Assessment of Aphasia Using Artificial Neural Networks

In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were col...

Full description

Saved in:
Bibliographic Details
Published inIyo denshi to seitai kogaku Vol. 37; no. 2; pp. 140 - 145
Main Authors HANAI, Taizo, MATSUBARA, Michitaka, HONDA, Hiroyuki, KOBAYASHI, Takeshi, HIBINO, Shin, SHIRATAKI, Tatsuaki, FUKAGAWA, Kazutoshi
Format Journal Article
LanguageJapanese
Published Japanese Society for Medical and Biological Engineering 1999
一般社団法人 日本生体医工学会
Subjects
Online AccessGet full text
ISSN0021-3292
2185-5498
DOI10.11239/jsmbe1963.37.140

Cover

Abstract In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were collected; the patient of total aphasia who is difficult to understand the speech and the patient of motor aphasia (Broca aphasia) who feels pain or makes some grammatical mistakes when he speaks anything while he can understand the speech. At first, power spectrum of EEG was extracted by the fast Fourier transform (FFT). Power spectrum was separated into 9 regions, corresponding to the characterized waves, and relative power values were calculated from them. The regions with 4.0 to 5.9, 6.0 to 7.9 and 8.0 to 12.9Hz were selected as the frequency band of θ1, θ2, and α waves, respectively. Assessment of linguistic ability was carried out by Western aphasia battery (WAB). The relative power values were input into each ANN model for estimation of aphasia quotient (AQ) score or score on spontaneous speech from WAB. The average error of ANN model for AQ score was 7.02 points out of 100. It was found that the model can estimate the AQ value at high accuracy. Another ANN model to estimate the score on spontaneous speech was also constructed. The average error of this model with actual spontaneous speech score was 0.27 points out of 20. Predicted score of patient with motor aphasia coincided well with the actual score. In conclusion these models can quantify the severity of aphasia from EEG.
AbstractList In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were collected; the patient of total aphasia who is difficult to understand the speech and the patient of motor aphasia (Broca aphasia) who feels pain or makes some grammatical mistakes when he speaks anything while he can understand the speech. At first, power spectrum of EEG was extracted by the fast Fourier transform (FFT). Power spectrum was separated into 9 regions, corresponding to the characterized waves, and relative power values were calculated from them. The regions with 4.0 to 5.9, 6.0 to 7.9 and 8.0 to 12.9 Hz were selected as the frequency band of theta sub(1), theta sub(2), and alpha waves, respectively. Assessment of linguistic ability was carried out by Western aphasia battery (WAB). The relative power values were input into each ANN model for estimation of aphasia quotient (AQ) score or score on spontaneous speech from WAB. The average error of ANN model for AQ score was 7.02 points out of 100. It was found that the model can estimate the AQ value at high accuracy. Another ANN model to estimate the score on spontaneous speech was also constructed. The average error of this model with actual spontaneous speech score was 0.27 points out of 20. Predicted score of patient with motor aphasia coincided well with the actual score. In conclusion these models can quantify the severity of aphasia from EEG.
In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were collected; the patient of total aphasia who is difficult to understand the speech and the patient of motor aphasia (Broca aphasia) who feels pain or makes some grammatical mistakes when he speaks anything while he can understand the speech. At first, power spectrum of EEG was extracted by the fast Fourier transform (FFT). Power spectrum was separated into 9 regions, corresponding to the characterized waves, and relative power values were calculated from them. The regions with 4.0 to 5.9, 6.0 to 7.9 and 8.0 to 12.9Hz were selected as the frequency band of θ1, θ2, and α waves, respectively. Assessment of linguistic ability was carried out by Western aphasia battery (WAB). The relative power values were input into each ANN model for estimation of aphasia quotient (AQ) score or score on spontaneous speech from WAB. The average error of ANN model for AQ score was 7.02 points out of 100. It was found that the model can estimate the AQ value at high accuracy. Another ANN model to estimate the score on spontaneous speech was also constructed. The average error of this model with actual spontaneous speech score was 0.27 points out of 20. Predicted score of patient with motor aphasia coincided well with the actual score. In conclusion these models can quantify the severity of aphasia from EEG.
