Au Nanoclusters Sensitized Black TiO2−x Nanotubes for Enhanced Photodynamic Therapy Driven by Near‐Infrared Light
The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2−x nanotubes (abbreviated as Au25/B‐TiO2−x NTs) are synthesized by gaseous reduction of ana...
Saved in:
Published in | Small (Weinheim an der Bergstrasse, Germany) Vol. 13; no. 48 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
27.12.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2−x nanotubes (abbreviated as Au25/B‐TiO2−x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25/B‐TiO2−x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2, which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal–TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.
A novel nanoplatform with enhanced photodynamic therapy effect is first presented by decorating Au clusters on black anatase TiO2−x nanotubes. The nanoplatform shows markedly higher photodynamic activity and wider photoresponse range than pristine anatase TiO2. |
---|---|
AbstractList | The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25 /B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25 /B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25 /B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25 /B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2−x nanotubes (abbreviated as Au25/B‐TiO2−x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25/B‐TiO2−x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2, which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal–TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. A novel nanoplatform with enhanced photodynamic therapy effect is first presented by decorating Au clusters on black anatase TiO2−x nanotubes. The nanoplatform shows markedly higher photodynamic activity and wider photoresponse range than pristine anatase TiO2. The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25/B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25/B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2, which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo. |
Author | Yang, Guixin Yang, Dan Zhong, Chongna Yang, Piaoping Gai, Shili Gulzar, Arif He, Fei Dai, Yunlu |
Author_xml | – sequence: 1 givenname: Dan surname: Yang fullname: Yang, Dan organization: Harbin Engineering University – sequence: 2 givenname: Arif surname: Gulzar fullname: Gulzar, Arif organization: Harbin Engineering University – sequence: 3 givenname: Guixin surname: Yang fullname: Yang, Guixin organization: Harbin Engineering University – sequence: 4 givenname: Shili surname: Gai fullname: Gai, Shili organization: Harbin Engineering University – sequence: 5 givenname: Fei surname: He fullname: He, Fei email: hefei1@hrbeu.edu.cn organization: Harbin Engineering University – sequence: 6 givenname: Yunlu surname: Dai fullname: Dai, Yunlu organization: Harbin Engineering University – sequence: 7 givenname: Chongna surname: Zhong fullname: Zhong, Chongna organization: Harbin Engineering University – sequence: 8 givenname: Piaoping orcidid: 0000-0002-9555-1803 surname: Yang fullname: Yang, Piaoping email: yangpiaoping@hrbeu.edu.cn organization: Harbin Engineering University |
BookMark | eNpd0btOwzAUBmALFYm2sDJbYmFp8SXXsZQClUKL1DJHTuIQF8cpdgKEiZER8Yh9ElyKOjD5WOeT9Vt_D3RUpTgApxgNMULkwpRSDgnCPqII-Qegiz1MB15Aws5-xugI9IxZIUQxcfwuaEYNnDFVpbIxNdcGLrgyohbvPIOXkqVPcCnmZPP5_fbL6ibhBuaVhhNVMJVadV9UdZW1ipUihcuCa7Zu4ZUWL1zBpIUzzvTm42uqcs205ZF4LOpjcJgzafjJ39kHD9eT5fh2EM1vpuNRNFjZcP6A5_YvOHUSzwtSmuVh4jo8J8jBgYcJ8Tw3IUnoUZanecJQRjK7otiljoNZwhntg_Pdu2tdPTfc1HEpTMqlZIpXjYlx6IaUOBg7lp79o6uq0cqms8oPKPKp61oV7tSrkLyN11qUTLcxRvG2gnhbQbyvIF7cRdH-Rn8AoCSAjA |
