インタラクティブ制約付きクラスタリングにおける制約選択を支援するインタラクションデザイン
Saved in:
Published in | 人工知能学会論文誌 Vol. 29; no. 2; pp. 259 - 267 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 人工知能学会
2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1346-0714 1346-8030 |
DOI | 10.1527/tjsai.29.259 |
Cover
Author | 水上, 淳貴 岡部, 正幸 山田, 誠二 |
---|---|
Author_xml | – sequence: 1 fullname: 水上, 淳貴 organization: 東京工業大学大学院 総合理工学研究科 知能システム科学専攻 – sequence: 1 fullname: 山田, 誠二 organization: 国立情報学研究所/総合研究大学院大学/東京工業大学 – sequence: 1 fullname: 岡部, 正幸 organization: 豊橋技術科学大学 情報メディア基盤センター |
BookMark | eNpdkD1Lw1AUhi-iYK3d_Bup9zO5GUv9hIKLzuEmTTWhVkm6OOamqFREFBFdXBREHSpYquLgjzla8V_YpsXB5ZzD-zy8w5lBk42dho_QHMFFIqg13wxjFRSpXaTCnkA5wrhpSMzw5PjGFuHTqBDHgYsxoYwTLHKoBfoW0mfQH5Deg-5Aug_6BtKLr8Ped7f1-X4JyXGWD-hbpj1k_hMkj5C0ITkFfTSSf5LXfvsa9Fn_vNM_6UJyNUD_-_ULpHfDJD0A3RvRWTRVU_XYL4x3Hm0sLa6XV4zK2vJquVQxQkoFNixLYeZKjxEpbGIKSqqMSip4zZLS44Jb2LaFLzzKLCwJqfpcuNwkjLnUtU2X5VFp1BvGTbXpO7tRsK2iPUdFzcCr-072QofaDh2OkrMg-R_ztlTkhIr9AkkMmuo |
ContentType | Journal Article |
Copyright | 人工知能学会 2014 |
Copyright_xml | – notice: 人工知能学会 2014 |
DOI | 10.1527/tjsai.29.259 |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1346-8030 |
EndPage | 267 |
ExternalDocumentID | article_tjsai_29_2_29_A_D84_article_char_ja |
GroupedDBID | 123 2WC ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 E3Z EBS EJD JSF KQ8 OK1 PQQKQ RJT XSB |
ID | FETCH-LOGICAL-j2250-77a03b8c3185916521d328254f788c45470995e5c2370811de45b46133b2b96b3 |
ISSN | 1346-0714 |
IngestDate | Wed Sep 03 06:29:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2250-77a03b8c3185916521d328254f788c45470995e5c2370811de45b46133b2b96b3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/tjsai/29/2/29_A-D84/_article/-char/ja |
PageCount | 9 |
ParticipantIDs | jstage_primary_article_tjsai_29_2_29_A_D84_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20140000 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 20140000 |
PublicationDecade | 2010 |
PublicationTitle | 人工知能学会論文誌 |
PublicationYear | 2014 |
Publisher | 一般社団法人 人工知能学会 |
Publisher_xml | – name: 一般社団法人 人工知能学会 |
References | [Seung 92] Seung, H. S., Opper, M., and Sompolinsky, H.: Query by committee, in Proceedings of the fifth annual workshop on Computational learning theory (COLT'92), pp.287-294 (1992) [Davidson 12] Davidson, I.: Two approaches to understanding when constraints help clustering, in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'12), pp. 1312-1320 (2012) [Csurka 04] Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C.: Visual categorization with bags of keypoints, in Workshop on statistical learning in computer vision, Vol. 1, p. 22 (2004) [Hall 09] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.: The WEKA data mining software: an update, ACM SIGKDD Explorations Newsletter, Vol.11, No.1, pp.10-18 (2009) [Fogarty 08] Fogarty, J., Tan, D., Kapoor, A., and Winder, S.: CueFlik: interactive concept learning in image search, in Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems (CHI'08), pp.29-38 (2008) [Yu 04] Yu, S. and Shi, J.: Segmentation Given Partial Grouping Constraints, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.26, No.2, pp.173-183 (2004) [Borg 97] Borg, I. and Groenen, P.: Modern multidimensional scaling: Theory and applications, Springer Verlag (1997) [Lewis 94] Lewis, D. and Gale, W.: A sequential algorithm for training text classifiers, in Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR'94), pp.3-12 (1994) [Lowe 04] Lowe, D.: Distinctive image features from scale-invariant keypoints, International journal of computer vision, Vol.60, No.2, pp.91-110 (2004) [Bekkerman 07] Bekkerman, R., Raghavan, H., Allan, J., and Eguchi, K.: Interactive clustering of text collections according to a user-specified criterion, in Proceedings of the 20th international joint conference on Artifical intelligence (IJCAI'07), pp. 684-689 (2007) [Cohn 08] Cohn, D., Caruana, R., and McCallum, A. K.: Semi-Supervised Clustering with User Feedback, in Basu, S., Davidson, I., and Wagstaff, K. eds., Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC (2008) [Jain 08] Jain, P., Kulis, B., Dhillon, I., and Grauman, K.: Online metric learning and fast similarity search, in Proceedings of 22nd Annual Conference on Neural Information Processing Systems (NIPS'08), Vol. 22, pp. 761-768 (2008) [Amershi 11] Amershi, S., Lee, B., Kapoor, A., Mahajan, R., and Christian, B.: Human-Guided Machine Learning for Fast and Accurate Network Alarm Triage, in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI'11), pp. 2564-2569 (2011) [Wagstaff 01] Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S.: Constrained K-means clustering with background knowledge, in Proceedings of the 18th International Conference on Machine Learning (ICML'01), pp.577-584 (2001) [Castro 08] Castro, R. M., Kalish, C., Nowak, R., Qian, R., Rogers, T., and Zhu, X.: Human Active Learning, in Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L. eds., Advances in Neural Information Processing Systems 21 (NIPS'08), pp. 241-248 (2008) [Basu 08] Basu, S., Davidson, I., and Wagstaff, K. eds.: Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC (2008) [Okabe 11] Okabe, M. and Yamada, S.: An Interactive Tool for Human Active Learning in Constrained Clustering, Journal of Emerging Technologies in Web Intelligence, Vol.3, No.1, pp.20-27 (2011) [Okabe 12] Okabe, M. and Yamada, S.: Clustering by Learning Constraints Priorities, in Proceedings of the 12th International Conference on Data Mining (ICDM'12), pp.1050-1055 (2012) [Fails 03] Fails, J. A. and Olsen, D. R., Jr.: Interactive machine learning, in Proceedings of the 8th international conference on Intelligent user interfaces (IUI'03), pp. 39-45 (2003) |
References_xml | – reference: [Okabe 12] Okabe, M. and Yamada, S.: Clustering by Learning Constraints Priorities, in Proceedings of the 12th International Conference on Data Mining (ICDM'12), pp.1050-1055 (2012) – reference: [Wagstaff 01] Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S.: Constrained K-means clustering with background knowledge, in Proceedings of the 18th International Conference on Machine Learning (ICML'01), pp.577-584 (2001) – reference: [Csurka 04] Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C.: Visual