Reinforcement for Overdentures on Abutment Teeth

Purpose: This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. Methods: The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinfo...

Full description

Saved in:
Bibliographic Details
Published inNihon Hotetsu Shika Gakkai Zasshi Vol. 50; no. 2; pp. 191 - 199
Main Author Osada, Tomoko
Format Journal Article
LanguageJapanese
Published Japan Japan Prosthodontic Society 01.04.2006
Subjects
Online AccessGet full text
ISSN0389-5386
1883-177X
DOI10.2186/jjps.50.191

Cover

Abstract Purpose: This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. Methods: The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed: conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50μm Al203 powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37deg;C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0mm/min were analyzed by ANOVA/Tukey's test (α=0.01). Results: There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks. Conclusion: The breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a longterm prognosis without denture breakage.
AbstractList This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01). There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks. The breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.
Purpose: This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures. Methods: The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed: conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50μm Al203 powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37deg;C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0mm/min were analyzed by ANOVA/Tukey's test (α=0.01). Results: There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks. Conclusion: The breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a longterm prognosis without denture breakage.
This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures.PURPOSEThis study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of overdentures.The basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01).METHODSThe basal surfaces of composite resin teeth and acrylic resin teeth were removed using a carbide bur. A reinforcement wire or a wrought palatal bar was embedded near the occlusal surface or basal surface. Four types of framework structures were designed : conventional skeleton (skeleton), housing with skeleton (housing), housing plus short metal backing (metal backing), and housing plus long metal backing (double structure). After the wires, bars, and frameworks were sand-blasted with 50 microm Al(2)O(3) powder, they were primed with a metal primer and embedded in a heat-polymerized denture base resin. The breaking strengths (N) and maximum stiffness (N/mm) of two-week aged (37 degrees C) specimens were measured using a bending test (n=8). All data obtained at a crosshead speed of 2.0 mm/min were analyzed by ANOVA/Tukey's test (alpha=0.01).There were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks.RESULTSThere were no statistical differences between the two kinds of artificial teeth (p>0.01). The wrought palatal bar had significantly higher strength than the reinforcement wire (p<0.01). Greater strengths were found for specimens with frameworks than those without frameworks (p<0.01). The breaking strength of the wrought palatal bar embedded near the occlusal surface was higher than that on the basal surface (p>0.01). The breaking strength and maximum stiffness of the double structure framework were significantly greater (p<0.01) than those of the conventional frameworks.The breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.CONCLUSIONThe breaking strengths of overdentures were influenced by the size and position of the reinforcement wires. Double structure frameworks are recommended for overdentures to promote a long-term prognosis without denture breakage.
