Assessment of Aphasia Using Artificial Neural Networks
In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were col...
Saved in:
Published in | Iyo denshi to seitai kogaku Vol. 37; no. 2; pp. 140 - 145 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
Japanese Society for Medical and Biological Engineering
1999
一般社団法人 日本生体医工学会 |
Subjects | |
Online Access | Get full text |
ISSN | 0021-3292 2185-5498 |
DOI | 10.11239/jsmbe1963.37.140 |
Cover
Abstract | In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were collected; the patient of total aphasia who is difficult to understand the speech and the patient of motor aphasia (Broca aphasia) who feels pain or makes some grammatical mistakes when he speaks anything while he can understand the speech. At first, power spectrum of EEG was extracted by the fast Fourier transform (FFT). Power spectrum was separated into 9 regions, corresponding to the characterized waves, and relative power values were calculated from them. The regions with 4.0 to 5.9, 6.0 to 7.9 and 8.0 to 12.9Hz were selected as the frequency band of θ1, θ2, and α waves, respectively. Assessment of linguistic ability was carried out by Western aphasia battery (WAB). The relative power values were input into each ANN model for estimation of aphasia quotient (AQ) score or score on spontaneous speech from WAB. The average error of ANN model for AQ score was 7.02 points out of 100. It was found that the model can estimate the AQ value at high accuracy. Another ANN model to estimate the score on spontaneous speech was also constructed. The average error of this model with actual spontaneous speech score was 0.27 points out of 20. Predicted score of patient with motor aphasia coincided well with the actual score. In conclusion these models can quantify the severity of aphasia from EEG. |
---|---|
AbstractList | In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were collected; the patient of total aphasia who is difficult to understand the speech and the patient of motor aphasia (Broca aphasia) who feels pain or makes some grammatical mistakes when he speaks anything while he can understand the speech. At first, power spectrum of EEG was extracted by the fast Fourier transform (FFT). Power spectrum was separated into 9 regions, corresponding to the characterized waves, and relative power values were calculated from them. The regions with 4.0 to 5.9, 6.0 to 7.9 and 8.0 to 12.9 Hz were selected as the frequency band of theta sub(1), theta sub(2), and alpha waves, respectively. Assessment of linguistic ability was carried out by Western aphasia battery (WAB). The relative power values were input into each ANN model for estimation of aphasia quotient (AQ) score or score on spontaneous speech from WAB. The average error of ANN model for AQ score was 7.02 points out of 100. It was found that the model can estimate the AQ value at high accuracy. Another ANN model to estimate the score on spontaneous speech was also constructed. The average error of this model with actual spontaneous speech score was 0.27 points out of 20. Predicted score of patient with motor aphasia coincided well with the actual score. In conclusion these models can quantify the severity of aphasia from EEG. In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model