Thermal durability of thermal barrier coatings with layered bond coat in cyclic thermal exposure

The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through the cyclic thermal fatigue (CTE) and thermal-shock (TS) tests. The single layer and the first layer in the layered bond coat were prepared by h...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Ceramic Society of Japan Vol. 122; no. 1432; pp. 982 - 988
Main Authors KIM, Min-Sik, MYOUNG, Sang-Won, LU, Zhe, LEE, Je-Hyun, JUNG, Yeon-Gil, CHOI, Baek-Gyu, KIM, In-Su, CHO, Chang-Yong
Format Journal Article
LanguageJapanese
Published The Ceramic Society of Japan 2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through the cyclic thermal fatigue (CTE) and thermal-shock (TS) tests. The single layer and the first layer in the layered bond coat were prepared by high velocity oxy-fuel (HVOF) spray process using nickel-based feedstock. The second layer in the layered bond coat and the top coat were formed by air plasma spray (APS) process using nickel-based metallic feedstock and 8 wt % yttria-stabilized zirconia, respectively. The CTF tests were performed till 872 cycles with a dwell time of 60 min at a surface temperature of 1100°C and a bottom temperature of 950°C. Also, the TS tests were conducted until 300 cycles with a dwell time of 60 min at 1100°C. After the CTF and TS tests, the TBC system with the layered bond coat showed a better thermal durability than that with the single layer. The hardness value of the bond coat by HOVF process was dramatically decreased after the both tests, without much change in the bond coat by APS process. The diffusion trends of elements were similar with each other, less dependent on the bond coat structure, increasing amounts of cobalt and aluminum and decreasing those of nickel and tungsten. The microstructure evolution of the top coat, the growth behavior of thermally grown oxide layer, and the thermal durability were strongly affected by the thermal exposure condition and the bond coat structure.
AbstractList The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through the cyclic thermal fatigue (CTE) and thermal-shock (TS) tests. The single layer and the first layer in the layered bond coat were prepared by high velocity oxy-fuel (HVOF) spray process using nickel-based feedstock. The second layer in the layered bond coat and the top coat were formed by air plasma spray (APS) process using nickel-based metallic feedstock and 8 wt % yttria-stabilized zirconia, respectively. The CTF tests were performed till 872 cycles with a dwell time of 60 min at a surface temperature of 1100°C and a bottom temperature of 950°C. Also, the TS tests were conducted until 300 cycles with a dwell time of 60 min at 1100°C. After the CTF and TS tests, the TBC system with the layered bond coat showed a better thermal durability than that with the single layer. The hardness value of the bond coat by HOVF process was dramatically decreased after the both tests, without much change in the bond coat by APS process. The diffusion trends of elements were similar with each other, less dependent on the bond coat structure, increasing amounts of cobalt and aluminum and decreasing those of nickel and tungsten. The microstructure evolution of the top coat, the growth behavior of thermally grown oxide layer, and the thermal durability were strongly affected by the thermal exposure condition and the bond coat structure.