Author HIBINO, Shin
HONDA, Hiroyuki
SHIRATAKI, Tatsuaki
KOBAYASHI, Takeshi
MATSUBARA, Michitaka
HANAI, Taizo
FUKAGAWA, Kazutoshi
Author_FL 白滝 龍昭
花井 泰三
松原 充隆
日比野 新
本多 裕之
深川 和利
小林 猛
Author_FL_xml – sequence: 1
  fullname: 日比野 新
– sequence: 2
  fullname: 花井 泰三
– sequence: 3
  fullname: 松原 充隆
– sequence: 4
  fullname: 深川 和利
– sequence: 5
  fullname: 白滝 龍昭
– sequence: 6
  fullname: 本多 裕之
– sequence: 7
  fullname: 小林 猛
Author_xml – sequence: 1
  fullname: HANAI, Taizo
  organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University
– sequence: 1
  fullname: MATSUBARA, Michitaka
  organization: Nagoya City Rehabilitation Center
– sequence: 1
  fullname: HONDA, Hiroyuki
  organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University
– sequence: 1
  fullname: KOBAYASHI, Takeshi
  organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University
– sequence: 1
  fullname: HIBINO, Shin
  organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University
– sequence: 1
  fullname: SHIRATAKI, Tatsuaki
  organization: Nagoya City Rehabilitation Center
– sequence: 1
  fullname: FUKAGAWA, Kazutoshi
  organization: Nagoya City Rehabilitation Center
BackLink https://cir.nii.ac.jp/crid/1390282679533899904$$DView record in CiNii
BookMark eNo9kMlOwzAYhC1UJErpA3DLAXFL8RYvx6gqi1TBhZ4t2_3dumQpcSrE2xMI6mXmMJ9GmrlGk6ZtAKFbgheEUKYfDql2QLRgCyYXhOMLNKVEFXnBtZqgKcaU5IxqeoXmKUWHMceYCImnSJQpQUo1NH3Whqw87m2KNtuk2OyysutjiD7aKnuFU_dn_VfbfaQbdBlslWD-7zO0eVy9L5_z9dvTy7Jc5wfKZZ8LsuWSFMErLbaOO-ZEAUyCBC8kUT54TxQIpqVQziohgAfqVFAyOEeEYzN0P_Yeu_bzBKk3dUweqso20J6SoYTpolB0AO9GsInR-PirQ4SpokLqgjGltcZ8wFYjdki93YE5drG23bexw1JfgTkfaZg0dJThz3Pu97Yz0LAfovVvow
ContentType Journal Article
Copyright Japanese Society for Medical and Biological Engineering
Copyright_xml – notice: Japanese Society for Medical and Biological Engineering
DBID RYH
DOI 10.11239/jsmbe1963.37.140
DatabaseName CiNii Complete
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
DocumentTitleAlternate 失語症重症度の評価に対する人工ニューラルネットワークの援用
DocumentTitle_FL 失語症重症度の評価に対する人工ニューラルネットワークの援用
EISSN 2185-5498
EndPage 145
ExternalDocumentID 415117
130004111608
article_jsmbe1963_37_2_37_2_140_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
RYH
ID FETCH-LOGICAL-j247t-61d4715fc896db4b3b65e37e7ec6718cfcc18e639768ba866e4f2b8f87fbb16b3
ISSN 0021-3292
IngestDate Fri Jul 11 16:04:37 EDT 2025
Fri Jun 27 00:03:10 EDT 2025
Wed Sep 03 06:29:36 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j247t-61d4715fc896db4b3b65e37e7ec6718cfcc18e639768ba866e4f2b8f87fbb16b3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jsmbe1963/37/2/37_2_140/_article/-char/en
PQID 21395582
PQPubID 23462
PageCount 6
ParticipantIDs proquest_miscellaneous_21395582
nii_cinii_1390282679533899904
jstage_primary_article_jsmbe1963_37_2_37_2_140_article_char_en
PublicationCentury 1900
PublicationDate 1999
19990101
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999
PublicationDecade 1990
PublicationTitle Iyo denshi to seitai kogaku