Author Osada, Tomoko
Author_xml – sequence: 1
  fullname: Osada, Tomoko
  organization: The First Department of Prosthetic Dentistry, Tsurumi University School of Dental Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16790958$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtLw0AQxhep2Fp78i45eUvdR3azeyz1CYWCVPC27CazNiGPupsI_vdGU3uZmY_vxzDzXaJJ0zaA0DXBS0qkuCvLQ1hyvCSKnKEZkZLFJE3fJ2iGmVQxZ1JM0SKEwmKMFU9Syi_QlIhUDUrOEH6FonGtz6CGpouGKdp-gc8H0XsIUdtEK9t3f-YOoNtfoXNnqgCLY5-jt8eH3fo53myfXtarTVzShHaxsSCEk1woA5mjjDFFgDohXW4xpzxTTkrLWW5ValJmHDHJcLG1gCkViWNzdDvuPfj2s4fQ6boIGVSVaaDtgxaSYElkMoA3R7C3NeT64Iva-G_9_-MA3I9AGTrzASfA-K7IKtC_ERLFU82xpmMZ0jzZ2d54DQ37AZaqbco
ContentType Journal Article
Copyright Japan Prosthodontic Society
Copyright_xml – notice: Japan Prosthodontic Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.2186/jjps.50.191
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1883-177X
EndPage 199
ExternalDocumentID 16790958
article_jjps1957_50_2_50_2_191_article_char_en
Genre English Abstract
Journal Article
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
F5P
JSF
KQ8
MOJWN
OK1
RJT
123
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-j242t-abe66f8569aecf233391e2f68fdb0525c9f88b53db97a73af1a4038bbe02264f3
ISSN 0389-5386
IngestDate Fri Jul 11 07:31:05 EDT 2025
Thu May 23 23:10:59 EDT 2024
Wed Sep 03 06:30:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j242t-abe66f8569aecf233391e2f68fdb0525c9f88b53db97a73af1a4038bbe02264f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.jstage.jst.go.jp/article/jjps1957/50/2/50_2_191/_article/-char/en
PMID 16790958
PQID 68108184
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_68108184
pubmed_primary_16790958
jstage_primary_article_jjps1957_50_2_50_2_191_article_char_en
PublicationCentury 2000
PublicationDate 2006-Apr
PublicationDateYYYYMMDD 2006-04-01
PublicationDate_xml – month: 04
  year: 2006
  text: 2006-Apr
PublicationDecade 2000
PublicationPlace Japan
PublicationPlace_xml – name: Japan
PublicationTitle Nihon Hotetsu Shika Gakkai Zasshi
PublicationTitleAlternate J Jpn Prosthodont Soc
PublicationYear 2006
Publisher Japan Prosthodontic Society
Publisher_xml – name: Japan Prosthodontic Society
References 1) Brewer AA. Removable partial overdentures. In Brewer AA, Morrow RM, editors, Overdentures 169-174, St. Louis: The C. V. Mosby, 1980.
25) 尾花甚一監修. すれ違い咬合の補綴37-48, 東京: 医歯薬出版, 1994
11) 河野修己, 斉藤俊文, 内藤昭ほか. レジン床の補強に関する研究たわみおよび破折強さ. 歯学50: 167-176, 1971.
6) 前田芳信. 臨床に生かすオーバーデンチャーインプラント・天然歯支台のすべて60-81, 東京: クインテッセンス出版, 2003
7) Brewer AA, Morrow RM. Overdenture problems. In Brewer AA, Morrow RM, editors, Overdentures 341-347, St Louis: The C. V. Mosby, 1980.
19) 鈴木恭典. 義歯構造が負担圧配分に及ぼす影響に関する実験的研究. 補綴誌36: 1072-1086, 1992.
16) Jumber JF, Jumber MJ, Anderson FH. An atlas of overdentures and attachments 123-132, Chicago Quintessence, 1981.
13) 岡田政俊, 前田芳信野首孝祠ほか. 加熱重合型接着性レジンに関する研究レジン床義歯におけるコバルトクロム線の補強効果について. 補綴誌29: 78-84, 1985
14) 宮本雅司. 金属板によるはりつけ補強法に関する研究第1報3点曲げ試験. 補綴誌30: 882-888, 1986.
15) Ozgul K, Tulin N, Arzu T et al. The effect of length and concentration of glass fibers on the mechanical properties of an injection- and a compression-molded denture base polymer. J Prosthet Dent 90: 385-393, 2003.
20) 大久保力廣, 鈴木恭典, 中山昇ほか. 義歯構造の相違が疲労強度に及ぼす影響. 補綴誌37: 420-430, 1993.
22) 栗原大介. 金属構造義歯の曲げ強度特性に関する実験的研究. 鶴見歯学20: 163-179, 1994.
9) Rantanen AV. The talon cusp. Oral Surg 32: 398-399, 1971.
4) 真鍋顕. オーバーデンチャーをめぐる諸問題解決されたもの, 解決途上のもの. 補綴誌48: 372-383, 2004.
12) 木村福二. 金属線によるレジン床の補強に関する基礎的研究九州歯会誌34: 665-677, 1981.
23) 上田芳男, 濱崎真一, 川畑直嗣ほか. オーバーデンチャーの支台歯の負担性に対するコーピングの形態の影響補綴誌31: 971-979, 1987.
8) Ettinger RL, Jakobsen J. Denture treatment needs of an overdenture population. Int J Prosthodont 10: 355-365, 1997.
24) 高橋宏美, 小森山学, 平沢忠. 硬質レジン歯の構造と接着に関する研究補綴誌41: 814-821, 1997
2) 長岡英一. オーバーデンチャー1-34, 京都: 永末書店, 1984.
