干満流と部分飽和を組み合わせたハイブリッドろ床を導入した多段人工湿地の下水浄化性能
ひとつのろ床内で好気処理と嫌気処理の双方を強化する新たなハイブリッドシステムとして, パイロットスケールの多段人工湿地の2段目及び3段目ろ床の上半分に干満流を, 下半分に部分飽和を適用したハイブリッドろ床を導入し, 下水浄化性能を検証した。その結果, BOD及びNH4+-Nについては, ろ材の種類に関わらず97%以上の極めて高い除去率が達成できた。T-N及びT-Pについては, ゼオライト及びケイ酸カルシウムをろ材として組み合わせたろ床を含む条件において, それぞれ31及び46%の除去率が得られた。本研究により, 多段人工湿地に干満流と部分飽和を組み合わせたハイブリッドろ床を導入することで, 従...
Saved in:
Published in | 水環境学会誌 Vol. 47; no. 1; pp. 27 - 35 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 日本水環境学会
2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0916-8958 1881-3690 |
DOI | 10.2965/jswe.47.27 |
Cover
Loading…
Abstract | ひとつのろ床内で好気処理と嫌気処理の双方を強化する新たなハイブリッドシステムとして, パイロットスケールの多段人工湿地の2段目及び3段目ろ床の上半分に干満流を, 下半分に部分飽和を適用したハイブリッドろ床を導入し, 下水浄化性能を検証した。その結果, BOD及びNH4+-Nについては, ろ材の種類に関わらず97%以上の極めて高い除去率が達成できた。T-N及びT-Pについては, ゼオライト及びケイ酸カルシウムをろ材として組み合わせたろ床を含む条件において, それぞれ31及び46%の除去率が得られた。本研究により, 多段人工湿地に干満流と部分飽和を組み合わせたハイブリッドろ床を導入することで, 従来の鉛直流人工湿地と水平流人工湿地を組み合わせるハイブリッドシステムよりも良好な下水浄化性能が得られることをBOD, NH4+-N及びT-Pでは確認することができたが, T-N除去性能の改善には至らなかった。 |
---|---|
AbstractList | ひとつのろ床内で好気処理と嫌気処理の双方を強化する新たなハイブリッドシステムとして, パイロットスケールの多段人工湿地の2段目及び3段目ろ床の上半分に干満流を, 下半分に部分飽和を適用したハイブリッドろ床を導入し, 下水浄化性能を検証した。その結果, BOD及びNH4+-Nについては, ろ材の種類に関わらず97%以上の極めて高い除去率が達成できた。T-N及びT-Pについては, ゼオライト及びケイ酸カルシウムをろ材として組み合わせたろ床を含む条件において, それぞれ31及び46%の除去率が得られた。本研究により, 多段人工湿地に干満流と部分飽和を組み合わせたハイブリッドろ床を導入することで, 従来の鉛直流人工湿地と水平流人工湿地を組み合わせるハイブリッドシステムよりも良好な下水浄化性能が得られることをBOD, NH4+-N及びT-Pでは確認することができたが, T-N除去性能の改善には至らなかった。 |
Author | 吉野, 謙司 中野, 和典 谷口, 崇至 |
Author_xml | – sequence: 1 fullname: 吉野, 謙司 organization: 日本大学大学院工学研究科 – sequence: 1 fullname: 中野, 和典 organization: 日本大学工学部土木工学科 – sequence: 1 fullname: 谷口, 崇至 organization: AWエンジニアリング株式会社 |
BookMark | eNo9kEtLw0AAhBdRsK1e_B-pu3nsbg4eRHyB4EXPYZNutKFWSQoiXkxTxUd94EFBBQ-2WDyUIgZtQfpjthvtv7BF8TIzDB9zmDQYLW4XOQBTCGZVExvTXrDLszrJqmQEpBClSNGwCUdBCpoIK9Q06DhIB4EHoaFiQlJgX7Zfk85BEocibPSjhjw-6j99yuuqKF9_xRURduXVsShfivBehI8iuhTlmohuRPQiokhEJ6J8LjunA1i2LuRhXYS3A0zW7pJm3Ot05Hs9aXflQ0uEzd7HWdJ6S-KKrN4kB8_f0ecEGHNZIeCTf54B6wvza3NLysrq4vLc7IriqcjEimtzF0NmOghhjRnIcTgnzHFy0EUGgrZuM0gHAVNmYq7aXMtRYmJX55RQQ9e1DJj53fWCEtvg1o6f32L-nsX8Ut4pcGt4mqUTCw1FJf-9s8l8y2PaD1JjlYs |
ContentType | Journal Article |
Copyright | 2024 公益社団法人 日本水環境学会 |
Copyright_xml | – notice: 2024 公益社団法人 日本水環境学会 |
DOI | 10.2965/jswe.47.27 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1881-3690 |
EndPage | 35 |
ExternalDocumentID | article_jswe_47_1_47_27_article_char_ja |
GroupedDBID | 2WC 5GY ABJNI ACGFS ALMA_UNASSIGNED_HOLDINGS CS3 JSF OK1 RJT |
ID | FETCH-LOGICAL-j2196-fbef60a9c1163a51ccee7accd0f1510b4ba0851068a96e2be3d8796f4e8785443 |
ISSN | 0916-8958 |
IngestDate | Wed Sep 03 06:30:30 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2196-fbef60a9c1163a51ccee7accd0f1510b4ba0851068a96e2be3d8796f4e8785443 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jswe/47/1/47_27/_article/-char/ja |
