階段状の非適合境界を有する粒子法解析における仮想マーカーを用いたすべり・非すべり境界処理法
粒子法ではメッシュを定義する必要がなく, 解析領域の内部に粒子を充填するだけで解析できるといったプリプロセス上のメリットも期待できる. 一方で, 粒子法では境界面上に計算上制御できる点が必ずしも存在しないため, 境界条件の付与方法は単純ではない. 特に実際の粒子モデルの作成においては, 解析領域内を構造格子状に分割し, その格子の中心点あるいは交点に粒子を配置することが多い. この簡易的なプリプロセスによれば, 領域内に均等に粒子が配置できるものの, 境界面は階段状のガタガタな形状となり実際のなめらかな物理境界とは適合し"非適合境界"となるため, 境界付近の流れが不自然とな...
Saved in:
Published in | 日本計算工学会論文集 Vol. 2013; p. 20130011 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 日本計算工学会
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1347-8826 |
DOI | 10.11421/jsces.2013.20130011 |
Cover
Loading…
Abstract | 粒子法ではメッシュを定義する必要がなく, 解析領域の内部に粒子を充填するだけで解析できるといったプリプロセス上のメリットも期待できる. 一方で, 粒子法では境界面上に計算上制御できる点が必ずしも存在しないため, 境界条件の付与方法は単純ではない. 特に実際の粒子モデルの作成においては, 解析領域内を構造格子状に分割し, その格子の中心点あるいは交点に粒子を配置することが多い. この簡易的なプリプロセスによれば, 領域内に均等に粒子が配置できるものの, 境界面は階段状のガタガタな形状となり実際のなめらかな物理境界とは適合し"非適合境界"となるため, 境界付近の流れが不自然となる. そこで本論文では, 仮想マーカー境界処理のアイデアを利用し, 階段形状の非適合境界を有する解析モデルにおいて, すべり・非すべり境界条件を与えるための新たな境界処理方法を提案する. |
---|---|
AbstractList | 粒子法ではメッシュを定義する必要がなく, 解析領域の内部に粒子を充填するだけで解析できるといったプリプロセス上のメリットも期待できる. 一方で, 粒子法では境界面上に計算上制御できる点が必ずしも存在しないため, 境界条件の付与方法は単純ではない. 特に実際の粒子モデルの作成においては, 解析領域内を構造格子状に分割し, その格子の中心点あるいは交点に粒子を配置することが多い. この簡易的なプリプロセスによれば, 領域内に均等に粒子が配置できるものの, 境界面は階段状のガタガタな形状となり実際のなめらかな物理境界とは適合し"非適合境界"となるため, 境界付近の流れが不自然となる. そこで本論文では, 仮想マーカー境界処理のアイデアを利用し, 階段形状の非適合境界を有する解析モデルにおいて, すべり・非すべり境界条件を与えるための新たな境界処理方法を提案する. |
Author | 田邊, 将一 浅井, 光輝 別府, 万寿博 藤本, 啓介 |
Author_xml | – sequence: 1 fullname: 藤本, 啓介 organization: 九州大学大学院工学府建設システム工学専攻 – sequence: 1 fullname: 田邊, 将一 organization: 九州大学大学院工学府建設システム工学専攻 – sequence: 1 fullname: 別府, 万寿博 organization: 防衛大学校建設環境工学科 – sequence: 1 fullname: 浅井, 光輝 organization: 九州大学大学院工学研究院社会基盤部門 |
BookMark | eNo9kM1Kw0AUhQdRsNa-ga-QOjNJ87OUolYouNF1mEwn2lCrJG5cTiJWq0gsdqFoBQV_KHZhUZD6NmMS-xb2R7s5h8u99xz45sB0dbfKAFhAMIuQgtGi41HmZTFE8kggRGgKpJCsaJKuY3UWZDyvbEEIDRWpUE-BWv_6PO68J_UPwTv921afv0ThcXQfJM0z4TfimxPBr4R_mrw1otcw7jZ_nh7iVih4W_C64BeD1XevEwddEbRE8CX89kgbyeWz4IeC3w3f-afw6yLoDfIn47giqj0m4dEgdh7M2KTiscyfp8HmyvJGviAV11fX8ktFycEyhpKMNcXWGcK2RWzLMoiuEsPW5RyiFlVzdq5EqY1LGjU0gjWqYw0zRFRUUomqMIPKaVAY5zrePtli5p5b3iHugUnc_TKtMHME0ByyM-HY_jlOTug2cU2HyL_3jKB9 |
ContentType | Journal Article |
Copyright | 2013 The Japan Society For Computational Engineering and Science |
Copyright_xml | – notice: 2013 The Japan Society For Computational Engineering and Science |
DOI | 10.11421/jsces.2013.20130011 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 1347-8826 |
EndPage | 20130011 |
ExternalDocumentID | article_jsces_2013_0_2013_20130011_article_char_ja |
GroupedDBID | ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS E3Z JSF KQ8 RJT |
ID | FETCH-LOGICAL-j2320-3274f8e12fbafbb9a86a9f8351cbc65f5dccf2d7c97a27c8272e1a61d6a64e9c3 |
IngestDate | Wed Sep 03 06:25:41 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2320-3274f8e12fbafbb9a86a9f8351cbc65f5dccf2d7c97a27c8272e1a61d6a64e9c3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsces/2013/0/2013_20130011/_article/-char/ja |
PageCount | 1 |
ParticipantIDs | jstage_primary_article_jsces_2013_0_2013_20130011_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20130000 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 20130000 |