PublicationTitleAlternate JJME
PublicationTitle_FL JJME
医用電子と生体工学
PublicationYear 1999
Publisher Japanese Society for Medical and Biological Engineering
一般社団法人 日本生体医工学会
Publisher_xml – name: Japanese Society for Medical and Biological Engineering
– name: 一般社団法人 日本生体医工学会
References 5) 島田尊正, 椎名毅, 斉藤陽一: ニューラルネットワークを用いた睡眠脳波のスペクトル時間推移パターン認識による特徴波の検出, 医用電子と生体工学, 32-3, 196/205 (1994
11) D. E. Rumelhart, G. E. Hinton & R. J. Williams: Learning representations by back-propagation errors, Nature, 323, 533/536 (1986
3) 花井泰三, 大楠栄治, 本多裕之, 伊藤文雄, 杉浦元彦, 浅野一朗, 小林猛: 知識情報処理を用いたコーヒーの品質モデル, 日本食品科学工学会誌, 44-8, 560/568 (1997
9) 前島伸一郎, 土肥信之, 馬場尊, 楠戸正子, 梶原敏夫, 舩橋利理, 板倉徹, 駒井則彦: 脳出血による失語症の回復と二次元脳電図パターンの変化について, 総合リハビリテーション, 21-9, 763/769 (1993
10) 横山巌: 失語症と関連障害, 25/49, 医学書院, 東京 (1982
12) 菅民郎: 多変量解析の実践 (上), 現代数学社, 東京 (1993
1) 各務彰洋, 花井泰三, 本多裕之, 西田淑男, 深谷伊和男, 小林猛: ニューラルネットワークによる吟醸酒の官能評価値から総合評価値の推定, 生物工学会誌, 73-3, 199/205 (1995
4) 岡本康幸, 中野博, 吉川正英, 松岡弘樹, 阪本たけみ, 辻井正: 人工ニューラルネットワークを用いた臨床検査診断支援システムに関する研究, 臨床診断, 42-2, 195/199 (1994
8) 笠原洋勇, 柄澤昭秀, 篠原宏之: 失語症の脳波学的研究, 脳波と筋電図, 10-2, 102/110 (1982
7) L. A. Riquelme, B. S. Zanuto, M. G. Murer & R. J. Lombardo: Classification of quantitative EEG data by an artificial neural network: a preliminary study, Neuropsychobioloby, 33-2, 106/112 (1996
2) 各務彰洋, 花井泰三, 本多裕之, 小林猛: ニューラルネットワークと遺伝的アルゴリズムを用いた吟醸酒の品質モデリング, 生物工学会誌, 73-5, 387/395 (1995
6) T. コホネン: 自己組織化マップ, 102/171, シュプリンガー・フェアラーク東京, 東京 (1996
References_xml – reference: 7) L. A. Riquelme, B. S. Zanuto, M. G. Murer & R. J. Lombardo: Classification of quantitative EEG data by an artificial neural network: a preliminary study, Neuropsychobioloby, 33-2, 106/112 (1996)
– reference: 10) 横山巌: 失語症と関連障害, 25/49, 医学書院, 東京 (1982)
– reference: 1) 各務彰洋, 花井泰三, 本多裕之, 西田淑男, 深谷伊和男, 小林猛: ニューラルネットワークによる吟醸酒の官能評価値から総合評価値の推定, 生物工学会誌, 73-3, 199/205 (1995)
– reference: 8) 笠原洋勇, 柄澤昭秀, 篠原宏之: 失語症の脳波学的研究, 脳波と筋電図, 10-2, 102/110 (1982)
– reference: 6) T. コホネン: 自己組織化マップ, 102/171, シュプリンガー・フェアラーク東京, 東京 (1996)
– reference: 11) D. E. Rumelhart, G. E. Hinton & R. J. Williams: Learning representations by back-propagation errors, Nature, 323, 533/536 (1986)
– reference: 3) 花井泰三, 大楠栄治, 本多裕之, 伊藤文雄, 杉浦元彦, 浅野一朗, 小林猛: 知識情報処理を用いたコーヒーの品質モデル, 日本食品科学工学会誌, 44-8, 560/568 (1997)
– reference: 12) 菅民郎: 多変量解析の実践 (上), 現代数学社, 東京 (1993)
– reference: 2) 各務彰洋, 花井泰三, 本多裕之, 小林猛: ニューラルネットワークと遺伝的アルゴリズムを用いた吟醸酒の品質モデリング, 生物工学会誌, 73-5, 387/395 (1995)
– reference: 5) 島田尊正, 椎名毅, 斉藤陽一: ニューラルネットワークを用いた睡眠脳波のスペクトル時間推移パターン認識による特徴波の検出, 医用電子と生体工学, 32-3, 196/205 (1994)
– reference: 4) 岡本康幸, 中野博, 吉川正英, 松岡弘樹, 阪本たけみ, 辻井正: 人工ニューラルネットワークを用いた臨床検査診断支援システムに関する研究, 臨床診断, 42-2, 195/199 (1994)
– reference: 9) 前島伸一郎, 土肥信之, 馬場尊, 楠戸正子, 梶原敏夫, 舩橋利理, 板倉徹, 駒井則彦: 脳出血による失語症の回復と二次元脳電図パターンの変化について, 総合リハビリテーション, 21-9, 763/769 (1993)
SSID ssib004001670
ssib058493051
ssib002003751
ssj0003314323
ssib020873269
ssib006573188
ssib005879660
ssib055696646
Score 1.3270807
Snippet In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model...
