Thermal durability of thermal barrier coatings with layered bond coat in cyclic thermal exposure
The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through the cyclic thermal fatigue (CTE) and thermal-shock (TS) tests. The single layer and the first layer in the layered bond coat were prepared by h...
Saved in:
Published in | Journal of the Ceramic Society of Japan Vol. 122; no. 1432; pp. 982 - 988 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
The Ceramic Society of Japan
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through the cyclic thermal fatigue (CTE) and thermal-shock (TS) tests. The single layer and the first layer in the layered bond coat were prepared by high velocity oxy-fuel (HVOF) spray process using nickel-based feedstock. The second layer in the layered bond coat and the top coat were formed by air plasma spray (APS) process using nickel-based metallic feedstock and 8 wt % yttria-stabilized zirconia, respectively. The CTF tests were performed till 872 cycles with a dwell time of 60 min at a surface temperature of 1100°C and a bottom temperature of 950°C. Also, the TS tests were conducted until 300 cycles with a dwell time of 60 min at 1100°C. After the CTF and TS tests, the TBC system with the layered bond coat showed a better thermal durability than that with the single layer. The hardness value of the bond coat by HOVF process was dramatically decreased after the both tests, without much change in the bond coat by APS process. The diffusion trends of elements were similar with each other, less dependent on the bond coat structure, increasing amounts of cobalt and aluminum and decreasing those of nickel and tungsten. The microstructure evolution of the top coat, the growth behavior of thermally grown oxide layer, and the thermal durability were strongly affected by the thermal exposure condition and the bond coat structure. |
---|---|
AbstractList | The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through the cyclic thermal fatigue (CTE) and thermal-shock (TS) tests. The single layer and the first layer in the layered bond coat were prepared by high velocity oxy-fuel (HVOF) spray process using nickel-based feedstock. The second layer in the layered bond coat and the top coat were formed by air plasma spray (APS) process using nickel-based metallic feedstock and 8 wt % yttria-stabilized zirconia, respectively. The CTF tests were performed till 872 cycles with a dwell time of 60 min at a surface temperature of 1100°C and a bottom temperature of 950°C. Also, the TS tests were conducted until 300 cycles with a dwell time of 60 min at 1100°C. After the CTF and TS tests, the TBC system with the layered bond coat showed a better thermal durability than that with the single layer. The hardness value of the bond coat by HOVF process was dramatically decreased after the both tests, without much change in the bond coat by APS process. The diffusion trends of elements were similar with each other, less dependent on the bond coat structure, increasing amounts of cobalt and aluminum and decreasing those of nickel and tungsten. The microstructure evolution of the top coat, the growth behavior of thermally grown oxide layer, and the thermal durability were strongly affected by the thermal exposure condition and the bond coat structure. |