PublicationDecade | 2010 |
PublicationTitle | 日本計算工学会論文集 |
PublicationYear | 2013 |
Publisher | 一般社団法人 日本計算工学会 |
Publisher_xml | – name: 一般社団法人 日本計算工学会 |
References | (1) L.B. Lucy, A numerical approach to the testing of the fusion process, Astron J., Vol.88, pp.1013-1024, 1977 (10) M. Tanaka and T. Masunaga, Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility, Journal of Computational Physics, Vol. 229, pp. 4279-4290, 2010 (3) J.J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, Vol. 110, pp. 399-406, 1994 (2) R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron Soc., Vol.181, pp. 375-389, 1977 (9) S.J. Cummins and M. Rudman, An SPH projection method, Journal Computational Physics, Vol.152(2), pp.584-607, 1999 (15) J.P. Morris, P.J. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, Vol.136, pp. 214-226, 1997 (19) S.M. Hosseini and J.J. Feng, Pressure boundary conditions for computing incompressible flows with SPH, Journal of Computational Physics, Vol. 230, pp. 7473-7487, 2011 (4) M. Yildiz, R. A. Rook and A. Suleman, SPH with the multiple boundary tangent method, Int. J. Numer. Meth. Engng., Vol. 77, pp. 1416-1438, 2009 (12) A. Khayyer and H. Gotoh, A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Applied Ocean Research, Vol.32, pp. 124-131, 2010 (14) M. Asai, AM. Aly, Y. Sonoda and Y. Sakai, A stabilized incompressible SPH method by relaxing the density invariance condition, Int.l J. for Applied Mathematics, Volume 2012 (2012), Article ID 139583 (18) S. Shao, E.Y.M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in Water Resources, Vol.26, pp.787-800, 2003 (7) Y.H. Tseng and J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics., Vol. 192, pp.593-623, 2003 (8) R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas and A. von Loebbecka, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, Journal of Computational Physics., Vol. 227, pp.4825-4852, 2008 (11) M. Kondo and S. Koshizuka, Improvement of stability in moving particle semi-implicit method, Int. J. Numer. Meth. Fluids, in press. (20) 浅井光輝, 別府万寿博, 石川信隆, 眞鍋慶生, 斎藤展, 丹羽一邦, 数値流体シミュレーションによる流体衝撃力評価に関する基礎的研究, 構造工学論文集, Vol. 58A, pp. 1021-1028, 2012 (6) S. Koshizuka and Y. Oka, Moving-Particle Semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Phys. Comm., Vol. 48, pp.421-434, 1996 (17) A. Khayyer, H. Gotoh and S. Shao, Corrected incompressible SPH method for urate water-surface tracking in breaking waves, Coastal Engineering, Vol.55, pp. 236-250, 2008 (5) S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touze and G. Graziani, δ-SPH model for simulating violent impact flows, Comput. Methods Appli. Mech. Engrg., Vol. 200, pp. 1526-1542, 2011 (16) E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence and P. Stansby, Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of Computational Physics, Vol.227(18), pp.8417-8436, 2008 (13) A. Khayyer and H. Gotoh, A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations, Applied Ocean Research, Vol.37, pp. 120-126, 2012 |
