Efficient Super Broadband NIR Ca2LuZr2Al3O12:Cr3+,Yb3+ Garnet Phosphor for pc‐LED Light Source toward NIR Spectroscopy Applications
Super broadband near‐infrared (NIR) phosphor converted light‐emitting diodes (pc‐LEDs) are future light sources in NIR spectroscopy applications such as food testing. At present, a few blue LED excitable super broadband NIR phosphors (bandwidth > 300 nm) have been developed producing the NIR outp...
Saved in:
Published in | Advanced optical materials Vol. 8; no. 6 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 2195-1071 2195-1071 |
DOI | 10.1002/adom.201901684 |
Cover
Loading…
Abstract | Super broadband near‐infrared (NIR) phosphor converted light‐emitting diodes (pc‐LEDs) are future light sources in NIR spectroscopy applications such as food testing. At present, a few blue LED excitable super broadband NIR phosphors (bandwidth > 300 nm) have been developed producing the NIR output powers below 26 mW at 100 mA input current after LED packaging. Here, an efficient super broadband NIR phosphor achieved by doping Yb3+ is reported in the NIR Ca2LuZr2Al3O12:Cr3+ (CLZA:Cr3+) garnet phosphor developed previously. Benefited from the superposition of Cr3+ emission and highly efficient Yb3+ emission excited by energy transfer from Cr3+, the codoped CLZA:Cr3+,Yb3+ phosphor shows a bandwidth of 320 nm and an internal quantum efficiency of 77.2% both higher than that (150 nm and 69.1%) of singly doped CLZA:Cr3+ phosphor. The codoped phosphor converts LED produced 41.8 mW NIR output at 100 mA input current. The pc‐LED as a light source is also well applied to the NIR transmission spectra measurement of water. The results indicate the great potential of CLZA:Cr3+,Yb3+ phosphor in super broadband NIR pc‐LED applications.
Emission band extension with efficiency enhancement of Ca2LuZr2Al3O12:Cr3+ garnet phosphor is achieved via codoping with highly efficient emitting Yb3+. Meanwhile, addition of Yb3+ substantially suppresses luminescence thermal quenching due to the competition between energy transfer and thermal de‐excitation in Cr3+ emittingstates. The results indicate the great potential of Ca2LuZr2Al3O12:Cr3+,Yb3+ phosphors in super broadband near‐infrared phosphor converted light‐emitting diode applications. |
---|---|
AbstractList | Super broadband near‐infrared (NIR) phosphor converted light‐emitting diodes (pc‐LEDs) are future light sources in NIR spectroscopy applications such as food testing. At present, a few blue LED excitable super broadband NIR phosphors (bandwidth > 300 nm) have been developed producing the NIR output powers below 26 mW at 100 mA input current after LED packaging. Here, an efficient super broadband NIR phosphor achieved by doping Yb3+ is reported in the NIR Ca2LuZr2Al3O12:Cr3+ (CLZA:Cr3+) garnet phosphor developed previously. Benefited from the superposition of Cr3+ emission and highly efficient Yb3+ emission excited by energy transfer from Cr3+, the codoped CLZA:Cr3+,Yb3+ phosphor shows a bandwidth of 320 nm and an internal quantum efficiency of 77.2% both higher than that (150 nm and 69.1%) of singly doped CLZA:Cr3+ phosphor. The codoped phosphor converts LED produced 41.8 mW NIR output at 100 mA input current. The pc‐LED as a light source is also well applied to the NIR transmission spectra measurement of water. The results indicate the great potential of CLZA:Cr3+,Yb3+ phosphor in super broadband NIR pc‐LED applications. Super broadband near‐infrared (NIR) phosphor converted light‐emitting