3次元畳み込みニューラルネットワークを用いた骨盤CT画像からの自動骨折検出

In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status without their long hospitalization. Previous studies for the fracture detection system with CT images or deep-learning have difficulty in an...

Full description

Saved in:
Bibliographic Details
Published inバイオメディカル・ファジィ・システム学会大会講演論文集 Vol. 33; pp. 36 - 42
Main Authors Rashedur, Rahman, 丸尾, 明宏, 小橋, 昌司, 山本, 侃利, 八木, 直美, 林, 圭吾, 村津, 裕嗣
Format Journal Article
LanguageJapanese
Published バイオメディカル・ファジィ・システム学会 31.10.2020
Biomedical Fuzzy Systems Association
Subjects
Online AccessGet full text
ISSN1345-1510
2424-2586
DOI10.24466/pacbfsa.33.0_36

Cover

Abstract In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status without their long hospitalization. Previous studies for the fracture detection system with CT images or deep-learning have difficulty in analyzing the internal structure or confirming predicted results easily. This study proposes a system for automatic detection of pelvic fractures from 3D CT images. Firstly, it defines the labeling work as a new 3D annotation method of fractures(called 3D surface annotation). 3D shape data of pelvic bone surfaces makes the burden of it light. The feature vector inside the pelvic surface is created from 3D shape data and CT images, and learned by 3D convolutional neural networks (CNN). The proposed method was validated by using 103 subjects. Eventually, the accuracy, precision, recall and specificity for the test data were 69.5%, 60.0%, 60.4% and 75.0%
AbstractList In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status without their long hospitalization. Previous studies for the fracture detection system with CT images or deep-learning have difficulty in analyzing the internal structure or confirming predicted results easily. This study proposes a system for automatic detection of pelvic fractures from 3D CT images. Firstly, it defines the labeling work as a new 3D annotation method of fractures(called 3D surface annotation). 3D shape data of pelvic bone surfaces makes the burden of it light. The feature vector inside the pelvic surface is created from 3D shape data and CT images, and learned by 3D convolutional neural networks (CNN). The proposed method was validated by using 103 subjects. Eventually, the accuracy, precision, recall and specificity for the test data were 69.5%, 60.0%, 60.4% and 75.0%
Author 小橋, 昌司
丸尾, 明宏
八木, 直美
村津, 裕嗣
林, 圭吾
山本, 侃利
Rashedur, Rahman
Author_FL 山本 侃利
丸尾 明宏
村津 裕嗣
Yagi Naomi
小橋 昌司
林 圭吾
Rahman Rashedur
Author_FL_xml – sequence: 1
  fullname: 山本 侃利
– sequence: 2
  fullname: Rahman Rashedur
– sequence: 3
  fullname: Yagi Naomi
– sequence: 4
  fullname: 林 圭吾
– sequence: 5
  fullname: 丸尾 明宏
– sequence: 6
  fullname: 村津 裕嗣
– sequence: 7
  fullname: 小橋 昌司
Author_xml – sequence: 1
  fullname: Rashedur, Rahman
  organization: 兵庫県立大学工学研究科
– sequence: 1
  fullname: 丸尾, 明宏