ContentType | Journal Article |
Copyright | 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
DOI | 10.1002/smll.201703007 |
DatabaseName | Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1613-6829 |
EndPage | n/a |
ExternalDocumentID | SMLL201703007 |
Genre | article |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation funderid: 2014M560248; 2015T80321 – fundername: Outstanding Youth Foundation of Heilongjiang Province funderid: JC2015003 – fundername: Heilongjiang Postdoctoral Fund funderid: LBH‐Z14052; LBH‐TZ0607 – fundername: National Natural Science Foundation of China funderid: 51472058; 51502050; 51602072; 51602073 – fundername: Natural Science Foundation of Heilongjiang Province funderid: B201403 – fundername: Central Universities – fundername: Fundamental Research Funds for the Central Universities funderid: HEUGIP201709 |
GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM A00 AAESR AAEVG AAHHS AAHQN AAIHA AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW R.K RIWAO RNS ROL RWI RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ WYJ XV2 Y6R ZZTAW ~S- 7SR 7U5 8BQ 8FD AAMMB AEFGJ AGHNM AGXDD AGYGG AIDQK AIDYY JG9 L7M 7X8 |
ID | FETCH-LOGICAL-j2477-ef7031c4b668c3df9b54ef204186122665b2b963afcfba0d2d0413153441abea3 |
IEDL.DBID | DR2 |
ISSN | 1613-6810 1613-6829 |
IngestDate | Thu Jul 10 23:05:48 EDT 2025 Fri Jul 25 12:00:29 EDT 2025 Wed Jan 22 16:53:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 48 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-j2477-ef7031c4b668c3df9b54ef204186122665b2b963afcfba0d2d0413153441abea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9555-1803 |
PQID | 1978307355 |
PQPubID | 1046358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1959324114 proquest_journals_1978307355 wiley_primary_10_1002_smll_201703007_SMLL201703007 |
PublicationCentury | 2000 |
PublicationDate | December 27, 2017 |
PublicationDateYYYYMMDD | 2017-12-27 |
PublicationDate_xml | – month: 12 year: 2017 text: December 27, 2017 day: 27 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
PublicationYear | 2017 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 7 2015; 260 2015; 15 2015; 6 2016; 108 2017; 28 2013; 42 2015; 11 2015; 54 2016; 10 2016; 32 2016; 101 2014; 26 2014; 24 2017; 491 2012; 18 2015; 7 2014; 136 2017; 9 2014; 114 2016; 6 2012; 112 2010; 46 2015; 137 2015; 115 2013; 13 2013; 34 2010; 257 2017; 32 2017; 54 2010; 110 2014; 38 2017 2013; 135 2017; 284 2014; 8 2016; 28 2016; 27 2014; 6 2017; 126 2014; 10 2014; 53 |
References_xml | – volume: 54 start-page: 256 year: 2017 publication-title: J. Environ. Sci. – volume: 46 start-page: 6801 year: 2010 publication-title: Chem. Commun. – volume: 26 start-page: 2777 year: 2014 publication-title: Chem. Mater. – volume: 28 start-page: 8651 year: 2016 publication-title: Chem. Mater. – volume: 110 start-page: 2795 year: 2010 publication-title: Chem. Rev. – volume: 28 start-page: 084002 year: 2017 publication-title: Nanotechnology – volume: 7 start-page: 9608 year: 2015 publication-title: ACS Appl. Mater. Interfaces – volume: 257 start-page: 1660 year: 2010 publication-title: Appl. Surf. Sci. – volume: 136 start-page: 8438 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 