categorization with bags of keypoints, in Workshop on statistical learning in computer vision, Vol. 1, p. 22 (2004) – reference: [Amershi 11] Amershi, S., Lee, B., Kapoor, A., Mahajan, R., and Christian, B.: Human-Guided Machine Learning for Fast and Accurate Network Alarm Triage, in Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI'11), pp. 2564-2569 (2011) – reference: [Castro 08] Castro, R. M., Kalish, C., Nowak, R., Qian, R., Rogers, T., and Zhu, X.: Human Active Learning, in Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L. eds., Advances in Neural Information Processing Systems 21 (NIPS'08), pp. 241-248 (2008) – reference: [Jain 08] Jain, P., Kulis, B., Dhillon, I., and Grauman, K.: Online metric learning and fast similarity search, in Proceedings of 22nd Annual Conference on Neural Information Processing Systems (NIPS'08), Vol. 22, pp. 761-768 (2008) – reference: [Davidson 12] Davidson, I.: Two approaches to understanding when constraints help clustering, in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD'12), pp. 1312-1320 (2012) – reference: [Lowe 04] Lowe, D.: Distinctive image features from scale-invariant keypoints, International journal of computer vision, Vol.60, No.2, pp.91-110 (2004) – reference: [Seung 92] Seung, H. S., Opper, M., and Sompolinsky, H.: Query by committee, in Proceedings of the fifth annual workshop on Computational learning theory (COLT'92), pp.287-294 (1992) – reference: [Fails 03] Fails, J. A. and Olsen, D. R., Jr.: Interactive machine learning, in Proceedings of the 8th international conference on Intelligent user interfaces (IUI'03), pp. 39-45 (2003) – reference: [Hall 09] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H.: The WEKA data mining software: an update, ACM SIGKDD Explorations Newsletter, Vol.11, No.1, pp.10-18 (2009) – reference: [Okabe 11] Okabe, M. and Yamada, S.: An Interactive Tool for Human Active Learning in Constrained Clustering, Journal of Emerging Technologies in Web Intelligence, Vol.3, No.1, pp.20-27 (2011) – reference: [Yu 04] Yu, S. and Shi, J.: Segmentation Given Partial Grouping Constraints, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.26, No.2, pp.173-183 (2004) – reference: [Borg 97] Borg, I. and Groenen, P.: Modern multidimensional scaling: Theory and applications, Springer Verlag (1997) – reference: [Lewis 94] Lewis, D. and Gale, W.: A sequential algorithm for training text classifiers, in Proceedings of the 17th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR'94), pp.3-12 (1994) – reference: [Cohn 08] Cohn, D., Caruana, R., and McCallum, A. K.: Semi-Supervised Clustering with User Feedback, in Basu, S., Davidson, I., and Wagstaff, K. eds., Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC (2008) – reference: [Basu 08] Basu, S., Davidson, I., and Wagstaff, K. eds.: Constrained Clustering: Advances in Algorithms, Theory, and Applications, Chapman and Hall/CRC (2008) – reference: [Fogarty 08] Fogarty, J., Tan, D., Kapoor, A., and Winder, S.: CueFlik: interactive concept learning in image search, in Proceedings of the twenty-sixth annual SIGCHI conference on Human factors in computing systems (CHI'08), pp.29-38 (2008) – reference: [Bekkerman 07] Bekkerman, R., Raghavan, H., Allan, J., and Eguchi, K.: Interactive clustering of text collections according to a user-specified criterion, in Proceedings of the 20th international joint conference on Artifical intelligence (IJCAI'07), pp. 684-689 (2007) |