diodes (pc‐LEDs) are future light sources in NIR spectroscopy applications such as food testing. At present, a few blue LED excitable super broadband NIR phosphors (bandwidth > 300 nm) have been developed producing the NIR output powers below 26 mW at 100 mA input current after LED packaging. Here, an efficient super broadband NIR phosphor achieved by doping Yb3+ is reported in the NIR Ca2LuZr2Al3O12:Cr3+ (CLZA:Cr3+) garnet phosphor developed previously. Benefited from the superposition of Cr3+ emission and highly efficient Yb3+ emission excited by energy transfer from Cr3+, the codoped CLZA:Cr3+,Yb3+ phosphor shows a bandwidth of 320 nm and an internal quantum efficiency of 77.2% both higher than that (150 nm and 69.1%) of singly doped CLZA:Cr3+ phosphor. The codoped phosphor converts LED produced 41.8 mW NIR output at 100 mA input current. The pc‐LED as a light source is also well applied to the NIR transmission spectra measurement of water. The results indicate the great potential of CLZA:Cr3+,Yb3+ phosphor in super broadband NIR pc‐LED applications. Emission band extension with efficiency enhancement of Ca2LuZr2Al3O12:Cr3+ garnet phosphor is achieved via codoping with highly efficient emitting Yb3+. Meanwhile, addition of Yb3+ substantially suppresses luminescence thermal quenching due to the competition between energy transfer and thermal de‐excitation in Cr3+ emittingstates. The results indicate the great potential of Ca2LuZr2Al3O12:Cr3+,Yb3+ phosphors in super broadband near‐infrared phosphor converted light‐emitting diode applications. |
Author | Zhang, Ligong He, Shuai Wu, Huajun Zhang, Jiahua Wu, Hao Zhang, Liangliang Pan, Guohui Zhang, Hong Hao, Zhendong Zhang, Xia |
Author_xml | – sequence: 1 givenname: Shuai orcidid: 0000-0003-2841-0311 surname: He fullname: He, Shuai organization: University of Chinese Academy of Sciences – sequence: 2 givenname: Liangliang surname: Zhang fullname: Zhang, Liangliang email: zhangliangliang@ciomp.ac.cn organization: Chinese Academy of Sciences – sequence: 3 givenname: Hao surname: Wu fullname: Wu, Hao organization: Chinese Academy of Sciences – sequence: 4 givenname: Huajun surname: Wu fullname: Wu, Huajun organization: Chinese Academy of Sciences – sequence: 5 givenname: Guohui surname: Pan fullname: Pan, Guohui organization: Chinese Academy of Sciences – sequence: 6 givenname: Zhendong surname: Hao fullname: Hao, Zhendong organization: Chinese Academy of Sciences – sequence: 7 givenname: Xia surname: Zhang fullname: Zhang, Xia organization: Chinese Academy of Sciences – sequence: 8 givenname: Ligong surname: Zhang fullname: Zhang, Ligong organization: Chinese Academy of Sciences – sequence: 9 givenname: Hong surname: Zhang fullname: Zhang, Hong organization: University of Amsterdam – sequence: 10 givenname: Jiahua surname: Zhang fullname: Zhang, Jiahua email: zhangjh@ciomp.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNpNkDtPwzAUhS1UJJ4rsyVGKFzbcR5sIS0FKVDEY4AlcvygqUpsnFRVNxZ2fiO_hFRFFcPVvUc6Ovfo20O92tYaoSMCZwSAngtl388okARIGAdbaJeShPcJRKT3795Bh00zBYBOsCSIdtHX0JhKVrpu8ePcaY8vvRWqFLXCdzcPOBM0n796ms7YmNCLzLOT05eSneCR8LVu8f3ENm5iPTbdOPnz-Z0PBziv3iZdnp17qXFrF8Kv0x6dlq23jbRuiVPnZpUUbWXr5gBtGzFr9OHf3kfPV8On7Lqfj0c3WZr3p5QmQZ-TUAcJN4YJw4M4BkWpIaGCsgyV5CAjTcowoYQCSCElV4pzQgwNFaMiBraPjte5ztuPuW7aYtqVrLuXBWVRnADl4cqVrF2LaqaXhfPVu_DLgkCxQl2sUBcb1EU6GN9uFPsF5W51fA |
ContentType | Journal Article |
Copyright | 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | 7SP 7U5 8FD H8D L7M |
DOI | 10.1002/adom.201901684 |