Author KIM, In-Su
CHO, Chang-Yong
LEE, Je-Hyun
JUNG, Yeon-Gil
KIM, Min-Sik
MYOUNG, Sang-Won
CHOI, Baek-Gyu
LU, Zhe
Author_xml – sequence: 1
  fullname: KIM, Min-Sik
  organization: School of Advanced Materials Science and Engineering, Changwon National University
– sequence: 2
  fullname: MYOUNG, Sang-Won
  organization: School of Advanced Materials Science and Engineering, Changwon National University
– sequence: 3
  fullname: LU, Zhe
  organization: School of Advanced Materials Science and Engineering, Changwon National University
– sequence: 4
  fullname: LEE, Je-Hyun
  organization: School of Advanced Materials Science and Engineering, Changwon National University
– sequence: 5
  fullname: JUNG, Yeon-Gil
  organization: School of Advanced Materials Science and Engineering, Changwon National University
– sequence: 6
  fullname: CHOI, Baek-Gyu
  organization: Korea Institute of Materials Science
– sequence: 7
  fullname: KIM, In-Su
  organization: Korea Institute of Materials Science
– sequence: 8
  fullname: CHO, Chang-Yong
  organization: Korea Institute of Materials Science
BookMark eNo9kEtvwjAQhK2KSqWUc6_-A6F-JvaxQn2AUFup9OzazgKOQoLsoDb_vlFBnObTzO5qNbdo1LQNIHRPyYxRoh8qDzFVbEYZm2nFrtCYcqGyXHI5GlgplpFC8Bs0TSk4wmQuNKNqjL7XO4h7W-PyGK0Ldeh63G5wd3adjTFAxL61XWi2Cf-Ebodr20OEEru2Kf8jHBrse18Hf9mE30ObjhHu0PXG1gmmZ52gr-en9fw1W72_LOaPq6xiXJFMybykypebwulSMEElk17J4WnpqASqCRDlnRai0JzInIAuhAcHzhc5eMsn6O10t0qd3YI5xLC3sTc2dsHXYM4NmaEhQwU_wXL-uTQfVBAuLoN-Z6OBhv8Bo1Rp3g
ContentType Journal Article
Copyright 2014 The Ceramic Society of Japan
Copyright_xml – notice: 2014 The Ceramic Society of Japan
DOI 10.2109/jcersj2.122.982
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1348-6535
EndPage 988
ExternalDocumentID article_jcersj2_122_1432_122_JCSJ_P14034_article_char_en
GroupedDBID 29L
5GY
8WZ
A6W
ACGFO
ACIWK
AENEX
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
JSF
JSH
RJT
RNS
RZJ
ID FETCH-LOGICAL-j2380-856d18cdf7b9d4241525c850745b15e190e08cb9447930560e974cebebc76eca3
ISSN 1882-0743
IngestDate Wed Apr 05 03:36:41 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1432
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2380-856d18cdf7b9d4241525c850745b15e190e08cb9447930560e974cebebc76eca3
OpenAccessLink https://www.jstage.jst.go.jp/article/jcersj2/122/1432/122_JCSJ-P14034/_article/-char/en
PageCount 7
ParticipantIDs jstage_primary_article_jcersj2_122_1432_122_JCSJ_P14034_article_char_en
PublicationCentury 2000
PublicationDate 20140000
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 20140000
PublicationDecade 2010
PublicationTitle Journal of the Ceramic Society of Japan
PublicationTitleAlternate J. Ceram. Soc. Japan
PublicationYear 2014
Publisher The Ceramic Society of Japan
Publisher_xml – name: The Ceramic Society of Japan
References 25) J. A. Haynes, M. K. Ferber, W. D. Porter and E. D. Rigney, Mater. High Temp, 16, 49–69 (1999).
10) W. Schlichting, N. P. Padture, E. H. Jordan and M. Gell, Mater. Sci. Eng., A, 342, 120–130 (2003).
34) S. Q. Nusier and G. M. Intern, J. Solids Struct., 37, 2151–2166 (2000).
40) K. Ma and J. M. Schoenung, Surf. Coat. Tech., 205, 5178–5185 (2011).
24) F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano and J. M. Schoenung, Surf. Coat. Tech., 185, 228–233 (2004).
35) R. Ghasemi, R. S. Razavi, R. Mozafarinia and H. Jamali, Ceram. Int., 40, 347–355 (2000).
36) S. W. Myoung, J. H. Kim, W. R. Lee, Y. G. Jung, K. S. Lee and U. Paik, Surf. Coat. Tech., 205, 1229–1235 (2010).
41) O. Trunova, T. Beck, R. Herzog, R. W. Steninbrech and L. Singheiser, Surf. Coat. Tech., 202, 5027–5032 (2008).
3) R. A. Miller, J. Thermal Spray Technol., 6, 35–42 (1997).
16) T. A. Taylor, D. L. Appleby, A. E. Weatherill and J. Griffiths, Surf. Coat. Tech., 43–44, 470–480 (1990).
30) A. Portinha, V. Teixeira, J. Carneiro, M. G. Beghi, C. E. Bottani, N. Franco, R. Vassen, D. Stoever and A. D. Sequeira, Surf. Coat. Tech., 188–189, 120–128 (2004).