PageCount | 9 |
ParticipantIDs | jstage_primary_article_jswe_47_1_47_27_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2024 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024 |
PublicationDecade | 2020 |
PublicationTitle | 水環境学会誌 |
PublicationTitleAlternate | 水環境学会誌 |
PublicationYear | 2024 |
Publisher | 公益社団法人 日本水環境学会 |
Publisher_xml | – name: 公益社団法人 日本水環境学会 |
References | 13) Han, Z., Dong, J., Shen, Z., Mou, R., Zhou, Y., Chen, X., Fu, X., Yang, C., 2019. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite. Chemosphere 217, 364-373. 18) Hu, Y., Zhao, Y., Rymszewicz, A., 2014. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland. Science of the Total Environment 470-471, 1197-1204. 20) 増田裕和, 中野和典, 佐藤洋一, 2013. 10種類の人工湿地ろ材のNH4+, NO3-およびPO43-の吸着性能の評価. 平成24年度土木学会東北支部技術研究発表会講演概要集, Ⅶ-5. 4) Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380 (1-3) , 48-65. 7) Silveira, D.D., Filho, P.B., Philippi, L.S., Kim, B., Molle, P., 2015. Influence of partial saturation on total nitrogen removal in a single-stage French constructed wetland treating raw domestic wastewater. Ecological Engineering 77, 257-264. 6) Bruch, I., Fritsche, J., Bänninger, D., Alewell, U., Sendelov, M., Hürlimann, H., Hasselbach, R., Alewell, C., 2011. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresource Technology 102 (2) , 937-941. 3) Vymazal, J., 2013. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Research 47 (14) , 4795-4811. 5) Wu, H., Zhang, J., Ngo, H.H., Guo, W., Hu, Z., Liang, S., Fan, J., Liu, H., 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology 175, 594-601. 14) Cooper, P., 2005. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Science and Technology 51 (9) , 81-90. 2) 中野和典, 鈴木援, 谷口崇至, 2021. 機能性ろ材が多段型人工湿地の下水浄化性能に及ぼす効果. 土木学会論文集G (環境) 77 (7) , Ⅲ_61-Ⅲ_69. 22) Haritash, A.K., Dutta, S., Sharma, A., 2017. Phosphate uptake and translocation in a tropical Canna-based constructed wetland. Ecological Processes 6, 12. 10) Liu, M., Wu, S., Chen, L., Dong, R., 2014. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater? Ecological Engineering 73, 478-486. 23) Li, C., Yu, H., Tabassum, S., Li, L., Mu, Y., Wu, D., Zhang, Z., Kong, H., Xu, P., 2018. Effect of calcium silicate hydrates coupled with Myriophyllum spicatum on phosphorus release and immobilization in shallow lake sediment. Chemical Engineering Journal 331, 462-470. 1) 中野和典, 2021. 人工湿地システム. 公益社団法人日本水環境学会編, 水環境の事典. 朝倉書店, 東京, pp. 292-293. 9) Wu, S., Zhang, D., Austin, D., Dong, R., Pang, C., 2011. Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal. Ecological Engineering 37 (11) , 1789-1795. 