DatabaseName | Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences |
EISSN | 2195-1071 |
EndPage | n/a |
ExternalDocumentID | ADOM201901684 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 11604330; 11874055; 11974346; 51772286; 19904361 – fundername: National Basic Research Program of China (973 Program) funderid: 2016YFB0400605 – fundername: Natural Science Foundation of Jilin Province funderid: 20160520171JH; 20190101001JH |
GroupedDBID | 0R~ 1OC 33P 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZFZN AZVAB BFHJK BMXJE BRXPI D-B DCZOG DPXWK EBS G-S HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY~ O9- P2W R.K ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW 7SP 7U5 8FD AAMMB ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY H8D L7M |
ID | FETCH-LOGICAL-j2294-516e495ff3af54880d22f16d0bb6dc50c7e1b6921200cacc5dd5511f26d32a803 |
ISSN | 2195-1071 |
IngestDate | Sun Jul 13 02:53:05 EDT 2025 Wed Jan 22 16:38:59 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2294-516e495ff3af54880d22f16d0bb6dc50c7e1b6921200cacc5dd5511f26d32a803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2841-0311 |
PQID | 2378902560 |
PQPubID | 2034581 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2378902560 wiley_primary_10_1002_adom_201901684_ADOM201901684 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-01 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced optical materials |
PublicationYear | 2020 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 6 2019; 7 2017; 7 2012; 121 2019; 31 2018; 105 1954; 22 2017; 28 2019; 78 2018; 101 2019; 58 2006; 15 2005; 80 1994 2017; 29 2017; 110 2018; 43 2011; 8 2016; 120 2016; 5 2018; 6 2018; 8 2018; 3 2014; 4 2014; 3 2014; 2 2017; 10 2017; 190 2016 1994; 39 2019; 790 2018; 10 2012; 358 2016; 190 2003; 20 1971; 4 2012; 9 2016; 172 2019; 110 |
References_xml | – volume: 190 start-page: 234 year: 2017 publication-title: J. Lumin. – volume: 6 start-page: 5984 year: 2018 publication-title: J. Mater. Chem. C – volume: 39 start-page: 177 year: 1994 publication-title: Phys. Med. Biol. – volume: 190 start-page: 701 year: 2016 publication-title: Food Chem. – volume: 28 start-page: 7157 year: 2017 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 8 start-page: 2653 year: 2011 publication-title: Phys. Status Solidi C – volume: 58 start-page: 2069 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 121 start-page: 79 year: 2012 publication-title: Brain Lang. – volume: 28 start-page: 7042 year: 2017 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 43 start-page: 5251 year: 2018 publication-title: Opt. Lett. – volume: 20 start-page: 1975 year: 2003 publication-title: J. Opt. Soc. Am. B – volume: 110 start-page: 135 year: 2019 publication-title: Mater. Res. Bull. – volume: 4 start-page: 638 year: 2014 publication-title: Opt. Mater. Express – volume: 4 start-page: 3153 year: 1971 publication-title: Phys. Rev. B – volume: 172 start-page: 185 year: 2016 publication-title: J. Lumin. – volume: 8 year: 2018 publication-title: RSC Adv. – volume: 31 start-page: 5245 year: 2019 publication-title: Chem. Mater. – volume: 7 year: 2017 publication-title: Sci. Rep. – year: 2016 – volume: 80 start-page: 985 year: 2005 publication-title: Appl. Phys. B – year: 1994 – volume: 3 year: 2014 publication-title: Light: Sci. Appl. – volume: 10 year: 2017 publication-title: Appl. Phys. Express – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 101 start-page: 73 year: 2018 publication-title: Mater. Res. Bull. – volume: 5 year: 2016 publication-title: Light: Sci. Appl. – volume: 6 year: 2017 publication-title: Light: Sci. Appl. – volume: 105 start-page: 192 year: 2018 publication-title: Mater. Res. Bull. – volume: 358 start-page: 1217 year: 2012 publication-title: J. Non‐Cryst. Solids – volume: 15 start-page: 204 year: 2006 publication-title: Acta Laser Biol. Sin. – volume: 78 start-page: 4179 year: 2019 publication-title: Multimedia Tools Appl. – volume: 120 year: 2016 publication-title: J. Appl. Phys. – volume: 22 start-page: 1063 year: 1954 publication-title: J. Chem. Phys. – volume: 3 start-page: 2679 year: 2018 publication-title: ACS Energy Lett. – volume: 790 start-page: 1192 year: 2019 publication-title: J. Alloys Compd. – volume: 6 start-page: 4967 year: 2018 publication-title: J. Mater. Chem. C – volume: 10 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 5769 year: 2014 publication-title: J. Mater. Chem. C – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 9 start-page: 2340 year: 2012 publication-title: Phys. Status Solidi C |
SSID | ssj0001073947 |
Score | 2.6044827 |
Snippet | Super broadband near‐infrared (NIR) phosphor converted light‐emitting diodes (pc‐LEDs) are future light sources in NIR spectroscopy applications such as food... |
SourceID | proquest wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Bandwidths Broadband broadband emission broadband NIR phosphor Energy transfer Infrared radiation Light emitting diodes Light sources Materials science near‐infrared light sources Optics phosphor converted light‐emitting diodes Phosphors Quantum efficiency Spectrum analysis Trivalent chromium Ytterbium |
Title | Efficient Super Broadband NIR Ca2LuZr2Al3O12:Cr3+,Yb3+ Garnet Phosphor for pc‐LED Light Source toward NIR Spectroscopy Applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadom.201901684 https://www.proquest.com/docview/2378902560 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELZK98KFf8TCgnyAUygkTuK23EpbWFC7i-iutHCJbMfZskJJlCYHOHHhzsPwRDwJYztxE3aFYC9WNEkc1fPVM994PEbocTAkfgJsZwDOQjAAhCSDMQ2g4QLgLGNwsdUG5-UB3T8O3p6EJ73ez1bWUlXyZ-LrhftKLqNVkIFe1S7Z_9Cs7RQEcA36hRY0DO0_6Xiu6z-o1fxVlatdI0XGYq5C4Qdv3jtTRhbVx4JMPvuHHoE-p4X_hLyEQf3A1YXzmhWpLJ1362yTr7NCZxzmwqY_LOYzoOzA3Z2VjvCDm6pSbHXf6tj6UhXCzPIvxpNth_6aqrZNfkGWm4g5eMdmWLYRWB19XVfs07kI9gKAe6qCMKfWcFTaULLsD0HFzqq0Hb4Armrzt8wsR9RhkcBBjUheIKun6VELjbRlr601O2cMTHFZFmeq4oByfKg5ja5bdds-Gf79WVMkeHa4tPevoB0C5MTto53JbLlYbWN7avlTn21nf0lTL9Qlz7sf6TCbNj_SDs7RDXStZiZ4YmB2E_Vkegtdr1kKrm3A5jb6blGHNeqwRR0GZOAu6l4A5pyngDcHG7ThBm0Y0IZz8evbD8AZ1jjDBmfY4Ez31sYZbuPsDjp-NT-a7g_qwzwGZ4SMYS7wqAQyniQ-S0JlNWJCEo_GLuc0FqErhtLjdAyelOsKJkQYx-DMewmhsU_YyPXvon6apfIewpxID0SSjKAneJ3zkSc8l3kiYOrGLtprhjSq_62biPhDvaRO3V1E9DBHuannEpnK3SRSiomsYqKOru9f5qUH6OoW8nuoXxaVfAg-bMkf1ZD5Das6kk8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Super+Broadband+NIR+Ca2LuZr2Al3O12%3ACr3%2B%2CYb3%2B+Garnet+Phosphor+for+pc%E2%80%90LED+Light+Source+toward+NIR+Spectroscopy+Applications&rft.jtitle=Advanced+optical+materials&rft.au=He%2C+Shuai&rft.au=Zhang%2C+Liangliang&rft.au=Wu%2C+Hao&rft.au=Wu%2C+Huajun&rft.date=2020-03-01&rft.issn=2195-1071&rft.eissn=2195-1071&rft.volume=8&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadom.201901684&rft.externalDBID=10.1002%252Fadom.201901684&rft.externalDocID=ADOM201901684 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-1071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-1071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-1071&client=summon |