  organization: 製鉄広畑記念病院
– sequence: 1
  fullname: 小橋, 昌司
  organization: 兵庫県立大学工学研究科
– sequence: 1
  fullname: 山本, 侃利
  organization: 兵庫県立大学工学研究科
– sequence: 1
  fullname: 八木, 直美
  organization: 姫路独協大学
– sequence: 1
  fullname: 林, 圭吾
  organization: 製鉄広畑記念病院
– sequence: 1
  fullname: 村津, 裕嗣
  organization: 製鉄広畑記念病院
BackLink https://cir.nii.ac.jp/crid/1391131406311129088$$DView record in CiNii
BookMark eNo9kE1Lw0AQhhdRsH7c_QFeU3d3kk32phS_oOClnsNmu9WUWkvjxWO6ih9FBKkgKIhQoVbRgzcV_TFLGv0XplS8PMPM8zIMM4XG67t1hdAcwXlq24wtNIQMKpHIA-SxD2wM5ahNbYs6HhtHOQK2YxGH4Ek0G0VhgAETChzcHAph8HSXHOr08tXEX9-fHxmNbht9b_SH0Q9GPxp9ZrQ2-tjol-Gw9WJaF2mnZ-IDE9_-9HvpdbdQSjvviT43cdu0Tkz8_H3UT9qXmRycXg26N8nR2wyaqIhapGb_6jTaXFkuFdas4sbqemGpaFUpgGfZVGJOMXFVxQu4Rxkuq-x-yRUA54piypVkyiWZp0K6VLmOlE6ZBa5bVoLCNJof7a2HoS_DIQlwQoDYmAEhhHLseVlscRSrRntiS_mNZrgjmvu-aO6Fspb1o4_6AD4eAti_ktui6VcF_AJwwZQe
ContentType Journal Article
Copyright 2020 バイオメディカル・ファジィ・システム学会
Copyright_xml – notice: 2020 バイオメディカル・ファジィ・システム学会
DBID RYH
DOI 10.24466/pacbfsa.33.0_36
DatabaseName CiNii Complete
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2424-2586
EndPage 42
ExternalDocumentID 130007980035
article_pacbfsa_33_0_33_36_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
RJT
RYH
ID FETCH-LOGICAL-j2338-42c092017ef8b98260de134c9e3399e2029ec6e71ef82ac72e75cc5d6b77dea23
ISSN 1345-1510
IngestDate Fri Jun 27 00:17:10 EDT 2025
Wed Sep 03 06:31:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Language Japanese
LinkModel OpenURL
MeetingName バイオメディカル・ファジィ・システム学会大会講演論文集 33
MergedId FETCHMERGED-LOGICAL-j2338-42c092017ef8b98260de134c9e3399e2029ec6e71ef82ac72e75cc5d6b77dea23
ORCID 0000-0003-3659-4114
0000-0002-2435-6509
OpenAccessLink https://www.jstage.jst.go.jp/article/pacbfsa/33/0/33_36/_article/-char/ja
PageCount 7
ParticipantIDs nii_cinii_1391131406311129088
jstage_primary_article_pacbfsa_33_0_33_36_article_char_ja
PublicationCentury 2000
PublicationDate 2020/10/31
2020-10-31
PublicationDateYYYYMMDD 2020-10-31
PublicationDate_xml – month: 10
  year: 2020
  text: 2020/10/31
  day: 31
PublicationDecade 2020
PublicationTitle バイオメディカル・ファジィ・システム学会大会講演論文集
PublicationTitleAlternate PACBFSA
Proceedings of the Annual Conference of Biomedical Fuzzy Systems Association
PublicationTitle_FL PACBFSA
Proceedings of the Annual Conference of Biomedical Fuzzy Systems Association
PublicationYear 2020
Publisher バイオメディカル・ファジィ・システム学会
Biomedical Fuzzy Systems Association
Publisher_xml – name: バイオメディカル・ファジィ・システム学会
– name: Biomedical Fuzzy Systems Association
SSID ssib030123937
ssib034494919
ssib044731063
ssj0003314416
Score 1.8166345
Snippet In emergency hospitals, the automatic fracture detection system is essential for doctors and patients to recover not only the injury but also the health status...
SourceID nii
jstage
SourceType Publisher
StartPage 36
SubjectTerms automated fracture detection
CT images