11) A. Rabiei and A. G. Evans, Acta Mater., 48, 3963–3976 (2000).
43) A. G. Evans, M. Y. He and J. W. Hutchinson, Prog. Mater. Sci., 46, 249–271 (2001).
14) A. D. Jadhav, N. P. Padture, E. H. Jordan, M. Gell, P. Miranzo and E. R. Fuller, Jr., Acta Mater., 54, 3343–3349 (2006).
6) S. I. Jung, J. H. Kim, J. H. Lee, Y. G. Jung, U. Paik and K. S. Lee, Surf. Coat. Tech., 204, 802–806 (2009).
8) P. H. Lee, S. Y. Lee, J. Y. Kwon, S. W. Myoung, J. H. Lee, Y. G. Jung, H. Cho and U. Paik, Surf. Coat. Tech., 205, 1250–1255 (2010).
19) L. Ajdelsztajn, J. A. Picas, G. E. Kim, F. L. Bastian, J. Schoenung and V. Provenzano, Mater. Sci. Eng., A338, 33–43 (2002).
23) J. Stokes and L. Looney, Surf. Coat. Tech., 18, 177–178 (2004).
4) G. E. Energy, GER-3569G, Schenectady, NY, USA, http://www.gepowder.com/prod_serv/products/tech_docs/en/downloads/ger 3569g.pdf.
32) R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren and X.-H. Li, Surf. Coat. Tech., 236, 230–238 (2013).
39) B. Rajasekaran, G. Mauer and R. Vaßen, J. Therm. Spray Technol., 20, 1209–1216 (2011).
12) A. Taylor, U.S. Patent No. 5073433 (1991).
20) D. Toma, W. Brandl and U. Koster, Surf. Coat. Tech., 120–121, 8–15 (1999).
15) A. Jadhav, N. P. Padture, F. Wu, E. H. Jordan and M. Gell, Mater. Sci. Eng., A, 405, 313–320 (2005).
33) Y. C. Zhou and T. Hashida, Int. J. Fatigue, 24, 407–417 (2002).
18) A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai and G. Rizzi, J. Therm. Spray Technol., 12, 504–507 (2003).
22) S. J. Bull, R. I. Davidson, E. H. Fisher, A. R. McCaber and A. M. Jones, Surf. Coat. Tech., 130, 257–265 (2000).
44) A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Prog. Mater. Sci., 46, 505–553 (2001).
29) K. A. Khor and Y. W. Gu, Thin Solid Films, 372, 104–113 (2000).
31) S. Sharafat, A. Kobayashi, Y. Chen and N. M. Ghoniem, 3rd International Symposium on Applied Plasma Science (ISAPS 01). 65, 415 (2002).
21) D. Strauss, G. Muller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens and W. J. Quaddakers, Surf. Coat. Tech., 135, 196–201 (2001).
27) J. A. Haynes, M. K. Ferber and W. D. Porter, J. Therm. Spray Technol., 9, 38–48 (2000).
1) J. Y. Kwon, S. I. Jung, S. Y. Lee, P. H. Lee, J. H. Lee, Y. G. Jung, U. Paik, H. Cho and J. C. Chang, Prog. Org. Coat., 68, 135–141 (2010).
37) A. Rico, J. Gómez-García, C. J. Múnez, P. Poza and V. Utrilla, Surf. Coat. Tech., 203, 2307–2314 (2009).
7) H. Y. Qi and X. G. Yang, Comput. Mater. Sci., 57, 38–42 (2012).
26) N. J. Simms, P. J. Kilgallon, C. Roach, J. E. Oakey, D. Renusch, H. Echsler and M. Schütze, Mater. High Temp., 20, 519–526 (2003).
38) Z. Lu, S. W. Myoung, Y. G. Jung, G. Balakrishnan, J. Lee and U. Paik, materials, 6, 3387–3403 (2013).
42) E. A. G. Shillington and D. R. Clarke, Acta Mater., 47, 1297–1305 (1999).