References_xml | – reference: (1) L.B. Lucy, A numerical approach to the testing of the fusion process, Astron J., Vol.88, pp.1013-1024, 1977 – reference: (20) 浅井光輝, 別府万寿博, 石川信隆, 眞鍋慶生, 斎藤展, 丹羽一邦, 数値流体シミュレーションによる流体衝撃力評価に関する基礎的研究, 構造工学論文集, Vol. 58A, pp. 1021-1028, 2012 – reference: (10) M. Tanaka and T. Masunaga, Stabilization and smoothing of pressure in MPS method by Quasi-Compressibility, Journal of Computational Physics, Vol. 229, pp. 4279-4290, 2010 – reference: (17) A. Khayyer, H. Gotoh and S. Shao, Corrected incompressible SPH method for urate water-surface tracking in breaking waves, Coastal Engineering, Vol.55, pp. 236-250, 2008 – reference: (3) J.J. Monaghan, Simulating Free Surface Flows with SPH, Journal of Computational Physics, Vol. 110, pp. 399-406, 1994 – reference: (15) J.P. Morris, P.J. Fox, and Y. Zhu, Modeling Low Reynolds Number Incompressible Flows Using SPH, Journal of Computational Physics, Vol.136, pp. 214-226, 1997 – reference: (2) R.A. Gingold and J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron Soc., Vol.181, pp. 375-389, 1977 – reference: (16) E. S. Lee, C. Moulinec, R. Xu, D. Violeau, D. Laurence and P. Stansby, Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method, Journal of Computational Physics, Vol.227(18), pp.8417-8436, 2008 – reference: (6) S. Koshizuka and Y. Oka, Moving-Particle Semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Phys. Comm., Vol. 48, pp.421-434, 1996 – reference: (19) S.M. Hosseini and J.J. Feng, Pressure boundary conditions for computing incompressible flows with SPH, Journal of Computational Physics, Vol. 230, pp. 7473-7487, 2011 – reference: (13) A. Khayyer and H. Gotoh, A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations, Applied Ocean Research, Vol.37, pp. 120-126, 2012 – reference: (14) M. Asai, AM. Aly, Y. Sonoda and Y. Sakai, A stabilized incompressible SPH method by relaxing the density invariance condition, Int.l J. for Applied Mathematics, Volume 2012 (2012), Article ID 139583 – reference: (12) A. Khayyer and H. Gotoh, A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method, Applied Ocean Research, Vol.32, pp. 124-131, 2010 – reference: (11) M. Kondo and S. Koshizuka, Improvement of stability in moving particle semi-implicit method, Int. J. Numer. Meth. Fluids, in press. – reference: (5) S. Marrone, M. Antuono, A. Colagrossi, G. Colicchio, D. Le Touze and G. Graziani, δ-SPH model for simulating violent impact flows, Comput. Methods Appli. Mech. Engrg., Vol. 200, pp. 1526-1542, 2011 – reference: (4) M. Yildiz, R. A. Rook and A. Suleman, SPH with the multiple boundary tangent method, Int. J. Numer. Meth. Engng., Vol. 77, pp. 1416-1438, 2009 – reference: (8) R. Mittal, H. Dong, M. Bozkurttas, F.M. Najjar, A. Vargas and A. von Loebbecka, A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, Journal of Computational Physics., Vol. 227, pp.4825-4852, 2008 – reference: (7) Y.H. Tseng and J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational Physics., Vol. 192, pp.593-623, 2003 – reference: (18) S. Shao, E.Y.M. Lo, Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface, Advances in Water Resources, Vol.26, pp.787-800, 2003 – reference: (9) S.J. Cummins and M. Rudman, An SPH projection method, Journal Computational Physics, Vol.152(2), pp.584-607, 1999 |