for assessment of aphasia from electroencephalogram (EEG) using artificial neural networks (ANN). EEG data of the following patients were collected; the patient of total aphasia who is difficult to understand the speech and the patient of motor aphasia (Broca aphasia) who feels pain or makes some grammatical mistakes when he speaks anything while he can understand the speech. At first, power spectrum of EEG was extracted by the fast Fourier transform (FFT). Power spectrum was separated into 9 regions, corresponding to the characterized waves, and relative power values were calculated from them. The regions with 4.0 to 5.9, 6.0 to 7.9 and 8.0 to 12.9Hz were selected as the frequency band of θ1, θ2, and α waves, respectively. Assessment of linguistic ability was carried out by Western aphasia battery (WAB). The relative power values were input into each ANN model for estimation of aphasia quotient (AQ) score or score on spontaneous speech from WAB. The average error of ANN model for AQ score was 7.02 points out of 100. It was found that the model can estimate the AQ value at high accuracy. Another ANN model to estimate the score on spontaneous speech was also constructed. The average error of this model with actual spontaneous speech score was 0.27 points out of 20. Predicted score of patient with motor aphasia coincided well with the actual score. In conclusion these models can quantify the severity of aphasia from EEG. |
Author | HIBINO, Shin HONDA, Hiroyuki SHIRATAKI, Tatsuaki KOBAYASHI, Takeshi MATSUBARA, Michitaka HANAI, Taizo FUKAGAWA, Kazutoshi |
Author_FL | 白滝 龍昭 花井 泰三 松原 充隆 日比野 新 本多 裕之 深川 和利 小林 猛 |
Author_FL_xml | – sequence: 1 fullname: 日比野 新 – sequence: 2 fullname: 花井 泰三 – sequence: 3 fullname: 松原 充隆 – sequence: 4 fullname: 深川 和利 – sequence: 5 fullname: 白滝 龍昭 – sequence: 6 fullname: 本多 裕之 – sequence: 7 fullname: 小林 猛 |
Author_xml | – sequence: 1 fullname: HANAI, Taizo organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University – sequence: 1 fullname: MATSUBARA, Michitaka organization: Nagoya City Rehabilitation Center – sequence: 1 fullname: HONDA, Hiroyuki organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University – sequence: 1 fullname: KOBAYASHI, Takeshi organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University – sequence: 1 fullname: HIBINO, Shin organization: Department of Biotechnology, Graduate School of Engineering, Nagoya University – sequence: 1 fullname: SHIRATAKI, Tatsuaki organization: Nagoya City Rehabilitation Center – sequence: 1 fullname: FUKAGAWA, Kazutoshi organization: Nagoya City Rehabilitation Center |
BackLink | https://cir.nii.ac.jp/crid/1390282679533899904$$DView record in CiNii |
BookMark | eNo9kMlOwzAYhC1UJErpA3DLAXFL8RYvx6gqi1TBhZ4t2_3dumQpcSrE2xMI6mXmMJ9GmrlGk6ZtAKFbgheEUKYfDql2QLRgCyYXhOMLNKVEFXnBtZqgKcaU5IxqeoXmKUWHMceYCImnSJQpQUo1NH3Whqw87m2KNtuk2OyysutjiD7aKnuFU_dn_VfbfaQbdBlslWD-7zO0eVy9L5_z9dvTy7Jc5wfKZZ8LsuWSFMErLbaOO-ZEAUyCBC8kUT54TxQIpqVQziohgAfqVFAyOEeEYzN0P_Yeu_bzBKk3dUweqso20J6SoYTpolB0AO9GsInR-PirQ4SpokLqgjGltcZ8wFYjdki93YE5drG23bexw1JfgTkfaZg0dJThz3Pu97Yz0LAfovVvow |
ContentType | Journal Article |
Copyright | Japanese Society for Medical and Biological Engineering |
Copyright_xml | – notice: Japanese Society for Medical and Biological Engineering |