Author | KIM, In-Su CHO, Chang-Yong LEE, Je-Hyun JUNG, Yeon-Gil KIM, Min-Sik MYOUNG, Sang-Won CHOI, Baek-Gyu LU, Zhe |
Author_xml | – sequence: 1 fullname: KIM, Min-Sik organization: School of Advanced Materials Science and Engineering, Changwon National University – sequence: 2 fullname: MYOUNG, Sang-Won organization: School of Advanced Materials Science and Engineering, Changwon National University – sequence: 3 fullname: LU, Zhe organization: School of Advanced Materials Science and Engineering, Changwon National University – sequence: 4 fullname: LEE, Je-Hyun organization: School of Advanced Materials Science and Engineering, Changwon National University – sequence: 5 fullname: JUNG, Yeon-Gil organization: School of Advanced Materials Science and Engineering, Changwon National University – sequence: 6 fullname: CHOI, Baek-Gyu organization: Korea Institute of Materials Science – sequence: 7 fullname: KIM, In-Su organization: Korea Institute of Materials Science – sequence: 8 fullname: CHO, Chang-Yong organization: Korea Institute of Materials Science |
BookMark | eNo9kEtvwjAQhK2KSqWUc6_-A6F-JvaxQn2AUFup9OzazgKOQoLsoDb_vlFBnObTzO5qNbdo1LQNIHRPyYxRoh8qDzFVbEYZm2nFrtCYcqGyXHI5GlgplpFC8Bs0TSk4wmQuNKNqjL7XO4h7W-PyGK0Ldeh63G5wd3adjTFAxL61XWi2Cf-Ebodr20OEEru2Kf8jHBrse18Hf9mE30ObjhHu0PXG1gmmZ52gr-en9fw1W72_LOaPq6xiXJFMybykypebwulSMEElk17J4WnpqASqCRDlnRai0JzInIAuhAcHzhc5eMsn6O10t0qd3YI5xLC3sTc2dsHXYM4NmaEhQwU_wXL-uTQfVBAuLoN-Z6OBhv8Bo1Rp3g |
ContentType | Journal Article |
Copyright | 2014 The Ceramic Society of Japan |
Copyright_xml | – notice: 2014 The Ceramic Society of Japan |
DOI | 10.2109/jcersj2.122.982 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1348-6535 |
EndPage | 988 |
ExternalDocumentID | article_jcersj2_122_1432_122_JCSJ_P14034_article_char_en |
GroupedDBID | 29L 5GY 8WZ A6W ACGFO ACIWK AENEX ALMA_UNASSIGNED_HOLDINGS EBS EJD JSF JSH RJT RNS RZJ |
ID | FETCH-LOGICAL-j2380-856d18cdf7b9d4241525c850745b15e190e08cb9447930560e974cebebc76eca3 |
ISSN | 1882-0743 |
IngestDate | Wed Apr 05 03:36:41 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1432 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2380-856d18cdf7b9d4241525c850745b15e190e08cb9447930560e974cebebc76eca3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jcersj2/122/1432/122_JCSJ-P14034/_article/-char/en |
PageCount | 7 |
ParticipantIDs | jstage_primary_article_jcersj2_122_1432_122_JCSJ_P14034_article_char_en |
PublicationCentury | 2000 |
PublicationDate | 20140000 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 20140000 |
PublicationDecade | 2010 |
PublicationTitle | Journal of the Ceramic Society of Japan |
PublicationTitleAlternate | J. Ceram. Soc. Japan |
PublicationYear | 2014 |
Publisher | The Ceramic Society of Japan |
Publisher_xml | – name: The Ceramic Society of Japan |
References | 25) J. A. Haynes, M. K. Ferber, W. D. Porter and E. D. Rigney, Mater. High Temp, 16, 49–69 (1999). 10) W. Schlichting, N. P. Padture, E. H. Jordan and M. Gell, Mater. Sci. Eng., A, 342, 120–130 (2003). 34) S. Q. Nusier and G. M. Intern, J. Solids Struct., 37, 2151–2166 (2000). 40) K. Ma and J. M. Schoenung, Surf. Coat. Tech., 205, 5178–5185 (2011). 24) F. Tang, L. Ajdelsztajn, G. E. Kim, V. Provenzano and J. M. Schoenung, Surf. Coat. Tech., 185, 228–233 (2004). 35) R. Ghasemi, R. S. Razavi, R. Mozafarinia and H. Jamali, Ceram. Int., 40, 347–355 (2000). 36) S. W. Myoung, J. H. Kim, W. R. Lee, Y. G. Jung, K. S. Lee and U. Paik, Surf. Coat. Tech., 205, 1229–1235 (2010). 41) O. Trunova, T. Beck, R. Herzog, R. W. Steninbrech and L. Singheiser, Surf. Coat. Tech., 202, 5027–5032 (2008). 3) R. A. Miller, J. Thermal Spray Technol., 6, 35–42 (1997). 16) T. A. Taylor, D. L. Appleby, A. E. Weatherill and J. Griffiths, Surf. Coat. Tech., 43–44, 470–480 (1990). 30) A. Portinha, V. Teixeira, J. Carneiro, M. G. Beghi, C. E. Bottani, N. Franco, R. Vassen, D. Stoever and A. D. Sequeira, Surf. Coat. Tech., 188–189, 120–128 (2004). 11) A. Rabiei and A. G. Evans, Acta Mater., 48, 3963–3976 (2000). 43) A. G. Evans, M. Y. He and J. W. Hutchinson, Prog. Mater. Sci., 46, 249–271 (2001). 14) A. D. Jadhav, N. P. Padture, E. H. Jordan, M. Gell, P. Miranzo and E. R. Fuller, Jr., Acta Mater., 54, 3343–3349 (2006). 6) S. I. Jung, J. H. Kim, J. H. Lee, Y. G. Jung, U. Paik and K. S. Lee, Surf. Coat. Tech., 204, 802–806 (2009). 8) P. H. Lee, S. Y. Lee, J. Y. Kwon, S. W. Myoung, J. H. Lee, Y. G. Jung, H. Cho and U. Paik, Surf. Coat. Tech., 205, 1250–1255 (2010). 19) L. Ajdelsztajn, J. A. Picas, G. E. Kim, F. L. Bastian, J. Schoenung and V. Provenzano, Mater. Sci. Eng., A338, 33–43 (2002). 23) J. Stokes and L. Looney, Surf. Coat. Tech., 18, 177–178 (2004). 4) G. E. Energy, GER-3569G, Schenectady, NY, USA, http://www.gepowder.com/prod_serv/products/tech_docs/en/downloads/ger 3569g.pdf. 32) R. Eriksson, S. Sjöström, H. Brodin, S. Johansson, L. Östergren and X.-H. Li, Surf. Coat. Tech., 236, 230–238 (2013). 39) B. Rajasekaran, G. Mauer and R. Vaßen, J. Therm. Spray Technol., 20, 1209–1216 (2011). 12) A. Taylor, U.S. Patent No. 5073433 (1991). 20) D. Toma, W. Brandl and U. Koster, Surf. Coat. Tech., 120–121, 8–15 (1999). 15) A. Jadhav, N. P. Padture, F. Wu, E. H. Jordan and M. Gell, Mater. Sci. Eng., A, 405, 313–320 (2005). 33) Y. C. Zhou and T. Hashida, Int. J. Fatigue, 24, 407–417 (2002). 18) A. Scrivani, U. Bardi, L. Carrafiello, A. Lavacchi, F. Niccolai and G. Rizzi, J. Therm. Spray Technol., 12, 504–507 (2003). 22) S. J. Bull, R. I. Davidson, E. H. Fisher, A. R. McCaber and A. M. Jones, Surf. Coat. Tech., 130, 257–265 (2000). 44) A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pettit, Prog. Mater. Sci., 46, 505–553 (2001). 29) K. A. Khor and Y. W. Gu, Thin Solid Films, 372, 104–113 (2000). 31) S. Sharafat, A. Kobayashi, Y. Chen and N. M. Ghoniem, 3rd International Symposium on Applied Plasma Science (ISAPS 01). 65, 415 (2002). 21) D. Strauss, G. Muller, G. Schumacher, V. Engelko, W. Stamm, D. Clemens and W. J. Quaddakers, Surf. Coat. Tech., 135, 196–201 (2001). 27) J. A. Haynes, M. K. Ferber and W. D. Porter, J. Therm. Spray Technol., 9, 38–48 (2000). 1) J. Y. Kwon, S. I. Jung, S. Y. Lee, P. H. Lee, J. H. Lee, Y. G. Jung, U. Paik, H. Cho and J. C. Chang, Prog. Org. Coat., 68, 135–141 (2010). 37) A. Rico, J. Gómez-García, C. J. Múnez, P. Poza and V. Utrilla, Surf. Coat. Tech., 203, 2307–2314 (2009). 7) H. Y. Qi and X. G. Yang, Comput. Mater. Sci., 57, 38–42 (2012). 26) N. J. Simms, P. J. Kilgallon, C. Roach, J. E. Oakey, D. Renusch, H. Echsler and M. Schütze, Mater. High Temp., 20, 519–526 (2003). 38) Z. Lu, S. W. Myoung, Y. G. Jung, G. Balakrishnan, J. Lee and U. Paik, materials, 6, 3387–3403 (2013). 42) E. A. G. Shillington and D. R. Clarke, Acta Mater., 47, 1297–1305 (1999). 2) N. P. Padture, M. Gell and E. H. Jordan, Science, 296, 280–284 (2002). 5) J. Zhang and A. Kobayashi, Vacuum, 83, 92–97 (2009). 9) T. Bhatia, A. Ozturk, L. Xie, E. H. Jordan, B. M. Cetegen, M. Gell, X. Ma and N. P. Padture, J. Mater. Res., 17, 2363–2372 (2002). 13) B. Beardsley, J. Thermal Spray Technol, 6, 181–186 (1997). 17) B. D. Shite, O. Kesler and L. Rose, J. Powd. Sour., 127, 334–343 (2008). 28) G. Mauer, R. Vaßen and D. Stöver, Surf. Coat. Tech., 202, 4374–4381 (2001). |
References_xml | |
SSID | ssib025649218 ssib007484717 ssib025654099 ssib023157176 ssj0062438 |
Score | 2.0933082 |
Snippet | The effects of the bond coat structure on the microstructure evolution and lifetime performance of thermal barrier coatings (TBCs) were investigated through... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 982 |
SubjectTerms | Air plasma spray Bond coat High velocity oxy-fuel spray Layered structure Thermal barrier coating Thermal durability |
Title | Thermal durability of thermal barrier coatings with layered bond coat in cyclic thermal exposure |
URI | https://www.jstage.jst.go.jp/article/jcersj2/122/1432/122_JCSJ-P14034/_article/-char/en |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of the Ceramic Society of Japan, 2014/12/01, Vol.122(1432), pp.982-988 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jj9MwFLbKcIEDYhW7fOCGXNLEznJEVaGUKYvaiuEUbMcdJholo9JKlJ_HL-M921kYjQSMuESJa7tJ3pfnz_ZbCHmmR5mSWZAyIVPOeKolfHPFmnFRmCSKIpmucUd3_i6ervjsSBwNBj97Vku7rRrqHxf6lVxGqlAGckUv2X-QbNspFMA5yBeOIGE4_q2MQa-eoq-hC7e991v-tlTJjU1Hp2u5tck57Zrrqdxjes7nqrYObdKmCNB7jcGum5bm-1n9zYcauYC5Ilcdmw1msm-tPqF4BuNut6f_Zu6s8iu2OGm9geaf36-ck9RCVsfsU2cDcLiy2yRfW5wdTibO-oZN97uqvzgx6pYll3-6E6dukd8jiXGjkSuLeMpi4YKYtDo6DPtg5H5N1CndzKUv8uN35tIEnh8aQhdZtdTAqstwCB0O23a_xdv20sx9zRxq5viH9mQ2XszyDxjjkOdNRXSPAzReIVdDUHZoVvr2Y6fTMFZrb8oMdFrAZUsBgXHyLOz4AVwDh8YpomMTcchtNvb2TbnwVPg0L849C3CoEmYUjTWiJUjLm-SGxwd96e73FhmU8ja53ot3eYd88YClHWBpvaYedtQDljaApQhY6gFLEbD2J3pSUQfYtmUD2Ltk9WqyHE-ZT_HBSuCKAUtFXIxSXawTlRXcskmhU5ijcKFGwgBbNUGqVcZxARi4emBg_qtB8SidxEbL6B45qOrK3CfUxCZQsRIxDJs801ylWShjmSieGJhEyAfktXs9-ZmL45JfVtIP_1tPj8g1_Grckt5jcrDd7MwTILlb9dSi6BesAqb6 |
link.rule.ids | 315,783,787,4031,27935,27936,27937 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+durability+of+thermal+barrier+coatings+with+layered+bond+coat+in+cyclic+thermal+exposure&rft.jtitle=Journal+of+the+Ceramic+Society+of+Japan&rft.au=KIM%2C+Min-Sik&rft.au=MYOUNG%2C+Sang-Won&rft.au=LU%2C+Zhe&rft.au=LEE%2C+Je-Hyun&rft.date=2014&rft.pub=The+Ceramic+Society+of+Japan&rft.issn=1882-0743&rft.eissn=1348-6535&rft.volume=122&rft.issue=1432&rft.spage=982&rft.epage=988&rft_id=info:doi/10.2109%2Fjcersj2.122.982&rft.externalDocID=article_jcersj2_122_1432_122_JCSJ_P14034_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1882-0743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1882-0743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1882-0743&client=summon |