SSID | ssib000961608 ssj0069538 ssib002670976 |
Score | 1.9094878 |
Snippet | 粒子法ではメッシュを定義する必要がなく, 解析領域の内部に粒子を充填するだけで解析できるといったプリプロセス上のメリットも期待できる. 一方で, 粒子法では境界面上に計算上制御できる点が必ずしも存在しないため, 境界条件の付与方法は単純ではない. 特に実際の粒子モデルの作成においては,... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 20130011 |
SubjectTerms | Incompatible Boundary Treatment Incompressible SPH Neumann Pressure Boundary Condition Particle Method |
Title | 階段状の非適合境界を有する粒子法解析における仮想マーカーを用いたすべり・非すべり境界処理法 |
URI | https://www.jstage.jst.go.jp/article/jsces/2013/0/2013_20130011/_article/-char/ja |
Volume | 2013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 日本計算工学会論文集, 2013/05/08, Vol.2013, pp.20130011-20130011 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxNBFF9KvXjxW_ymB-ckqdmv2ZnjTrqhKApCC72F3c3uoYcqtr1420SsVpFY7EHRCgp-UOzBoiD1b_GyJrH_he-9nXyUFrEqhMnkzW_e_Oa92cybzc7EMC56sWfVBXdLdh2-Ah0zjUrCkk4p8WA-S500siVuFL52nU9OO1dm3JmR0e9DTy0tLkTj8Z0995X8jVdBBn7FXbL78GxfKQggD_6FFDwM6R_5mAWSSZ-JgAWc-QFTLgs8JnymOAtsCBJRiJgJJimDEskCl8kyEwIzvsWEjbWky0SFallMWqhQVpiQWo-UukgoBKsCA9UnUBWAlY0aAsF8j_k2VQ-oqKChdAa4aYXmkEKHKUVUOZIBVVhkE2fKqB4xrWdIgjSAvMN80WvC6TVR3UneZKrfC7-nRw3Z5zfg3YaCFHrKSQLG5H0jDIf7ZAeAudqefoVMJMj4HnYZSkGVKjBkT9TpYAfBswhWTJJySKFFZKuY6N9PRQi24AxagIuGXAwvW9tWqAGerKXKNByocxqvil5AGdArD_Auki3YKR-bIHwBI_J-lakq4cCM_qAix_EoXML6SEc3BCIcV4L6ODF826nYL0xfEX0iCEQCFTIYCAPqnNKjTI87akL5l_7R4EW4UszRtgOBlSgOWuhN4n2Keh7GH-TLehpPdol2xw2ORYHDPEzO-LynPb5Tw44T2fX1XiN0DYG1cvHWq1TrQXDrZG0W1m8HLM8z8ZHjqzeGlj-Sm3zobC0LD1PE5UERSXIJ0Yje7osEL-9BDwLnWVhG9h5Bpah46ohxSC9nx_yCyFFjZDY8ZhzWS9sxHTjMHzeWtp8_7mx87i5_ybON7Zdr29mHdut--3Wzu_oob6x0XjzIs2d542H300r7Y6uzufrz3ZvOWivP1vNsOc-eQNGPrY1OczNvruXNb3ljndKV7tP3eXY3z15h9exr3ljOm1ugv_-xaKK99LbbugdqTxjT1WCqMlnS_wFTmrXocAfLc1KRmFYahWkUyVDwUKawbDTjKOZu6tbjOLXqXiy90PJiYXlWYobcrPOQO4mM7ZPG6NzNueSUMeY49ST0Ei5CGEFOKMMQ767ESVpO6jGX8rThF6as3SoO-qnt39Fn_oOOs8ZBi_5zB-_znjNGF24vJudh5bMQXaDh8wuY6x2q |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9A%8E%E6%AE%B5%E7%8A%B6%E3%81%AE%E9%9D%9E%E9%81%A9%E5%90%88%E5%A2%83%E7%95%8C%E3%82%92%E6%9C%89%E3%81%99%E3%82%8B%E7%B2%92%E5%AD%90%E6%B3%95%E8%A7%A3%E6%9E%90%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E4%BB%AE%E6%83%B3%E3%83%9E%E3%83%BC%E3%82%AB%E3%83%BC%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E3%81%99%E3%81%B9%E3%82%8A%E3%83%BB%E9%9D%9E%E3%81%99%E3%81%B9%E3%82%8A%E5%A2%83%E7%95%8C%E5%87%A6%E7%90%86%E6%B3%95&rft.jtitle=%E6%97%A5%E6%9C%AC%E8%A8%88%E7%AE%97%E5%B7%A5%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E9%9B%86&rft.au=%E8%97%A4%E6%9C%AC%2C+%E5%95%93%E4%BB%8B&rft.au=%E7%94%B0%E9%82%8A%2C+%E5%B0%86%E4%B8%80&rft.au=%E5%88%A5%E5%BA%9C%2C+%E4%B8%87%E5%AF%BF%E5%8D%9A&rft.au=%E6%B5%85%E4%BA%95%2C+%E5%85%89%E8%BC%9D&rft.date=2013&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E8%A8%88%E7%AE%97%E5%B7%A5%E5%AD%A6%E4%BC%9A&rft.eissn=1347-8826&rft.volume=2013&rft.spage=20130011&rft.epage=20130011&rft_id=info:doi/10.11421%2Fjsces.2013.20130011&rft.externalDocID=article_jsces_2013_0_2013_20130011_article_char_ja |