Au Nanoclusters Sensitized Black TiO2−x Nanotubes for Enhanced Photodynamic Therapy Driven by Near‐Infrared Light

The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2−x nanotubes (abbreviated as Au25/B‐TiO2−x NTs) are synthesized by gaseous reduction of ana...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 48
Main Authors Yang, Dan, Gulzar, Arif, Yang, Guixin, Gai, Shili, He, Fei, Dai, Yunlu, Zhong, Chongna, Yang, Piaoping
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 27.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2−x nanotubes (abbreviated as Au25/B‐TiO2−x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25/B‐TiO2−x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2, which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal–TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. A novel nanoplatform with enhanced photodynamic therapy effect is first presented by decorating Au clusters on black anatase TiO2−x nanotubes. The nanoplatform shows markedly higher photodynamic activity and wider photoresponse range than pristine anatase TiO2.
AbstractList The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25 /B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25 /B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25 /B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25 /B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.
The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2−x nanotubes (abbreviated as Au25/B‐TiO2−x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25/B‐TiO2−x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2, which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal–TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. A novel nanoplatform with enhanced photodynamic therapy effect is first presented by decorating Au clusters on black anatase TiO2−x nanotubes. The nanoplatform shows markedly higher photodynamic activity and wider photoresponse range than pristine anatase TiO2.
The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25/B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25/B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2, which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.
Author Yang, Guixin
Yang, Dan
Zhong, Chongna
Yang, Piaoping
Gai, Shili
Gulzar, Arif
He, Fei
Dai, Yunlu
Author_xml – sequence: 1
  givenname: Dan
  surname: Yang
  fullname: Yang, Dan
  organization: Harbin Engineering University
– sequence: 2
  givenname: Arif
  surname: Gulzar
  fullname: Gulzar, Arif
  organization: Harbin Engineering University
– sequence: 3
  givenname: Guixin
  surname: Yang
  fullname: Yang, Guixin
  organization: Harbin Engineering University
– sequence: 4
  givenname: Shili
  surname: Gai
  fullname: Gai, Shili
  organization: Harbin Engineering University
– sequence: 5
  givenname: Fei
  surname: He
  fullname: He, Fei
  email: hefei1@hrbeu.edu.cn
  organization: Harbin Engineering University
– sequence: 6
  givenname: Yunlu
  surname: Dai
  fullname: Dai, Yunlu
  organization: Harbin Engineering University
– sequence: 7
  givenname: Chongna
  surname: Zhong
  fullname: Zhong, Chongna
  organization: Harbin Engineering University
– sequence: 8
  givenname: Piaoping
  orcidid: 0000-0002-9555-1803
  surname: Yang
  fullname: Yang, Piaoping
  email: yangpiaoping@hrbeu.edu.cn
  organization: Harbin Engineering University
BookMark eNpd0btOwzAUBmALFYm2sDJbYmFp8SXXsZQClUKL1DJHTuIQF8cpdgKEiZER8Yh9ElyKOjD5WOeT9Vt_D3RUpTgApxgNMULkwpRSDgnCPqII-Qegiz1MB15Aws5-xugI9IxZIUQxcfwuaEYNnDFVpbIxNdcGLrgyohbvPIOXkqVPcCnmZPP5_fbL6ibhBuaVhhNVMJVadV9UdZW1ipUihcuCa7Zu4ZUWL1zBpIUzzvTm42uqcs205ZF4LOpjcJgzafjJ39kHD9eT5fh2EM1vpuNRNFjZcP6A5_YvOHUSzwtSmuVh4jo8J8jBgYcJ8Tw3IUnoUZanecJQRjK7otiljoNZwhntg_Pdu2tdPTfc1HEpTMqlZIpXjYlx6IaUOBg7lp79o6uq0cqms8oPKPKp61oV7tSrkLyN11qUTLcxRvG2gnhbQbyvIF7cRdH-Rn8AoCSAjA
ContentType Journal Article
Copyright 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID 7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1002/smll.201703007
DatabaseName Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1613-6829
EndPage n/a
ExternalDocumentID SMLL201703007
Genre article
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  funderid: 2014M560248; 2015T80321
– fundername: Outstanding Youth Foundation of Heilongjiang Province
  funderid: JC2015003
– fundername: Heilongjiang Postdoctoral Fund
  funderid: LBH‐Z14052; LBH‐TZ0607
– fundername: National Natural Science Foundation of China
  funderid: 51472058; 51502050; 51602072; 51602073
– fundername: Natural Science Foundation of Heilongjiang Province
  funderid: B201403
– fundername: Central Universities
– fundername: Fundamental Research Funds for the Central Universities
  funderid: HEUGIP201709
GroupedDBID ---
05W
0R~
123
1L6
1OC
33P
3SF
3WU
4.4
50Y
52U
53G
5VS
66C
8-0
8-1
8UM
A00
AAESR
AAEVG
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABJNI
ABLJU
ABRTZ
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
G-S
GNP
HBH
HGLYW
HHY
HHZ
HZ~
IX1
KQQ
LATKE
LAW
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
R.K
RIWAO
RNS
ROL
RWI
RX1
RYL
SUPJJ
SV3
V2E
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WXSBR
WYISQ
WYJ
XV2
Y6R
ZZTAW
~S-
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
JG9
L7M
7X8
ID FETCH-LOGICAL-j2477-ef7031c4b668c3df9b54ef204186122665b2b963afcfba0d2d0413153441abea3
IEDL.DBID DR2
ISSN 1613-6810
1613-6829
IngestDate Thu Jul 10 23:05:48 EDT 2025
Fri Jul 25 12:00:29 EDT 2025
Wed Jan 22 16:53:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 48
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-j2477-ef7031c4b668c3df9b54ef204186122665b2b963afcfba0d2d0413153441abea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9555-1803
PQID 1978307355
PQPubID 1046358
PageCount 11
ParticipantIDs proquest_miscellaneous_1959324114
proquest_journals_1978307355
wiley_primary_10_1002_smll_201703007_SMLL201703007
PublicationCentury 2000
PublicationDate December 27, 2017
PublicationDateYYYYMMDD 2017-12-27
PublicationDate_xml – month: 12
  year: 2017
  text: December 27, 2017
  day: 27
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Small (Weinheim an der Bergstrasse, Germany)
PublicationYear 2017
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 7
2015; 260
2015; 15
2015; 6
2016; 108
2017; 28
2013; 42
2015; 11
2015; 54
2016; 10
2016; 32
2016; 101
2014; 26
2014; 24
2017; 491
2012; 18
2015; 7
2014; 136
2017; 9
2014; 114
2016; 6
2012; 112
2010; 46
2015; 137
2015; 115
2013; 13
2013; 34
2010; 257
2017; 32
2017; 54
2010; 110
2014; 38
2017
2013; 135
2017; 284
2014; 8
2016; 28
2016; 27
2014; 6
2017; 126
2014; 10
2014; 53
References_xml – volume: 54
  start-page: 256
  year: 2017
  publication-title: J. Environ. Sci.
– volume: 46
  start-page: 6801
  year: 2010
  publication-title: Chem. Commun.
– volume: 26
  start-page: 2777
  year: 2014
  publication-title: Chem. Mater.
– volume: 28
  start-page: 8651
  year: 2016
  publication-title: Chem. Mater.
– volume: 110
  start-page: 2795
  year: 2010
  publication-title: Chem. Rev.
– volume: 28
  start-page: 084002
  year: 2017
  publication-title: Nanotechnology
– volume: 7
  start-page: 9608
  year: 2015
  publication-title: ACS Appl. Mater. Interfaces
– volume: 257
  start-page: 1660
  year: 2010
  publication-title: Appl. Surf. Sci.
– volume: 136
  start-page: 8438
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1601208
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 15
  start-page: 6815
  year: 2015
  publication-title: Nano Lett.
– volume: 38
  start-page: 4684
  year: 2014
  publication-title: New J. Chem.
– volume: 6
  start-page: 763
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 28
  start-page: 042001
  year: 2017
  publication-title: Nanotechnology
– volume: 491
  start-page: 216
  year: 2017
  publication-title: J. Colloid Interface Sci.
– volume: 112
  start-page: 1555
  year: 2012
  publication-title: Chem. Rev.
– volume: 7
  start-page: 44338
  year: 2017
  publication-title: Sci. Rep.
– volume: 135
  start-page: 17831
  year: 2013
  publication-title: J. Am. Chem. Soc.
– volume: 32
  start-page: 6459
  year: 2016
  publication-title: Langmuir
– volume: 13
  start-page: 3124
  year: 2013
  publication-title: Nano Lett.
– year: 2017
  publication-title: Adv. Mater.
– volume: 27
  start-page: 085104
  year: 2016
  publication-title: Nanotechnology
– volume: 6
  start-page: 1600452
  year: 2016
  publication-title: Adv. Energy Mater.
– volume: 32
  start-page: 294
  year: 2017
  publication-title: Nano Energy
– volume: 284
  start-page: 202
  year: 2017
  publication-title: Catal. Today
– volume: 18
  start-page: 1580
  year: 2012
  publication-title: Nat. Med.
– volume: 6
  start-page: 26670
  year: 2016
  publication-title: Sci. Rep.
– volume: 10
  start-page: 353
  year: 2014
  publication-title: Nano Energy
– volume: 137
  start-page: 9153
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 28
  start-page: 7039
  year: 2016
  publication-title: Chem. Mater.
– volume: 7
  start-page: 17299
  year: 2015
  publication-title: Nanoscale
– volume: 53
  start-page: 4623
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 53
  start-page: 9240
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 7915
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 110
  start-page: 2839
  year: 2010
  publication-title: Chem. Rev.
– volume: 136
  start-page: 9236
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 114
  start-page: 9824
  year: 2014
  publication-title: Chem. Rev.
– volume: 136
  start-page: 9280
  year: 2014
  publication-title: J. Am. Chem. Soc.
– volume: 115
  start-page: 1990
  year: 2015
  publication-title: Chem. Rev.
– volume: 101
  start-page: 32
  year: 2016
  publication-title: Biomaterials
– volume: 7
  start-page: 60
  year: 2017
  publication-title: Catalysts
– volume: 10
  start-page: 4410
  year: 2016
  publication-title: ACS Nano
– volume: 54
  start-page: 11433
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  start-page: 5881
  year: 2015
  publication-title: Nat. Commun.
– volume: 34
  start-page: 9160
  year: 2013
  publication-title: Biomaterials
– volume: 54
  start-page: 1210
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 34
  start-page: 7715
  year: 2013
  publication-title: Biomaterials
– volume: 108
  start-page: 13
  year: 2016
  publication-title: Biomaterials
– volume: 137
  start-page: 9595
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 27
  start-page: 415202
  year: 2016
  publication-title: Nanotechnology
– volume: 7
  start-page: 40927
  year: 2017
  publication-title: Sci. Rep.
– volume: 126
  start-page: 514
  year: 2017
  publication-title: Comput. Mater. Sci.
– volume: 8
  start-page: 10621
  year: 2014
  publication-title: ACS Nano
– volume: 24
  start-page: 7318
  year: 2014
  publication-title: Adv. Funct. Mater.
– volume: 260
  start-page: 642
  year: 2015
  publication-title: Chem. Eng. J.
– volume: 11
  start-page: 419
  year: 2015
  publication-title: Nano Energy
– volume: 6
  start-page: 6797
  year: 2015
  publication-title: Nat. Commun.
– volume: 137
  start-page: 11376
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 42
  start-page: 2294
  year: 2013
  publication-title: Chem. Soc. Rev.
– volume: 9
  start-page: 11064
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
SSID ssj0031247
Score 2.4763815
Snippet The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy...
SourceID proquest
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Anatase
Au clusters
Electric power distribution
Electrons
Infrared radiation
Light
Nanoclusters
Nanotechnology
Nanotubes
Penetration depth
Photodynamic therapy
Synergistic effect
synergistic therapies
TiO2
Titanium dioxide
Titanium oxides
Title Au Nanoclusters Sensitized Black TiO2−x Nanotubes for Enhanced Photodynamic Therapy Driven by Near‐Infrared Light
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201703007
https://www.proquest.com/docview/1978307355
https://www.proquest.com/docview/1959324114
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4I94yEmto4zhNOyIeAlQKoq3ULbIdW-WVoCaRgImREfET-SXcOW1oGWFLZFtKfL67z-e7z4TsY3Wl5spzatxtOshX4kiulFOra8G0VoZHGIe8bNfPevyi7_cnqvgLfogy4IaaYe01KriQafWHNDR9fMCjAxeXrC0nx4QtREU3JX-UB87L3q4CPstB4q0xa2ONVaeHT-HLSZRq3czpAhHjDyyyS-4P8kweqNdf3I3_-YNFMj_CoPSwWDRLZEbHy2RugplwheSHOQXDm6iHHJkUUtrBRPfs9lVH1Mb8aPf2in29fz7bblkudUoB_9KTeGBzCuj1IMmSqLjvnnYL7gJ6PETjSuULbYOGfb19nMdmiCnwtIVBglXSOz3pHp05oxsanDuY2cDRBunvFZf1ekN5kWlKn2vDQO4NQE7g-33JJKi4MMpIUYtYBE0eGFkAYUJq4a2RSpzEep1QVyrfCCTzxz2edgWTgWqywDQCxiT3N8j2WELhSM3S0MXAFRgpH5r3ymZQEDz1ELFOcuzjA0blsO_bIMyKI3wqiDzCgrKZhSiIsBRE2Llstcq3zb8M2iKz-IxpLyzYJpVsmOsdAC-Z3LUL9Bu8k-nH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HGSKxpG8dp2rGCogJpQbSV2KLYscUzQW0iQSdGRsRP7C_hLmlDywhjYltKfL67z-fzd4Qc4-1KxaVllLhZNZCvxBBcSqNUVj5TSmoeYByy2So3uvzi1h5nE-JdmIwfIg-4oWak9hoVHAPSxR_W0P7zE54dmLhm8T75HJb1Rvr805ucQcoC95XWVwGvZSD11pi3scSK0-OnEOYkTk0dzdkyEeNPzPJLHgtJLApy8Iu98V__sEKWRjCU1rJ1s0pmVLhGFifICddJUkso2N5IPiVIptCnbcx1j-8HKqBp2I927q_Y8OPrNe0WJ0L1KUBgWg_v0rQCen0XxVGQlbynnYy-gJ720L5S8UZboGTD98_zUPcwC566GCfYIN2zeuekYYyKNBgPMLWOoTQy4EsuyuWKtAJdFTZXmoHoKwCewP3bggnQcl9LLfxSwAJossDOAg7zhfKtTTIbRqHaItQU0tY-8vnjNk-ZPhOOrDJHVxzGBLe3yd5YRN5I0_qeibErsFM2NB_lzaAjePDhhypKsI8NMJXD1m-bsFQe3kvG5eFlrM3MQ0F4uSC8dtN186edvww6JPONTtP13PPW5S5ZwPeYBcOcPTIb9xK1D1gmFgfpav0GXkHt4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSAgG3ohHASOxBhLHSdoRUSoepSAoEltkO7bKK0FtIkEnRkbET-SXcJe0oTDCmNiWEp_v7vP5_B0hO3i7UnPlWjZ3ahbylViSK2XZvhZMa2V4hHHIs5Z_dM1PbrybkVv8BT9EGXBDzcjtNSr4U2T2vklDe48PeHTg4JLF6-QT3LdrWLyhflkSSLngvfLyKuC0LGTeGtI22mzv5_gfAHMUpuZ-pjFLxPALi_SS-90slbuq_4u88T-_MEdmBiCU7herZp6M6XiBTI9QEy6SbD-jYHkT9ZAhlUKPXmGme3rb1xHNg360fXvOPt8-nvNuaSZ1jwIApodxJ08qoBedJE2iouA9bRfkBbTeRetK5QttgYp9vr4fx6aLOfC0iVGCJXLdOGwfHFmDEg3WHcxsYGmD_PeKS9-vKjcyNelxbRgIvgrQCZy_J5kEHRdGGSnsiEXQ5IKVBRQmpBbuMhmPk1ivEOpI5RmBbP64ydOOYDJQNRaYasCY5N4qqQwlFA70rBc6GLkCK-VB83bZDBqCxx4i1kmGfTwAqRw2fquE5eIInwomj7DgbGYhCiIsBRFenTWb5dPaXwZtkcmLeiNsHrdO18kUvsYUGBZUyHjazfQGAJlUbuZr9Qum7OyS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Au+Nanoclusters+Sensitized+Black+TiO2-x+Nanotubes+for+Enhanced+Photodynamic+Therapy+Driven+by+Near-Infrared+Light&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yang%2C+Dan&rft.au=Gulzar%2C+Arif&rft.au=Yang%2C+Guixin&rft.au=Gai%2C+Shili&rft.date=2017-12-27&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=13&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.201703007&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon