3次元畳み込みニューラルネットワークを用いた骨盤CT画像からの自動骨折検出
In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status without their long hospitalization. Previous studies for the fracture detection system with CT images or deep-learning have difficulty in an...
Saved in:
Published in | バイオメディカル・ファジィ・システム学会大会講演論文集 Vol. 33; pp. 36 - 42 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
バイオメディカル・ファジィ・システム学会
31.10.2020
Biomedical Fuzzy Systems Association |
Subjects | |
Online Access | Get full text |
ISSN | 1345-1510 2424-2586 |
DOI | 10.24466/pacbfsa.33.0_36 |
Cover
Abstract | In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status without their long hospitalization. Previous studies for the fracture detection system with CT images or deep-learning have difficulty in analyzing the internal structure or confirming predicted results easily. This study proposes a system for automatic detection of pelvic fractures from 3D CT images. Firstly, it defines the labeling work as a new 3D annotation method of fractures(called 3D surface annotation). 3D shape data of pelvic bone surfaces makes the burden of it light. The feature vector inside the pelvic surface is created from 3D shape data and CT images, and learned by 3D convolutional neural networks (CNN). The proposed method was validated by using 103 subjects. Eventually, the accuracy, precision, recall and specificity for the test data were 69.5%, 60.0%, 60.4% and 75.0% |
---|---|
AbstractList | In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status without their long hospitalization. Previous studies for the fracture detection system with CT images or deep-learning have difficulty in analyzing the internal structure or confirming predicted results easily. This study proposes a system for automatic detection of pelvic fractures from 3D CT images. Firstly, it defines the labeling work as a new 3D annotation method of fractures(called 3D surface annotation). 3D shape data of pelvic bone surfaces makes the burden of it light. The feature vector inside the pelvic surface is created from 3D shape data and CT images, and learned by 3D convolutional neural networks (CNN). The proposed method was validated by using 103 subjects. Eventually, the accuracy, precision, recall and specificity for the test data were 69.5%, 60.0%, 60.4% and 75.0% |
Author | 小橋, 昌司 丸尾, 明宏 八木, 直美 村津, 裕嗣 林, 圭吾 山本, 侃利 Rashedur, Rahman |
Author_FL | 山本 侃利 丸尾 明宏 村津 裕嗣 Yagi Naomi 小橋 昌司 林 圭吾 Rahman Rashedur |
Author_FL_xml | – sequence: 1 fullname: 山本 侃利 – sequence: 2 fullname: Rahman Rashedur – sequence: 3 fullname: Yagi Naomi – sequence: 4 fullname: 林 圭吾 – sequence: 5 fullname: 丸尾 明宏 – sequence: 6 fullname: 村津 裕嗣 – sequence: 7 fullname: 小橋 昌司 |
Author_xml | – sequence: 1 fullname: Rashedur, Rahman organization: 兵庫県立大学工学研究科 – sequence: 1 fullname: 丸尾, 明宏 organization: 製鉄広畑記念病院 – sequence: 1 fullname: 小橋, 昌司 organization: 兵庫県立大学工学研究科 – sequence: 1 fullname: 山本, 侃利 organization: 兵庫県立大学工学研究科 – sequence: 1 fullname: 八木, 直美 organization: 姫路独協大学 – sequence: 1 fullname: 林, 圭吾 organization: 製鉄広畑記念病院 – sequence: 1 fullname: 村津, 裕嗣 organization: 製鉄広畑記念病院 |
BackLink | https://cir.nii.ac.jp/crid/1391131406311129088$$DView record in CiNii |
BookMark | eNo9kE1Lw0AQhhdRsH7c_QFeU3d3kk32phS_oOClnsNmu9WUWkvjxWO6ih9FBKkgKIhQoVbRgzcV_TFLGv0XplS8PMPM8zIMM4XG67t1hdAcwXlq24wtNIQMKpHIA-SxD2wM5ahNbYs6HhtHOQK2YxGH4Ek0G0VhgAETChzcHAph8HSXHOr08tXEX9-fHxmNbht9b_SH0Q9GPxp9ZrQ2-tjol-Gw9WJaF2mnZ-IDE9_-9HvpdbdQSjvviT43cdu0Tkz8_H3UT9qXmRycXg26N8nR2wyaqIhapGb_6jTaXFkuFdas4sbqemGpaFUpgGfZVGJOMXFVxQu4Rxkuq-x-yRUA54piypVkyiWZp0K6VLmOlE6ZBa5bVoLCNJof7a2HoS_DIQlwQoDYmAEhhHLseVlscRSrRntiS_mNZrgjmvu-aO6Fspb1o4_6AD4eAti_ktui6VcF_AJwwZQe |
ContentType | Journal Article |
Copyright | 2020 バイオメディカル・ファジィ・システム学会 |
Copyright_xml | – notice: 2020 バイオメディカル・ファジィ・システム学会 |
DBID | RYH |
DOI | 10.24466/pacbfsa.33.0_36 |
DatabaseName | CiNii Complete |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2424-2586 |
EndPage | 42 |
ExternalDocumentID | 130007980035 article_pacbfsa_33_0_33_36_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF RJT RYH |
ID | FETCH-LOGICAL-j2338-42c092017ef8b98260de134c9e3399e2029ec6e71ef82ac72e75cc5d6b77dea23 |
ISSN | 1345-1510 |
IngestDate | Fri Jun 27 00:17:10 EDT 2025 Wed Sep 03 06:31:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Language | Japanese |
LinkModel | OpenURL |
MeetingName | バイオメディカル・ファジィ・システム学会大会講演論文集 33 |
MergedId | FETCHMERGED-LOGICAL-j2338-42c092017ef8b98260de134c9e3399e2029ec6e71ef82ac72e75cc5d6b77dea23 |
ORCID | 0000-0003-3659-4114 0000-0002-2435-6509 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/pacbfsa/33/0/33_36/_article/-char/ja |
PageCount | 7 |
ParticipantIDs | nii_cinii_1391131406311129088 jstage_primary_article_pacbfsa_33_0_33_36_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2020/10/31 2020-10-31 |
PublicationDateYYYYMMDD | 2020-10-31 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020/10/31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | バイオメディカル・ファジィ・システム学会大会講演論文集 |
PublicationTitleAlternate | PACBFSA Proceedings of the Annual Conference of Biomedical Fuzzy Systems Association |
PublicationTitle_FL | PACBFSA Proceedings of the Annual Conference of Biomedical Fuzzy Systems Association |
PublicationYear | 2020 |
Publisher | バイオメディカル・ファジィ・システム学会 Biomedical Fuzzy Systems Association |
Publisher_xml | – name: バイオメディカル・ファジィ・システム学会 – name: Biomedical Fuzzy Systems Association |
SSID | ssib030123937 ssib034494919 ssib044731063 ssj0003314416 |
Score | 1.8166345 |
Snippet | In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status... |
SourceID | nii jstage |
SourceType | Publisher |
StartPage | 36 |
SubjectTerms | automated fracture detection CT images deep learning |
Title | 3次元畳み込みニューラルネットワークを用いた骨盤CT画像からの自動骨折検出 |
URI | https://www.jstage.jst.go.jp/article/pacbfsa/33/0/33_36/_article/-char/ja https://cir.nii.ac.jp/crid/1391131406311129088 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | バイオメディカル・ファジィ・システム学会大会講演論文集, 2020/10/31, pp.36-42 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFA-1vXgRRcWqlR4cPG1NMpPJzDHZZilCPcgWegvZbJZuwSq2vXgQtlGqFhGkBUFBhAq1ij1406J_TNhu_S98b3ammy4e_DgJy_B488vLe_Nmk_cm82FZV91UZJyLVoXxJquwLPUqCcMRsVbq2DT1U6qOA5q9yWfm2I15b35k7Fpp1tLqSmMqvf_LdSV_41XggV9xlewfePZIKDCABv9CCR6G8rd8TEnESVAlgUMijwj4Accn0iMhEBSiRBLWSCRIGJGwWuJQRIpQE4GnCY3BT-eGMBgxbQhqCGEwteOXu4bjEukqfRgJhL67YJqQgJEkCFQVYEISsGpdw8NQGQTAmrku1CKF1JwgQsuEjzIQHKLdA5GciIBIRQSMyKrC-ESPS-hwXCsubaM4M0RgjHOMub6pooYIhxspNIT0DMbRRCiOX34EhiojOTStLriRbKPawTQJgMOwgaUyFvQM_BJHYC-AJgRjkcMUBxqEIwdKVF4iQBwNxN5KlhcgzOhPr08Wbg-eEkquUBpDR7Kx8wBGSYL2jtT9I_DMAK9g6CqOPQc8UcL3G74G4o7hHfwhpIqqKzzDO2H38rBvBbI8IOXapTc5PkL-R8-VAgDKvApEwf1vhZni4QqqiuuJ8oue8lLI2N8fbjgYcXGqhDpCO220lpMpSqfsmA7t-64iSf0AiTUypjS2saA8NlW4BjNehERwzPV9NR9l9kFkXpwUE6NSnkEZ7jk12KeRMR-yOL3PHoaolOI4ilp5aeztT-FQOl8f0hiC80VIVXEPkhNL7XYp_q6ftk7pxHky6Gt6xhpZTM5abXrw8W33Ud7b-lx0vh9-24eyyDeK_F2R7xf5-yL_UOTPijwv8sdFvofMtb1i7UVvc6foPCw6b37s7vRebVfrvc2v3fx50dko1p4UnU-H67vdjS2oPHj68mD7dXf9yzlrrhbVqzMVfXhMZdGlEMQxN7UlZDd-1hINKVxuNzMwNpUZhZwsg44rs5RnvgP1bpL6buZ7aeo1ecP3m1ni0vPW6NKdpeyCNck96rEsyfBIIsh3mo3Eb0Kixb3M5bg52rgl--0T3-3vEBT_vkPHrQlo0jhtYwnZuOOAa8BVDubBEAFe_AfZl6yTg__nZWt05d5qNgEp1Erjiuo-PwHFAB3a |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3%E6%AC%A1%E5%85%83%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%A9%E3%83%AB%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E9%AA%A8%E7%9B%A4CT%E7%94%BB%E5%83%8F%E3%81%8B%E3%82%89%E3%81%AE%E8%87%AA%E5%8B%95%E9%AA%A8%E6%8A%98%E6%A4%9C%E5%87%BA&rft.jtitle=%E3%83%90%E3%82%A4%E3%82%AA%E3%83%A1%E3%83%87%E3%82%A3%E3%82%AB%E3%83%AB%E3%83%BB%E3%83%95%E3%82%A1%E3%82%B8%E3%82%A3%E3%83%BB%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E5%AD%A6%E4%BC%9A%E5%A4%A7%E4%BC%9A%E8%AC%9B%E6%BC%94%E8%AB%96%E6%96%87%E9%9B%86&rft.au=Rashedur%2C+Rahman&rft.au=%E4%B8%B8%E5%B0%BE%2C+%E6%98%8E%E5%AE%8F&rft.au=%E5%B0%8F%E6%A9%8B%2C+%E6%98%8C%E5%8F%B8&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E4%BE%83%E5%88%A9&rft.date=2020-10-31&rft.pub=%E3%83%90%E3%82%A4%E3%82%AA%E3%83%A1%E3%83%87%E3%82%A3%E3%82%AB%E3%83%AB%E3%83%BB%E3%83%95%E3%82%A1%E3%82%B8%E3%82%A3%E3%83%BB%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E5%AD%A6%E4%BC%9A&rft.issn=1345-1510&rft.eissn=2424-2586&rft.spage=36&rft.epage=42&rft_id=info:doi/10.24466%2Fpacbfsa.33.0_36&rft.externalDocID=article_pacbfsa_33_0_33_36_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-1510&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-1510&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-1510&client=summon |