15) Ilyas, H., Masih, I., 2018. The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal. Environmental Science and Pollution Research 25, 5318-5335. 11) Ilyas, H., Masih, I., 2017. Intensification of constructed wetlands for land area reduction: a review. Environmental Science and Pollution Research 24, 12081-12091. 19) Huang, M., Wang, Z., Qi, R., 2017. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth. Bioresource Technology 233, 191-199. 16) 鈴木援, 谷口崇至, 中野和典, 2021. ろ床の重層化が多段型人工湿地の下水浄化性能に及ぼす影響. 水環境学会誌 44 (4) , 85-93. 21) 桑原智之, 田中幸男, 相崎守弘, 2003. ゼオライト水耕法における付着微生物の硝化によるアンモニア吸着ゼオライトの再生. 水環境学会誌 26 (6) , 375-380. 8) Li, C., Wu, S., Dong, R., 2015. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland. Journal of Environmental Management 151, 310-316. 17) Saeed, T., Miah, M.J., Khan, T., Ove, A., 2020. Pollutant removal employing tidal flow constructed wetlands: Media and feeding strategies. Chemical Engineering Journal 382, 122874. 12) Wu, S., Kuschk, P., Brix, H., Vymazal, J., Dong, R., 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research 57, 40-55. |
References_xml | – reference: 2) 中野和典, 鈴木援, 谷口崇至, 2021. 機能性ろ材が多段型人工湿地の下水浄化性能に及ぼす効果. 土木学会論文集G (環境) 77 (7) , Ⅲ_61-Ⅲ_69. – reference: 13) Han, Z., Dong, J., Shen, Z., Mou, R., Zhou, Y., Chen, X., Fu, X., Yang, C., 2019. Nitrogen removal of anaerobically digested swine wastewater by pilot-scale tidal flow constructed wetland based on in-situ biological regeneration of zeolite. Chemosphere 217, 364-373. – reference: 19) Huang, M., Wang, Z., Qi, R., 2017. Enhancement of the complete autotrophic nitrogen removal over nitrite process in a modified single-stage subsurface vertical flow constructed wetland: Effect of saturated zone depth. Bioresource Technology 233, 191-199. – reference: 5) Wu, H., Zhang, J., Ngo, H.H., Guo, W., Hu, Z., Liang, S., Fan, J., Liu, H., 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology 175, 594-601. – reference: 17) Saeed, T., Miah, M.J., Khan, T., Ove, A., 2020. Pollutant removal employing tidal flow constructed wetlands: Media and feeding strategies. Chemical Engineering Journal 382, 122874. – reference: 9) Wu, S., Zhang, D., Austin, D., Dong, R., Pang, C., 2011. Evaluation of a lab-scale tidal flow constructed wetland performance: Oxygen transfer capacity, organic matter and ammonium removal. Ecological Engineering 37 (11) , 1789-1795. – reference: 12) Wu, S., Kuschk, P., Brix, H., Vymazal, J., Dong, R., 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research 57, 40-55. – reference: 16) 鈴木援, 谷口崇至, 中野和典, 2021. ろ床の重層化が多段型人工湿地の下水浄化性能に及ぼす影響. 水環境学会誌 44 (4) , 85-93. – reference: 15) Ilyas, H., Masih, I., 2018. The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal. Environmental Science and Pollution Research 25, 5318-5335. – reference: 6) Bruch, I., Fritsche, J., Bänninger, D., Alewell, U., Sendelov, M., Hürlimann, H., Hasselbach, R., Alewell, C., 2011. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresource Technology 102 (2) , 937-941. – reference: 8) Li, C., Wu, S., Dong, R., 2015. Dynamics of organic matter, nitrogen and phosphorus removal and their interactions in a tidal operated constructed wetland. Journal of Environmental Management 151, 310-316. – reference: 18) Hu, Y., Zhao, Y., Rymszewicz, A., 2014. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland. Science of the Total Environment 470-471, 1197-1204. – reference: 4) Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment 380 (1-3) , 48-65. – reference: 20) 増田裕和, 中野和典, 佐藤洋一, 2013. 10種類の人工湿地ろ材のNH4+, NO3-およびPO43-の吸着性能の評価. 平成24年度土木学会東北支部技術研究発表会講演概要集, Ⅶ-5. – reference: 1) 中野和典, 2021. 人工湿地システム. 公益社団法人日本水環境学会編, 水環境の事典. 朝倉書店, 東京, pp. 292-293. – reference: 11) Ilyas, H., Masih, I., 2017. Intensification of constructed wetlands for land area reduction: a review. Environmental Science and Pollution Research 24, 12081-12091. – reference: 23) Li, C., Yu, H., Tabassum, S., Li, L., Mu, Y., Wu, D., Zhang, Z., Kong, H., Xu, P., 2018. Effect of calcium silicate hydrates coupled with Myriophyllum spicatum on phosphorus release and immobilization in shallow lake sediment. Chemical Engineering Journal 331, 462-470. – reference: 7) Silveira, D.D., Filho, P.B., Philippi, L.S., Kim, B., Molle, P., 2015. Influence of partial saturation on total nitrogen removal in a single-stage French constructed wetland treating raw domestic wastewater. Ecological Engineering 77, 257-264. – reference: 14) Cooper, P., 2005. The performance of vertical flow constructed wetland systems with special reference to the significance of oxygen transfer and hydraulic loading rates. Water Science and Technology 51 (9) , 81-90. – reference: 3) Vymazal, J., 2013. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: A review of a recent development. Water Research 47 (14) , 4795-4811. – reference: 21) 桑原智之, 田中幸男, 相崎守弘, 2003. ゼオライト水耕法における付着微生物の硝化によるアンモニア吸着ゼオライトの再生. 水環境学会誌 26 (6) , 375-380. – reference: 10) Liu, M., Wu, S., Chen, L., Dong, R., 2014. How substrate influences nitrogen transformations in tidal flow constructed wetlands treating high ammonium wastewater? Ecological Engineering 73, 478-486. – reference: 22) Haritash, A.K., Dutta, S., Sharma, A., 2017. Phosphate uptake and translocation in a tropical Canna-based constructed wetland. Ecological Processes 6, 12. |
SSID | ssj0052677 ssib005901876 ssib002484536 ssib020470632 ssib001001967 ssib031740823 ssib007484382 |
Score | 2.3406043 |