5) Ohkubo C, Kurihara D, Sato J et al. Breaking strengths of metal framework structures for implant-stabilized overdentures. Prothodont Res Pract 2: 27-34, 2003.
3) 長澤亨, 岡根秀明. オーバーデンチャー5-10, 東京: 口腔保健協会, 1997
21) 大久保力廣, 中山昇, 鈴木恭典ほか. 構造設計と歯台装置の相違が義歯の破折強度に及ぼす影響. 補綴誌38: 897-907, 1994.
18) 大久保力廣, 鈴木恭典, 栗原大介ほか. 義歯構造の相違がねじり強度に及ぼす影響. 補綴誌36: 443-449, 1992
10) 阿部實. 義歯の破損の原因とその対応について. デンタルアスペクト3: 13-21, 1989.
17) 大久保力廣. 義歯の構造設計に関する実験的研究. 補綴誌33: 1273-1287, 1989.
References_xml – reference: 18) 大久保力廣, 鈴木恭典, 栗原大介ほか. 義歯構造の相違がねじり強度に及ぼす影響. 補綴誌36: 443-449, 1992
– reference: 19) 鈴木恭典. 義歯構造が負担圧配分に及ぼす影響に関する実験的研究. 補綴誌36: 1072-1086, 1992.
– reference: 16) Jumber JF, Jumber MJ, Anderson FH. An atlas of overdentures and attachments 123-132, Chicago Quintessence, 1981.
– reference: 20) 大久保力廣, 鈴木恭典, 中山昇ほか. 義歯構造の相違が疲労強度に及ぼす影響. 補綴誌37: 420-430, 1993.
– reference: 14) 宮本雅司. 金属板によるはりつけ補強法に関する研究第1報3点曲げ試験. 補綴誌30: 882-888, 1986.
– reference: 12) 木村福二. 金属線によるレジン床の補強に関する基礎的研究九州歯会誌34: 665-677, 1981.
– reference: 3) 長澤亨, 岡根秀明. オーバーデンチャー5-10, 東京: 口腔保健協会, 1997
– reference: 25) 尾花甚一監修. すれ違い咬合の補綴37-48, 東京: 医歯薬出版, 1994
– reference: 6) 前田芳信. 臨床に生かすオーバーデンチャーインプラント・天然歯支台のすべて60-81, 東京: クインテッセンス出版, 2003
– reference: 13) 岡田政俊, 前田芳信野首孝祠ほか. 加熱重合型接着性レジンに関する研究レジン床義歯におけるコバルトクロム線の補強効果について. 補綴誌29: 78-84, 1985
– reference: 8) Ettinger RL, Jakobsen J. Denture treatment needs of an overdenture population. Int J Prosthodont 10: 355-365, 1997.
– reference: 9) Rantanen AV. The talon cusp. Oral Surg 32: 398-399, 1971.
– reference: 11) 河野修己, 斉藤俊文, 内藤昭ほか. レジン床の補強に関する研究たわみおよび破折強さ. 歯学50: 167-176, 1971.
– reference: 15) Ozgul K, Tulin N, Arzu T et al. The effect of length and concentration of glass fibers on the mechanical properties of an injection- and a compression-molded denture base polymer. J Prosthet Dent 90: 385-393, 2003.
– reference: 21) 大久保力廣, 中山昇, 鈴木恭典ほか. 構造設計と歯台装置の相違が義歯の破折強度に及ぼす影響. 補綴誌38: 897-907, 1994.
– reference: 24) 高橋宏美, 小森山学, 平沢忠. 硬質レジン歯の構造と接着に関する研究補綴誌41: 814-821, 1997
– reference: 17) 大久保力廣. 義歯の構造設計に関する実験的研究. 補綴誌33: 1273-1287, 1989.
– reference: 4) 真鍋顕. オーバーデンチャーをめぐる諸問題解決されたもの, 解決途上のもの. 補綴誌48: 372-383, 2004.
– reference: 22) 栗原大介. 金属構造義歯の曲げ強度特性に関する実験的研究. 鶴見歯学20: 163-179, 1994.
– reference: 23) 上田芳男, 濱崎真一, 川畑直嗣ほか. オーバーデンチャーの支台歯の負担性に対するコーピングの形態の影響補綴誌31: 971-979, 1987.