deep learning
Title 3次元畳み込みニューラルネットワークを用いた骨盤CT画像からの自動骨折検出
URI https://www.jstage.jst.go.jp/article/pacbfsa/33/0/33_36/_article/-char/ja
https://cir.nii.ac.jp/crid/1391131406311129088
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX バイオメディカル・ファジィ・システム学会大会講演論文集, 2020/10/31, pp.36-42
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3Na9RAFA-1vXgRRcWqlR4cPG1NMpPJzDHZZilCPcgWegvZbJZuwSq2vXgQtlGqFhGkBUFBhAq1ij1406J_TNhu_S98b3ammy4e_DgJy_B488vLe_Nmk_cm82FZV91UZJyLVoXxJquwLPUqCcMRsVbq2DT1U6qOA5q9yWfm2I15b35k7Fpp1tLqSmMqvf_LdSV_41XggV9xlewfePZIKDCABv9CCR6G8rd8TEnESVAlgUMijwj4Accn0iMhEBSiRBLWSCRIGJGwWuJQRIpQE4GnCY3BT-eGMBgxbQhqCGEwteOXu4bjEukqfRgJhL67YJqQgJEkCFQVYEISsGpdw8NQGQTAmrku1CKF1JwgQsuEjzIQHKLdA5GciIBIRQSMyKrC-ESPS-hwXCsubaM4M0RgjHOMub6pooYIhxspNIT0DMbRRCiOX34EhiojOTStLriRbKPawTQJgMOwgaUyFvQM_BJHYC-AJgRjkcMUBxqEIwdKVF4iQBwNxN5KlhcgzOhPr08Wbg-eEkquUBpDR7Kx8wBGSYL2jtT9I_DMAK9g6CqOPQc8UcL3G74G4o7hHfwhpIqqKzzDO2H38rBvBbI8IOXapTc5PkL-R8-VAgDKvApEwf1vhZni4QqqiuuJ8oue8lLI2N8fbjgYcXGqhDpCO220lpMpSqfsmA7t-64iSf0AiTUypjS2saA8NlW4BjNehERwzPV9NR9l9kFkXpwUE6NSnkEZ7jk12KeRMR-yOL3PHoaolOI4ilp5aeztT-FQOl8f0hiC80VIVXEPkhNL7XYp_q6ftk7pxHky6Gt6xhpZTM5abXrw8W33Ud7b-lx0vh9-24eyyDeK_F2R7xf5-yL_UOTPijwv8sdFvofMtb1i7UVvc6foPCw6b37s7vRebVfrvc2v3fx50dko1p4UnU-H67vdjS2oPHj68mD7dXf9yzlrrhbVqzMVfXhMZdGlEMQxN7UlZDd-1hINKVxuNzMwNpUZhZwsg44rs5RnvgP1bpL6buZ7aeo1ecP3m1ni0vPW6NKdpeyCNck96rEsyfBIIsh3mo3Eb0Kixb3M5bg52rgl--0T3-3vEBT_vkPHrQlo0jhtYwnZuOOAa8BVDubBEAFe_AfZl6yTg__nZWt05d5qNgEp1Erjiuo-PwHFAB3a
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3%E6%AC%A1%E5%85%83%E7%95%B3%E3%81%BF%E8%BE%BC%E3%81%BF%E3%83%8B%E3%83%A5%E3%83%BC%E3%83%A9%E3%83%AB%E3%83%8D%E3%83%83%E3%83%88%E3%83%AF%E3%83%BC%E3%82%AF%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E9%AA%A8%E7%9B%A4CT%E7%94%BB%E5%83%8F%E3%81%8B%E3%82%89%E3%81%AE%E8%87%AA%E5%8B%95%E9%AA%A8%E6%8A%98%E6%A4%9C%E5%87%BA&rft.jtitle=%E3%83%90%E3%82%A4%E3%82%AA%E3%83%A1%E3%83%87%E3%82%A3%E3%82%AB%E3%83%AB%E3%83%BB%E3%83%95%E3%82%A1%E3%82%B8%E3%82%A3%E3%83%BB%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E5%AD%A6%E4%BC%9A%E5%A4%A7%E4%BC%9A%E8%AC%9B%E6%BC%94%E8%AB%96%E6%96%87%E9%9B%86&rft.au=Rashedur%2C+Rahman&rft.au=%E4%B8%B8%E5%B0%BE%2C+%E6%98%8E%E5%AE%8F&rft.au=%E5%B0%8F%E6%A9%8B%2C+%E6%98%8C%E5%8F%B8&rft.au=%E5%B1%B1%E6%9C%AC%2C+%E4%BE%83%E5%88%A9&rft.date=2020-10-31&rft.pub=%E3%83%90%E3%82%A4%E3%82%AA%E3%83%A1%E3%83%87%E3%82%A3%E3%82%AB%E3%83%AB%E3%83%BB%E3%83%95%E3%82%A1%E3%82%B8%E3%82%A3%E3%83%BB%E3%82%B7%E3%82%B9%E3%83%86%E3%83%A0%E5%AD%A6%E4%BC%9A&rft.issn=1345-1510&rft.eissn=2424-2586&rft.spage=36&rft.epage=42&rft_id=info:doi/10.24466%2Fpacbfsa.33.0_36&rft.externalDocID=article_pacbfsa_33_0_33_36_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1345-1510&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1345-1510&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1345-1510&client=summon