Snippet | ひとつのろ床内で好気処理と嫌気処理の双方を強化する新たなハイブリッドシステムとして, パイロットスケールの多段人工湿地の2段目及び3段目ろ床の上半分に干満流を, 下半分に部分飽和を適用したハイブリッドろ床を導入し, 下水浄化性能を検証した。その結果, BOD及びNH4+-Nについては,... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 27 |
SubjectTerms | ケイ酸カルシウム ハイブリッドろ床 多段人工湿地 干満流 部分飽和 |
Title | 干満流と部分飽和を組み合わせたハイブリッドろ床を導入した多段人工湿地の下水浄化性能 |
URI | https://www.jstage.jst.go.jp/article/jswe/47/1/47_27/_article/-char/ja |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 水環境学会誌, 2024, Vol.47(1), pp.27-35 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9RAFA-lXryIouI3PZiT7JpkJvNxTLZZiqIgtFBPS5JmD3uooi2CXrqbKlWrlR4qqODBFouHUsSiXSj9Y9Ks9r_wvUmym4qHtrAMs2_fm3nv95LMm9nMG027bvk0MoikELkRTKptmRXfMEUlhAcyixiJmhQ3ON-5y8Ym6K1Je3Jo-H7praXZmaAaPv3vvpLjeBVo4FfcJXsEz_YbBQLUwb9QgoehPJSPdc_WXam7lu4x3XXwrQWs2BAe6h7B0hG6J3VBVAXoQhcMKQ7R3VGkSEsXNcVsYd3jSpzm4m5d8RgomPGIev6TdItKRiHFT5bu0JwiWV5xnIKHFBVZNKjUQOWdkhpAgU49pbOtO3bRFy91amNH0kGTHQ_V9ii2Ax8U50qKKXwyK2rYZg6Lp5gBDVfxGLpLC-io6rSmlGcIqQOdCtTZHS2H8iVBjjpj46CSpWyEyqjuMNVLTSkpEATRX5MucJXKPxxthYtdsQG_VDrUQcMBv9IXWj3I3_egAqrML5R2PG8JHJ7zg8Iiswh8TcqrPtZgvbcAvqaMc5VzOOLtKp8ABRpEAMDJA-BvIEkWyAPgKH8ElMrrxiarCJnl269G2agphFkhLDv3tRhWs0SqBx4f-RjJS9FWlqvm33HckgxTnrQeP4mqlFcLiQN50fO7roFMDcobJhYWbxR03LXYaMHU6YQFM0gcs2_fK_1BrBJDlVcqBLXJIDLHLdmiFKljyl0ySANlGZRDcN__DlE4ntzeDwJti6lDX_toZZmR0a6bA6sg6m3BHLB4f1SFtOOntVP5XHTEyUw5ow21_LPas3T7e68719tqJ-31_Xg9XXix_2UnXV5MOsu_t-aT9m76biHpLCXtj0n7cxIvJZ3VJF5J4m9JHCfxy6TzJu2-AuZ08236fC1pvwe2dPVDb2Nrr9tNf671tnfTT5tJe2Pv1-ve5o_e1ny6uNKb-_on3jmnTdS98dpYJT-hpdKCSIdVmkHUZIYvQxOmdb5t4hOe-2E4ZTRhJmEENPBxSmcw4UsWWUFEpgSXrEkjwQVm3jyvDU8_mI4uaCNmgHmhqGmQZkQtHgru86nQFs2mHwUkJBc1lmHVeJil4Wkc8gK4dFzBy9pJvPOy9dYr2vDMo9noKsxAZoJr6lr6Cxg5AEs |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%B9%B2%E6%BA%80%E6%B5%81%E3%81%A8%E9%83%A8%E5%88%86%E9%A3%BD%E5%92%8C%E3%82%92%E7%B5%84%E3%81%BF%E5%90%88%E3%82%8F%E3%81%9B%E3%81%9F%E3%83%8F%E3%82%A4%E3%83%96%E3%83%AA%E3%83%83%E3%83%89%E3%82%8D%E5%BA%8A%E3%82%92%E5%B0%8E%E5%85%A5%E3%81%97%E3%81%9F%E5%A4%9A%E6%AE%B5%E4%BA%BA%E5%B7%A5%E6%B9%BF%E5%9C%B0%E3%81%AE%E4%B8%8B%E6%B0%B4%E6%B5%84%E5%8C%96%E6%80%A7%E8%83%BD&rft.jtitle=%E6%B0%B4%E7%92%B0%E5%A2%83%E5%AD%A6%E4%BC%9A%E8%AA%8C&rft.au=%E5%90%89%E9%87%8E%2C+%E8%AC%99%E5%8F%B8&rft.au=%E4%B8%AD%E9%87%8E%2C+%E5%92%8C%E5%85%B8&rft.au=%E8%B0%B7%E5%8F%A3%2C+%E5%B4%87%E8%87%B3&rft.date=2024&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%B0%B4%E7%92%B0%E5%A2%83%E5%AD%A6%E4%BC%9A&rft.issn=0916-8958&rft.eissn=1881-3690&rft.volume=47&rft.issue=1&rft.spage=27&rft.epage=35&rft_id=info:doi/10.2965%2Fjswe.47.27&rft.externalDocID=article_jswe_47_1_47_27_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0916-8958&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0916-8958&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0916-8958&client=summon |