SourceID proquest
nii
jstage
SourceType Aggregation Database
Publisher
StartPage 140
SubjectTerms Electroencephalography
Electrophysiology
Fast Fourier transforms
Neural networks
Spectrum analysis
Title Assessment of Aphasia Using Artificial Neural Networks
URI https://www.jstage.jst.go.jp/article/jsmbe1963/37/2/37_2_140/_article/-char/en
https://cir.nii.ac.jp/crid/1390282679533899904
https://www.proquest.com/docview/21395582
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Japanese journal of medical electronics and biological engineering, 1999, Vol.37(2), pp.140-145
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe6ceGCQIAoMMiBG0qp7cR2L0gpDBUQnWCtNE5RnDhaWq1F_Tiw_5P_h_ds52MbBwYXt7GTyPZ7ef49-_lnQl4J8Li0GpVhAaYvBH8jChXLh2FRxHmmuBHSUmx8mYrJPPp0Fp_1er86UUv7nR7kl3_cV_IvUoU8kCvukr2FZJuXQgb8B_lCChKG9K9knDS0mg5QnuOWyNcuCiDZ2CggnBBHAg77YyO-t1fwKIyVeAZll0Hiwq_dtCfkOB5nx9fkiloWw0Yvkmny0Uo_qy7XjRyT2el8nHxL6hD9apctm5FgcjJ9b0sm1Wb9c7-sGvN_Mk6-J6cT_8Kl2Z5X7fwEchq0o0bdgm78ab38hNUet9U-vlbteqcBDTlzZ-UNjM0DRBKH4NOqrgV3tDFeU1nHHFNHBeVHduqIK28OGowj6epie6ENGqQBl4PmyStc3F7SaXNrymXKXIJBcnU57pgDBT0gdxjoOkaafv7a8erswcO0a0ap6JpNJZEztTWLsQTL2zzPhkpyfy48XsexgNtbrx4g5YjXrGsISDgHUMxcrIXvUb--jy1_c73dgMUW4Jkg5cTBqqpugBSLvGb3yT3vMgWJa_UD0ltkD4lodT9Yl4HX_cDqftDqfuB0P6h1_xGZfzievZuE_gyQcMEiuQsFLQA-YaDhSBQ60lyL2HBppMkFwKq8zHOqDK5OC6UzJYSJSqZVqWSpNRWaPyaHq_XKPCEBpXkmZc4BYudRaYZZxnQkRkarYaQLWvTJW9fu9IcjeklvKe4-OYL-SvMKU_CscDpDSIzfVvBdDKM-eVn3ZApGHFfm4ANZ77cpg7vjWLGn_1uFZ-Su4xXBOcLn5HC32ZsjQM07_cLq4G82O7sF
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Aphasia+Using+Artificial+Neural+Networks&rft.jtitle=Japanese+journal+of+medical+electronics+and+biological+engineering&rft.au=HANAI%2C+Taizo&rft.au=MATSUBARA%2C+Michitaka&rft.au=HONDA%2C+Hiroyuki&rft.au=KOBAYASHI%2C+Takeshi&rft.date=1999&rft.pub=Japanese+Society+for+Medical+and+Biological+Engineering&rft.issn=0021-3292&rft.eissn=2185-5498&rft.volume=37&rft.issue=2&rft.spage=140&rft.epage=145&rft_id=info:doi/10.11239%2Fjsmbe1963.37.140&rft.externalDocID=article_jsmbe1963_37_2_37_2_140_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-3292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-3292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-3292&client=summon