7 start-page: 1601208 year: 2017 publication-title: Adv. Energy Mater. – volume: 15 start-page: 6815 year: 2015 publication-title: Nano Lett. – volume: 38 start-page: 4684 year: 2014 publication-title: New J. Chem. – volume: 6 start-page: 763 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 28 start-page: 042001 year: 2017 publication-title: Nanotechnology – volume: 491 start-page: 216 year: 2017 publication-title: J. Colloid Interface Sci. – volume: 112 start-page: 1555 year: 2012 publication-title: Chem. Rev. – volume: 7 start-page: 44338 year: 2017 publication-title: Sci. Rep. – volume: 135 start-page: 17831 year: 2013 publication-title: J. Am. Chem. Soc. – volume: 32 start-page: 6459 year: 2016 publication-title: Langmuir – volume: 13 start-page: 3124 year: 2013 publication-title: Nano Lett. – year: 2017 publication-title: Adv. Mater. – volume: 27 start-page: 085104 year: 2016 publication-title: Nanotechnology – volume: 6 start-page: 1600452 year: 2016 publication-title: Adv. Energy Mater. – volume: 32 start-page: 294 year: 2017 publication-title: Nano Energy – volume: 284 start-page: 202 year: 2017 publication-title: Catal. Today – volume: 18 start-page: 1580 year: 2012 publication-title: Nat. Med. – volume: 6 start-page: 26670 year: 2016 publication-title: Sci. Rep. – volume: 10 start-page: 353 year: 2014 publication-title: Nano Energy – volume: 137 start-page: 9153 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 28 start-page: 7039 year: 2016 publication-title: Chem. Mater. – volume: 7 start-page: 17299 year: 2015 publication-title: Nanoscale – volume: 53 start-page: 4623 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 53 start-page: 9240 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 7915 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 110 start-page: 2839 year: 2010 publication-title: Chem. Rev. – volume: 136 start-page: 9236 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 114 start-page: 9824 year: 2014 publication-title: Chem. Rev. – volume: 136 start-page: 9280 year: 2014 publication-title: J. Am. Chem. Soc. – volume: 115 start-page: 1990 year: 2015 publication-title: Chem. Rev. – volume: 101 start-page: 32 year: 2016 publication-title: Biomaterials – volume: 7 start-page: 60 year: 2017 publication-title: Catalysts – volume: 10 start-page: 4410 year: 2016 publication-title: ACS Nano – volume: 54 start-page: 11433 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 6 start-page: 5881 year: 2015 publication-title: Nat. Commun. – volume: 34 start-page: 9160 year: 2013 publication-title: Biomaterials – volume: 54 start-page: 1210 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 34 start-page: 7715 year: 2013 publication-title: Biomaterials – volume: 108 start-page: 13 year: 2016 publication-title: Biomaterials – volume: 137 start-page: 9595 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 27 start-page: 415202 year: 2016 publication-title: Nanotechnology – volume: 7 start-page: 40927 year: 2017 publication-title: Sci. Rep. – volume: 126 start-page: 514 year: 2017 publication-title: Comput. Mater. Sci. – volume: 8 start-page: 10621 year: 2014 publication-title: ACS Nano – volume: 24 start-page: 7318 year: 2014 publication-title: Adv. Funct. Mater. – volume: 260 start-page: 642 year: 2015 publication-title: Chem. Eng. J. – volume: 11 start-page: 419 year: 2015 publication-title: Nano Energy – volume: 6 start-page: 6797 year: 2015 publication-title: Nat. Commun. – volume: 137 start-page: 11376 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 42 start-page: 2294 year: 2013 publication-title: Chem. Soc. Rev. – volume: 9 start-page: 11064 year: 2017 publication-title: ACS Appl. Mater. Interfaces |