2) N. P. Padture, M. Gell and E. H. Jordan, Science, 296, 280–284 (2002).
5) J. Zhang and A. Kobayashi, Vacuum, 83, 92–97 (2009).
9) T. Bhatia, A. Ozturk, L. Xie, E. H. Jordan, B. M. Cetegen, M. Gell, X. Ma and N. P. Padture, J. Mater. Res., 17, 2363–2372 (2002).
13) B. Beardsley, J. Thermal Spray Technol, 6, 181–186 (1997).
17) B. D. Shite, O. Kesler and L. Rose, J. Powd. Sour., 127, 334–343 (2008).
28) G. Mauer, R. Vaßen and D. Stöver, Surf. Coat. Tech., 202, 4374–4381 (2001).
References_xml
SSID ssib025649218
ssib007484717
ssib025654099
ssib023157176
ssj0062438
Score 2.0933082
Snippet The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through...
SourceID jstage
SourceType Publisher
StartPage 982
SubjectTerms Air plasma spray
Bond coat
High velocity oxy-fuel spray
Layered structure
Thermal barrier coating
Thermal durability
Title Thermal durability of thermal barrier coatings with layered bond coat in cyclic thermal exposure
URI https://www.jstage.jst.go.jp/article/jcersj2/122/1432/122_JCSJ-P14034/_article/-char/en
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of the Ceramic Society of Japan, 2014/12/01, Vol.122(1432), pp.982-988
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLbKcIEDYhW7fOCGXNLEznJEVaGUKYvaiuEUbMcdJholo9JKlJ_HL-M921kYjQSMuESJa7tJ3pfnz_ZbCHmmR5mSWZAyIVPOeKolfHPFmnFRmCSKIpmucUd3_i6ervjsSBwNBj97Vku7rRrqHxf6lVxGqlAGckUv2X-QbNspFMA5yBeOIGE4_q2MQa-eoq-hC7e991v-tlTJjU1Hp2u5tck57Zrrqdxjes7nqrYObdKmCNB7jcGum5bm-1n9zYcauYC5Ilcdmw1msm-tPqF4BuNut6f_Zu6s8iu2OGm9geaf36-ck9RCVsfsU2cDcLiy2yRfW5wdTibO-oZN97uqvzgx6pYll3-6E6dukd8jiXGjkSuLeMpi4YKYtDo6DPtg5H5N1CndzKUv8uN35tIEnh8aQhdZtdTAqstwCB0O23a_xdv20sx9zRxq5viH9mQ2XszyDxjjkOdNRXSPAzReIVdDUHZoVvr2Y6fTMFZrb8oMdFrAZUsBgXHyLOz4AVwDh8YpomMTcchtNvb2TbnwVPg0L849C3CoEmYUjTWiJUjLm-SGxwd96e73FhmU8ja53ot3eYd88YClHWBpvaYedtQDljaApQhY6gFLEbD2J3pSUQfYtmUD2Ltk9WqyHE-ZT_HBSuCKAUtFXIxSXawTlRXcskmhU5ijcKFGwgBbNUGqVcZxARi4emBg_qtB8SidxEbL6B45qOrK3CfUxCZQsRIxDJs801ylWShjmSieGJhEyAfktXs9-ZmL45JfVtIP_1tPj8g1_Grckt5jcrDd7MwTILlb9dSi6BesAqb6
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+durability+of+thermal+barrier+coatings+with+layered+bond+coat+in+cyclic+thermal+exposure&rft.jtitle=Journal+of+the+Ceramic+Society+of+Japan&rft.au=KIM%2C+Min-Sik&rft.au=MYOUNG%2C+Sang-Won&rft.au=LU%2C+Zhe&rft.au=LEE%2C+Je-Hyun&rft.date=2014&rft.pub=The+Ceramic+Society+of+Japan&rft.issn=1882-0743&rft.eissn=1348-6535&rft.volume=122&rft.issue=1432&rft.spage=982&rft.epage=988&rft_id=info:doi/10.2109%2Fjcersj2.122.982&rft.externalDocID=article_jcersj2_122_1432_122_JCSJ_P14034_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0743&client=summon