DBID | RYH |
DOI | 10.11239/jsmbe1963.37.140 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
DocumentTitleAlternate | 失語症重症度の評価に対する人工ニューラルネットワークの援用 |
DocumentTitle_FL | 失語症重症度の評価に対する人工ニューラルネットワークの援用 |
EISSN | 2185-5498 |
EndPage | 145 |
ExternalDocumentID | 415117 130004111608 article_jsmbe1963_37_2_37_2_140_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT RYH |
ID | FETCH-LOGICAL-j247t-61d4715fc896db4b3b65e37e7ec6718cfcc18e639768ba866e4f2b8f87fbb16b3 |
ISSN | 0021-3292 |
IngestDate | Fri Jul 11 16:04:37 EDT 2025 Fri Jun 27 00:03:10 EDT 2025 Wed Sep 03 06:29:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j247t-61d4715fc896db4b3b65e37e7ec6718cfcc18e639768ba866e4f2b8f87fbb16b3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsmbe1963/37/2/37_2_140/_article/-char/en |
PQID | 21395582 |
PQPubID | 23462 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_21395582 nii_cinii_1390282679533899904 jstage_primary_article_jsmbe1963_37_2_37_2_140_article_char_en |
PublicationCentury | 1900 |
PublicationDate | 1999 19990101 |
PublicationDateYYYYMMDD | 1999-01-01 |
PublicationDate_xml | – year: 1999 text: 1999 |
PublicationDecade | 1990 |
PublicationTitle | Iyo denshi to seitai kogaku |
PublicationTitleAlternate | JJME |
PublicationTitle_FL | JJME 医用電子と生体工学 |
PublicationYear | 1999 |
Publisher | Japanese Society for Medical and Biological Engineering 一般社団法人 日本生体医工学会 |
Publisher_xml | – name: Japanese Society for Medical and Biological Engineering – name: 一般社団法人 日本生体医工学会 |
References | 5) 島田尊正, 椎名毅, 斉藤陽一: ニューラルネットワークを用いた睡眠脳波のスペクトル時間推移パターン認識による特徴波の検出, 医用電子と生体工学, 32-3, 196/205 (1994 11) D. E. Rumelhart, G. E. Hinton & R. J. Williams: Learning representations by back-propagation errors, Nature, 323, 533/536 (1986 3) 花井泰三, 大楠栄治, 本多裕之, 伊藤文雄, 杉浦元彦, 浅野一朗, 小林猛: 知識情報処理を用いたコーヒーの品質モデル, 日本食品科学工学会誌, 44-8, 560/568 (1997 9) 前島伸一郎, 土肥信之, 馬場尊, 楠戸正子, 梶原敏夫, 舩橋利理, 板倉徹, 駒井則彦: 脳出血による失語症の回復と二次元脳電図パターンの変化について, 総合リハビリテーション, 21-9, 763/769 (1993 10) 横山巌: 失語症と関連障害, 25/49, 医学書院, 東京 (1982 12) 菅民郎: 多変量解析の実践 (上), 現代数学社, 東京 (1993 1) 各務彰洋, 花井泰三, 本多裕之, 西田淑男, 深谷伊和男, 小林猛: ニューラルネットワークによる吟醸酒の官能評価値から総合評価値の推定, 生物工学会誌, 73-3, 199/205 (1995 4) 岡本康幸, 中野博, 吉川正英, 松岡弘樹, 阪本たけみ, 辻井正: 人工ニューラルネットワークを用いた臨床検査診断支援システムに関する研究, 臨床診断, 42-2, 195/199 (1994 8) 笠原洋勇, 柄澤昭秀, 篠原宏之: 失語症の脳波学的研究, 脳波と筋電図, 10-2, 102/110 (1982 7) L. A. Riquelme, B. S. Zanuto, M. G. Murer & R. J. Lombardo: Classification of quantitative EEG data by an artificial neural network: a preliminary study, Neuropsychobioloby, 33-2, 106/112 (1996 2) 各務彰洋, 花井泰三, 本多裕之, 小林猛: ニューラルネットワークと遺伝的アルゴリズムを用いた吟醸酒の品質モデリング, 生物工学会誌, 73-5, 387/395 (1995 6) T. コホネン: 自己組織化マップ, 102/171, シュプリンガー・フェアラーク東京, 東京 (1996 |
References_xml | – reference: 7) L. A. Riquelme, B. S. Zanuto, M. G. Murer & R. J. Lombardo: Classification of quantitative EEG data by an artificial neural network: a preliminary study, Neuropsychobioloby, 33-2, 106/112 (1996) – reference: 10) 横山巌: 失語症と関連障害, 25/49, 医学書院, 東京 (1982) – reference: 1) 各務彰洋, 花井泰三, 本多裕之, 西田淑男, 深谷伊和男, 小林猛: ニューラルネットワークによる吟醸酒の官能評価値から総合評価値の推定, 生物工学会誌, 73-3, 199/205 (1995) – reference: 8) 笠原洋勇, 柄澤昭秀, 篠原宏之: 失語症の脳波学的研究, 脳波と筋電図, 10-2, 102/110 (1982) – reference: 6) T. コホネン: 自己組織化マップ, 102/171, シュプリンガー・フェアラーク東京, 東京 (1996) – reference: 11) D. E. Rumelhart, G. E. Hinton & R. J. Williams: Learning