Warning: Full texts from electronic resources are only available from the university network. You are currently outside this network. Please log in to access full texts
動脈硬化の発症・進展に関わる酸化変性リポタンパク質
Saved in:
Published in | 昭和学士会雑誌 Vol. 81; no. 5; pp. 370 - 379 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
昭和大学学士会
2021
|
Online Access | Get full text |
ISSN | 2187-719X 2188-529X |
DOI | 10.14930/jshowaunivsoc.81.370 |
Cover
Author | 板部, 洋之 |
---|---|
Author_xml | – sequence: 1 fullname: 板部, 洋之 organization: 昭和大学薬学部基礎薬学講座生物化学部門 |
BookMark | eNrjYmDJy89LZWCQNTTQMzSxNDbQzyrOyC9PLM3LLCvOT9azMNQzNjdgYuA0MrSw0DU1soxgAbPNdc0NLSM4GHiLizOTDAzNLcyNDc0MORm8n3ZPfdHS8Xzhmqc90x43rns-c9fz6e2Pm3e_bNj0dOPUx42rX05b9Lip_3FT98vWHUA1T5d0PmtY_rh51ePmuY-b9j9u3vy4eeLjpvUvNq_iYWBNS8wpTuWF0twMIW6uIc4euj7-7p7Ojj66WUaGhom6RiapaQZGqclpRhZAN5maG5inmpqapBilpVgkJVkaJKaYmZgkGhqZmRokpZoaGQCFzI2NzFLMzAzS0kwSTYy5GdwhxmYVlySmp8YXFGXmJhZVxicWlWQm56TGowRIvIVhvCmIAIYKXEVyRmJRfFaiMQD8kHv1 |
ContentType | Journal Article |
Copyright | 2021 昭和大学学士会 |
Copyright_xml | – notice: 2021 昭和大学学士会 |
DOI | 10.14930/jshowaunivsoc.81.370 |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2188-529X |
EndPage | 379 |
ExternalDocumentID | article_jshowaunivsoc_81_5_81_370_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT |
ID | FETCH-LOGICAL-j211a-24ef02ecf287195707e554d2fd8bb90ad644a12650be520b907326d660ff4a43 |
ISSN | 2187-719X |
IngestDate | Wed Sep 03 06:30:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j211a-24ef02ecf287195707e554d2fd8bb90ad644a12650be520b907326d660ff4a43 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jshowaunivsoc/81/5/81_370/_article/-char/ja |
PageCount | 10 |
ParticipantIDs | jstage_primary_article_jshowaunivsoc_81_5_81_370_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2021 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | 昭和学士会雑誌 |
PublicationTitleAlternate | 昭和学士会誌 |
PublicationYear | 2021 |
Publisher | 昭和大学学士会 |
Publisher_xml | – name: 昭和大学学士会 |
References | 7) Obama T, Kato R, Masuda Y, et al. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics. 2007;7:2132-2141. 10) Itabe H, Mori M, Fujimoto Y, et al. Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem. 2003;134:459-465. 22) Fraley AE, Schwartz GG, Olsson AG, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53:2186-2196. 42) Megens RT, Vijayan S, Lievens D, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107:597-598. 1) Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670-1681. 34) Bancells C, Sanchez-Quesada JL, Birkelund R, et al. HDL and electronegative LDL exchange anti- and pro-inflammatory properties. J Lipid Res. 2010;51:2947-2956. 44) Obama T, Ohinata H, Takaki T, et al. Cooperative action of oxidized low-density lipoproteins and neutrophils on endothelial inflammatory responses through neutrophil extracellular trap formation. Front Immunol. 2019;10:1899.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696608/pdf/fimmu-10-01899.pdf 25) Kraehling JR, Chidlow JH, Rajagopal C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:13516.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121336/pdf/ncomms13516.pdf 31) De Castellarnau C, Sanchez-Quesada JL, Benitez S, et al. Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:2281-2287. 41) Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arteriosclr Thromb Vasc Biol. 2013;33:2032-2040. 6) Sasabe N, Keyamura Y, Obama T, et al. Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis. 2014;13:48.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007754/pdf/1476-511X-13-48.pdf 33) Gao D, Podrez EA. Characterization of covalent modifications of HDL apoproteins by endogenous oxidized phospholipids. Free Radic Biol Med. 2018;115:57-67. 43) Quillard T, Araujo HA, Franck G, et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394-1404. 40) Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-1535. 26) Sakiyama Y, Kato R, Inoue S, et al. Detection of oxidized low-density lipoproteins in gingival crevicular fluid from dental patients. J Periodont Res. 2010;45:216-222. 16) Tsimikas S, Bergmark C, Beyer RW, et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol. 2003;41:360-370. 35) Liu R, Saku K, Zhang B, et al. In vivo kinetics of oxidatively modified HDL. Biochem Med Metab Biol. 1993;49:392-397. 3) Kita T, Kume N, Yokode M, et al. Oxidized-LDL and atherosclerosis. Role of LOX-1. Ann NY Acad Sci. 2000;902:95-100; discussion 100-102. 9) Watson AD, Leitinger N, Navab, M, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597-13607. 8) Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260-1266. 4) Itabe H. Kato R, Sawada N, et al. The significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions. Curr Med Chem. 2019;26:1576-1593. 19) Van Berkel TJ, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells J Biol Chem. 1991;266:2282-2289. 5) Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39-75. 