SSID | ssib001234105 ssib008501343 ssib047348305 ssib000961560 ssj0057238 ssib006575950 |
Score | 1.9769082 |
SourceID | jstage |
SourceType | Publisher |
StartPage | 259 |
SubjectTerms | human active learning interaction design interactive constrained clustering |
Title | インタラクティブ制約付きクラスタリングにおける制約選択を支援するインタラクションデザイン |
URI | https://www.jstage.jst.go.jp/article/tjsai/29/2/29_A-D84/_article/-char/ja |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 人工知能学会論文誌, 2014/03/01, Vol.29(2), pp.259-267 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LahRBcAjx4sW3-CYH5yQb59E93e2tO7tLUBSEBHIbdjYzkD0kopuLt50NKhEVRUQvXhREPUQwRMWDH9Ma8S-s6unZnWRzcCMMQ1NVXVVdvUM9th-OcxGjaPDjSQ1ia69GeEZrSejTmp_4KSPCb0XmjqXrN6LZeXJ1gS5MTD6urFpa7SbT7bt77ivZz6wCDOYVd8mOMbMDpgCANswvvGGG4f1Pc-w2QpcHriSmEboqtBDVtBApSpoSwqMSElqIAAh1OXcVNJirILoEhsRVyhXc0Pgur-_mM-CsxIhQOaKPZ_lIVTKUtiF8S8PVXmoIpFGgRoRdRMMSiwAhghh9ANVEestQVBiOax9AsRLFdvaCh5U00SjnapRvrCfxgREBQ0lxRKJpGtzQ1xEl666MDPGMKySiwD44HRG-URxHY_JBJRsxYEtVzA9Hk8AnYqDM6AnWA_XIkB7k-_igfIJ9Db1hKz2rZ5U_RQbSN4YHG_CSP6oaGrQAwdVakT-sEpdaeWaUIGQG5YKRVAO7CmV4RKipoAMjXdqfuSruNCSR2SJXRBtDGPfsv3HWB9uq11KlFGIdqj0vvojNguLqlhG3TwNceNDt3GktTQdietBpx0Hq9jONDVkciDjAl4zrnMQlDrc6xh3Itw4EjPm4RPjazUq6IiK_Wk6AqA9XSQ_9F952W1klwCkkWMPj7gieJGX8axEpUrzwzxSErJXsxhwYzeXqWCA47kCqWC4zNZHv3BHnkE1Zp2Sh_FFnotM65hwur4OZstHBcWdN5291_7POf-j-e51v6P49nb_R_Re_Hmz93lz7-f2l7j0ycMB-M2QfDP0n3fuoe-u691TnDwviP72v2-uvdf5s-_nG9pNN3XsFqN388y-6_w4h_fs63yqwJ5z5ZmNuZrZmL3mpdQJ0D4y1vDDhbTzFAVJVyCYWQ9xPTzLGeRuPG4Qclqa0HYQM0hd_MSU0IZCEhEmQiCgJTzqTyyvL6SlnSogMsq8oydpZCnlWJlLSZlErIygo84LTzpXCjvGt4iSfeIyfxJn_6XzWOYifY1G6PedMdm-vpuchmekmF8wv7C-nkBMy |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%A9%E3%82%AF%E3%83%86%E3%82%A3%E3%83%96%E5%88%B6%E7%B4%84%E4%BB%98%E3%81%8D%E3%82%AF%E3%83%A9%E3%82%B9%E3%82%BF%E3%83%AA%E3%83%B3%E3%82%B0%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E5%88%B6%E7%B4%84%E9%81%B8%E6%8A%9E%E3%82%92%E6%94%AF%E6%8F%B4%E3%81%99%E3%82%8B%E3%82%A4%E3%83%B3%E3%82%BF%E3%83%A9%E3%82%AF%E3%82%B7%E3%83%A7%E3%83%B3%E3%83%87%E3%82%B6%E3%82%A4%E3%83%B3&rft.jtitle=%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A%E8%AB%96%E6%96%87%E8%AA%8C&rft.au=%E6%B0%B4%E4%B8%8A%2C+%E6%B7%B3%E8%B2%B4&rft.au=%E5%B1%B1%E7%94%B0%2C+%E8%AA%A0%E4%BA%8C&rft.au=%E5%B2%A1%E9%83%A8%2C+%E6%AD%A3%E5%B9%B8&rft.date=2014&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E4%BA%BA%E5%B7%A5%E7%9F%A5%E8%83%BD%E5%AD%A6%E4%BC%9A&rft.issn=1346-0714&rft.eissn=1346-8030&rft.volume=29&rft.issue=2&rft.spage=259&rft.epage=267&rft_id=info:doi/10.1527%2Ftjsai.29.259&rft.externalDocID=article_tjsai_29_2_29_A_D84_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1346-0714&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1346-0714&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1346-0714&client=summon |