representations by back-propagation errors, Nature, 323, 533/536 (1986) – reference: 3) 花井泰三, 大楠栄治, 本多裕之, 伊藤文雄, 杉浦元彦, 浅野一朗, 小林猛: 知識情報処理を用いたコーヒーの品質モデル, 日本食品科学工学会誌, 44-8, 560/568 (1997) – reference: 12) 菅民郎: 多変量解析の実践 (上), 現代数学社, 東京 (1993) – reference: 2) 各務彰洋, 花井泰三, 本多裕之, 小林猛: ニューラルネットワークと遺伝的アルゴリズムを用いた吟醸酒の品質モデリング, 生物工学会誌, 73-5, 387/395 (1995) – reference: 5) 島田尊正, 椎名毅, 斉藤陽一: ニューラルネットワークを用いた睡眠脳波のスペクトル時間推移パターン認識による特徴波の検出, 医用電子と生体工学, 32-3, 196/205 (1994) – reference: 4) 岡本康幸, 中野博, 吉川正英, 松岡弘樹, 阪本たけみ, 辻井正: 人工ニューラルネットワークを用いた臨床検査診断支援システムに関する研究, 臨床診断, 42-2, 195/199 (1994) – reference: 9) 前島伸一郎, 土肥信之, 馬場尊, 楠戸正子, 梶原敏夫, 舩橋利理, 板倉徹, 駒井則彦: 脳出血による失語症の回復と二次元脳電図パターンの変化について, 総合リハビリテーション, 21-9, 763/769 (1993) |
SSID | ssib004001670 ssib058493051 ssib002003751 ssj0003314323 ssib020873269 ssib006573188 ssib005879660 ssib055696646 |
Score | 1.3270807 |
Snippet | In order to construct a first screening system for the home care, we investigated assessment of brain function disorder. In this study, we constructed a model... |
SourceID | proquest nii jstage |
SourceType | Aggregation Database Publisher |
StartPage | 140 |
SubjectTerms | Electroencephalography Electrophysiology Fast Fourier transforms Neural networks Spectrum analysis |
Title | Assessment of Aphasia Using Artificial Neural Networks |
URI | https://www.jstage.jst.go.jp/article/jsmbe1963/37/2/37_2_140/_article/-char/en https://cir.nii.ac.jp/crid/1390282679533899904 https://www.proquest.com/docview/21395582 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Japanese journal of medical electronics and biological engineering, 1999, Vol.37(2), pp.140-145 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFLe6ceGCQIAoMMiBG0qp7cR2L0gpDBUQnWCtNE5RnDhaWq1F_Tiw_5P_h_ds52MbBwYXt7GTyPZ7ef49-_lnQl4J8Li0GpVhAaYvBH8jChXLh2FRxHmmuBHSUmx8mYrJPPp0Fp_1er86UUv7nR7kl3_cV_IvUoU8kCvukr2FZJuXQgb8B_lCChKG9K9knDS0mg5QnuOWyNcuCiDZ2CggnBBHAg77YyO-t1fwKIyVeAZll0Hiwq_dtCfkOB5nx9fkiloWw0Yvkmny0Uo_qy7XjRyT2el8nHxL6hD9apctm5FgcjJ9b0sm1Wb9c7-sGvN_Mk6-J6cT_8Kl2Z5X7fwEchq0o0bdgm78ab38hNUet9U-vlbteqcBDTlzZ-UNjM0DRBKH4NOqrgV3tDFeU1nHHFNHBeVHduqIK28OGowj6epie6ENGqQBl4PmyStc3F7SaXNrymXKXIJBcnU57pgDBT0gdxjoOkaafv7a8erswcO0a0ap6JpNJZEztTWLsQTL2zzPhkpyfy48XsexgNtbrx4g5YjXrGsISDgHUMxcrIXvUb--jy1_c73dgMUW4Jkg5cTBqqpugBSLvGb3yT3vMgWJa_UD0ltkD4lodT9Yl4HX_cDqftDqfuB0P6h1_xGZfzievZuE_gyQcMEiuQsFLQA-YaDhSBQ60lyL2HBppMkFwKq8zHOqDK5OC6UzJYSJSqZVqWSpNRWaPyaHq_XKPCEBpXkmZc4BYudRaYZZxnQkRkarYaQLWvTJW9fu9IcjeklvKe4-OYL-SvMKU_CscDpDSIzfVvBdDKM-eVn3ZApGHFfm4ANZ77cpg7vjWLGn_1uFZ-Su4xXBOcLn5HC32ZsjQM07_cLq4G82O7sF |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessment+of+Aphasia+Using+Artificial+Neural+Networks&rft.jtitle=Japanese+journal+of+medical+electronics+and+biological+engineering&rft.au=HANAI%2C+Taizo&rft.au=MATSUBARA%2C+Michitaka&rft.au=HONDA%2C+Hiroyuki&rft.au=KOBAYASHI%2C+Takeshi&rft.date=1999&rft.pub=Japanese+Society+for+Medical+and+Biological+Engineering&rft.issn=0021-3292&rft.eissn=2185-5498&rft.volume=37&rft.issue=2&rft.spage=140&rft.epage=145&rft_id=info:doi/10.11239%2Fjsmbe1963.37.140&rft.externalDocID=article_jsmbe1963_37_2_37_2_140_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-3292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-3292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-3292&client=summon |