– reference: 10) 阿部實. 義歯の破損の原因とその対応について. デンタルアスペクト3: 13-21, 1989.
– reference: 2) 長岡英一. オーバーデンチャー1-34, 京都: 永末書店, 1984.
– reference: 1) Brewer AA. Removable partial overdentures. In Brewer AA, Morrow RM, editors, Overdentures 169-174, St. Louis: The C. V. Mosby, 1980.
– reference: 5) Ohkubo C, Kurihara D, Sato J et al. Breaking strengths of metal framework structures for implant-stabilized overdentures. Prothodont Res Pract 2: 27-34, 2003.
– reference: 7) Brewer AA, Morrow RM. Overdenture problems. In Brewer AA, Morrow RM, editors, Overdentures 341-347, St Louis: The C. V. Mosby, 1980.
SSID ssib000954725
ssib002003980
ssib002227194
ssib005879723
ssj0062342
ssib002484716
Score 1.4233326
Snippet Purpose: This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking...
This study investigated the effect of the position of reinforcement wires, differences in artificial teeth, and framework designs on the breaking strength of...
SourceID proquest
pubmed
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 191
SubjectTerms Acrylic Resins
breaking strength
Composite Resins
coping
Dental Abutments
Denture, Overlay
framework design
Orthodontic Wires
overdenture
Prosthesis Design
reinforcement
Stress, Mechanical
Title Reinforcement for Overdentures on Abutment Teeth
URI https://www.jstage.jst.go.jp/article/jjps1957/50/2/50_2_191/_article/-char/en
https://www.ncbi.nlm.nih.gov/pubmed/16790958
https://www.proquest.com/docview/68108184
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Nihon Hotetsu Shika Gakkai Zasshi, 2006/04/10, Vol.50(2), pp.191-199
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaWcuGCqHgt0JIDt1VK7DiJc0CoqoBVEUXAVqq4RHZidx8iqUhy4dczY2ezpgKJwsWKkuxa45nMfPa8CHmhYYvM40qEutI85JTJUFBahUbnRlQmosqgR_fDWTo_56cXycVk8tqLWuo7dVT--G1eyb9wFe4BXzFL9gacHf8UbsA18BdG4DCMf8Xjz9rWPS3tEZ8NGPwINFTWjmjrBzhWvQsjX2gXujUi0bPVEp7Pm053bT_7slxt5Oyd3GzkavYVAPVyNR6_trKyCHPRfGs2zfVjAu4fE5yC6a0x-aDFvtRNjdVgh7hQT-MAeglBAw61qZ1GFAJrmNp-9qPKdLViB9Fgnv6jrvXWYEqp6310XUtjGyzU0uur9ijBfEm6M0ZjiOCwqAW-RfMkK5KoYG6AHxTbx5ibBqJwi9xmWWb99O8_efgyT3jm72cxFVn4ib8so_7-lqOx3uGzRGTYlW1r2gEqcueWGtbJJXwiPS89agDMrAHaX-o_71oselncI3eHbUdw7OjZJ5O1vE-iX-QngKvAl5-gqYOt_ARWfh6Q87dvFifzcOigEa4BenWhVDpNjUjSXOrSsDiOc6qZSYWpFDYwLOGDFCqJK5VnMouloZIDcUrpCBOsTfyQ7NVNrR-TQDBDUylMHsUAumUJQA-z7zU6hpko8yl55YgurlyZlOJmHJyS59u1KkDDodtK1rrp2wIr5sFsfEoeuSUcZ0AXIrBYPPnPuZ-SO7tP5hnZ6773-gCwZqcOrTz9BE79fCg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+for+Overdentures+on+Abutment+Teeth&rft.jtitle=Nihon+Hotetsu+Shika+Gakkai+Zasshi&rft.au=Osada%2C+Tomoko&rft.date=2006-04-01&rft.pub=Japan+Prosthodontic+Society&rft.issn=0389-5386&rft.eissn=1883-177X&rft.volume=50&rft.issue=2&rft.spage=191&rft.epage=199&rft_id=info:doi/10.2186%2Fjjps.50.191&rft.externalDocID=article_jjps1957_50_2_50_2_191_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-5386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-5386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-5386&client=summon