SSID | ssj0031247 |
Score | 2.4763815 |
Snippet | The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Anatase Au clusters Electric power distribution Electrons Infrared radiation Light Nanoclusters Nanotechnology Nanotubes Penetration depth Photodynamic therapy Synergistic effect synergistic therapies TiO2 Titanium dioxide Titanium oxides |
Title | Au Nanoclusters Sensitized Black TiO2−x Nanotubes for Enhanced Photodynamic Therapy Driven by Near‐Infrared Light |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.201703007 https://www.proquest.com/docview/1978307355 https://www.proquest.com/docview/1959324114 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQJxh4I94yEmto4zhNOyIeAlQKoq3ULbIdW-WVoCaRgImREfET-SXcOW1oGWFLZFtKfL67z-e7z4TsY3Wl5spzatxtOshX4kiulFOra8G0VoZHGIe8bNfPevyi7_cnqvgLfogy4IaaYe01KriQafWHNDR9fMCjAxeXrC0nx4QtREU3JX-UB87L3q4CPstB4q0xa2ONVaeHT-HLSZRq3czpAhHjDyyyS-4P8kweqNdf3I3_-YNFMj_CoPSwWDRLZEbHy2RugplwheSHOQXDm6iHHJkUUtrBRPfs9lVH1Mb8aPf2in29fz7bblkudUoB_9KTeGBzCuj1IMmSqLjvnnYL7gJ6PETjSuULbYOGfb19nMdmiCnwtIVBglXSOz3pHp05oxsanDuY2cDRBunvFZf1ekN5kWlKn2vDQO4NQE7g-33JJKi4MMpIUYtYBE0eGFkAYUJq4a2RSpzEep1QVyrfCCTzxz2edgWTgWqywDQCxiT3N8j2WELhSM3S0MXAFRgpH5r3ymZQEDz1ELFOcuzjA0blsO_bIMyKI3wqiDzCgrKZhSiIsBRE2Llstcq3zb8M2iKz-IxpLyzYJpVsmOsdAC-Z3LUL9Bu8k-nH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMDAG_HGSKxpG8dp2rGCogJpQbSV2KLYscUzQW0iQSdGRsRP7C_hLmlDywhjYltKfL67z-fzd4Qc4-1KxaVllLhZNZCvxBBcSqNUVj5TSmoeYByy2So3uvzi1h5nE-JdmIwfIg-4oWak9hoVHAPSxR_W0P7zE54dmLhm8T75HJb1Rvr805ucQcoC95XWVwGvZSD11pi3scSK0-OnEOYkTk0dzdkyEeNPzPJLHgtJLApy8Iu98V__sEKWRjCU1rJ1s0pmVLhGFifICddJUkso2N5IPiVIptCnbcx1j-8HKqBp2I927q_Y8OPrNe0WJ0L1KUBgWg_v0rQCen0XxVGQlbynnYy-gJ720L5S8UZboGTD98_zUPcwC566GCfYIN2zeuekYYyKNBgPMLWOoTQy4EsuyuWKtAJdFTZXmoHoKwCewP3bggnQcl9LLfxSwAJossDOAg7zhfKtTTIbRqHaItQU0tY-8vnjNk-ZPhOOrDJHVxzGBLe3yd5YRN5I0_qeibErsFM2NB_lzaAjePDhhypKsI8NMJXD1m-bsFQe3kvG5eFlrM3MQ0F4uSC8dtN186edvww6JPONTtP13PPW5S5ZwPeYBcOcPTIb9xK1D1gmFgfpav0GXkHt4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQSAgG3ohHASOxBhLHSdoRUSoepSAoEltkO7bKK0FtIkEnRkbET-SXcJe0oTDCmNiWEp_v7vP5_B0hO3i7UnPlWjZ3ahbylViSK2XZvhZMa2V4hHHIs5Z_dM1PbrybkVv8BT9EGXBDzcjtNSr4U2T2vklDe48PeHTg4JLF6-QT3LdrWLyhflkSSLngvfLyKuC0LGTeGtI22mzv5_gfAHMUpuZ-pjFLxPALi_SS-90slbuq_4u88T-_MEdmBiCU7herZp6M6XiBTI9QEy6SbD-jYHkT9ZAhlUKPXmGme3rb1xHNg360fXvOPt8-nvNuaSZ1jwIApodxJ08qoBedJE2iouA9bRfkBbTeRetK5QttgYp9vr4fx6aLOfC0iVGCJXLdOGwfHFmDEg3WHcxsYGmD_PeKS9-vKjcyNelxbRgIvgrQCZy_J5kEHRdGGSnsiEXQ5IKVBRQmpBbuMhmPk1ivEOpI5RmBbP64ydOOYDJQNRaYasCY5N4qqQwlFA70rBc6GLkCK-VB83bZDBqCxx4i1kmGfTwAqRw2fquE5eIInwomj7DgbGYhCiIsBRFenTWb5dPaXwZtkcmLeiNsHrdO18kUvsYUGBZUyHjazfQGAJlUbuZr9Qum7OyS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Au+Nanoclusters+Sensitized+Black+TiO2-x+Nanotubes+for+Enhanced+Photodynamic+Therapy+Driven+by+Near-Infrared+Light&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Yang%2C+Dan&rft.au=Gulzar%2C+Arif&rft.au=Yang%2C+Guixin&rft.au=Gai%2C+Shili&rft.date=2017-12-27&rft.issn=1613-6829&rft.eissn=1613-6829&rft.volume=13&rft.issue=48&rft_id=info:doi/10.1002%2Fsmll.201703007&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |