUwzzPuw1zmVSBnj8dx7D5Qf2tLYLzWJf6L06wpprpX3RRvjXp0cK93HuJ-DraT2SwMqrIx4tFWBbY-AsenaBWE2i2xdJBflcfzg7M5BOBu73F-0xR3PEhDX9mGX15wQtUFr52xwpt5tzhun-7lgpl-cD04v1-dpLgSq1Znsfj_YfjEavh8Nd0bDV6MnzyefX072tiY7X368_niw_2n89s3B02-j4Yfx1rvD7f3x7tfDZ3sXg5V21mkthfW_VMI-aB6FrAeTtaRlKTlXvKCSFWXV40rzUhaMF1L0Kl7h_yiiqujyKqnAYixicVfIAvPPLwWz6w_Xe5eDeUxdBxAmepyxtXJNJfCcBwutlUXSjWN2JdBO5_yRK5iTn9z5V_8B91ow5w5z4fvR68HsYGOzdwN2DIPypp1KPwHzn9CD
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CT%E7%94%BB%E5%83%8F%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E7%B5%90%E7%AF%80%E7%8A%B6%E9%99%B0%E5%BD%B1%E6%A4%9C%E5%87%BA%E3%81%AE%E6%80%A7%E8%83%BD%E6%94%B9%E8%89%AF&rft.jtitle=%E6%97%A5%E6%9C%AC%E6%94%BE%E5%B0%84%E7%B7%9A%E6%8A%80%E8%A1%93%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E6%B0%B4%E6%88%B8%E5%B7%9D%2C+%E8%8A%B3%E5%B7%B3&rft.au=%E5%B7%9D%E4%B8%8B%2C+%E9%83%81%E7%94%9F&rft.au=%E5%A4%A7%E5%80%89%2C+%E4%BF%9D%E5%BD%A6&rft.au=%E7%9F%B3%E7%94%B0%2C+%E9%9A%86%E8%A1%8C&rft.date=2008&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%94%BE%E5%B0%84%E7%B7%9A%E6%8A%80%E8%A1%93%E5%AD%A6%E4%BC%9A&rft.issn=0369-4305&rft.eissn=1881-4883&rft.volume=64&rft.issue=3&rft.spage=316&rft.epage=324&rft_id=info:doi/10.6009%2Fjjrt.64.316&rft.externalDocID=article_jjrt_64_3_64_3_316_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0369-4305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0369-4305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0369-4305&client=summon