23) Kato R, Mori C, Kitazato K, et al. Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vas. Biol. 2009;29:33-39. 12) Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955-1960. 29) Uno M, Kitazato KT, Suzue A, et al. Contribution of an imbalance between oxidant-antioxidant systems to plaque vulnerability in patients with carotid artery stenosis. J Neurosurg. 2005;103:518-525. 28) Tsimikas S, Lau HK, Han KR, et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a). Shortterm and long-term immunologic responses to oxidized low-density lipoprotein. Circulation. 2004;109:3164-3170. 2) Witzum JL, Sterinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785-1792. 30) Sawada N, Obama T, Koba S, et al. Circulating oxidized LDL increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res. 2020;61:816-829. 38) Marechal P, Tridetti J, Nguyen ML, et al. Neutrophil phenotypes in coronary artery disease. J Clin Med. 2020;9:1602.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290445/pdf/jcm-09-01602.pdf 27) Naruko T, Ueda M, Ehara S, et al. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler Thromb Vasc Biol. 2006;26:877-883. 15) Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487-1494. 32) Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312-318. 21) Torzewski M, Shaw PX, Han KR, et al. Reduced In vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol. 2004;24:2307-2312. 20) Tsimikas S, Aikawa M, Miller Jr. FJ, et al. Increased plasma oxidized phospholipid: apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2007;27:175-181. 24) Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983;96:1677-1689. 39) Obama T, Itabe H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int J Mol Sci. 2020;21:8312.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664187/pdf/ijms-21-08312.pdf 37) Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894-2900. 11) Itabe H, Takeshima E, Iwasaki H, et al. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 1994;269:15274-15279. 13) Nishi K, Itabe H, Uno M, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22:1649-1654. 36) Partida RA, Libby P, Crea F, et al. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070-2076. 18) Girona J, Manzanares JM, Marimon F, et al. Oxidized to non-oxidized lipoprotein ratios are associated with atherosclerosis and the metabolic syndrome in diabetic patients. Nutr Metab Cardiovasc Dis. 2008;18:380-387. 17) Itabe H, Ueda M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb. 2007;14:1-11. 14) Yla-Herttuala S, Palinski W, Butler SW, et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32-40. |
References_xml | – reference: 21) Torzewski M, Shaw PX, Han KR, et al. Reduced In vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol. 2004;24:2307-2312. – reference: 30) Sawada N, Obama T, Koba S, et al. Circulating oxidized LDL increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res. 2020;61:816-829. – reference: 26) Sakiyama Y, Kato R, Inoue S, et al. Detection of oxidized low-density lipoproteins in gingival crevicular fluid from dental patients. J Periodont Res. 2010;45:216-222. – reference: 7) Obama T, Kato R, Masuda Y, et al. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics. 2007;7:2132-2141. – reference: 33) Gao D, Podrez EA. Characterization of covalent modifications of HDL apoproteins by endogenous oxidized phospholipids. Free Radic Biol Med. 2018;115:57-67. – reference: 22) Fraley AE, Schwartz GG, Olsson AG, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53:2186-2196. – reference: 43) Quillard T, Araujo HA, Franck G, et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394-1404. – reference: 27) Naruko T, Ueda M, Ehara S, et al. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler Thromb Vasc Biol. 2006;26:877-883. – reference: 23) Kato R, Mori C, Kitazato K, et al. Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vas. Biol. 2009;29:33-39. – reference: 38) Marechal P, Tridetti J, Nguyen ML, et al. Neutrophil phenotypes in coronary artery disease. J Clin Med. 2020;9:1602.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290445/pdf/jcm-09-01602.pdf – reference: 36) Partida RA, Libby P, Crea F, et al. Plaque erosion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070-2076. – reference: 32) Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312-318. – reference: 17) Itabe H, Ueda M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb. 2007;14:1-11. – reference: 40) Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-1535. – reference: 34) Bancells C, Sanchez-Quesada JL, Birkelund R, et al. HDL and electronegative LDL exchange anti- and pro-inflammatory properties. J Lipid Res. 2010;51:2947-2956. – reference: 5) Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39-75. – reference: 44) Obama T, Ohinata H, Takaki T, et al. Cooperative action of oxidized low-density lipoproteins and neutrophils on endothelial inflammatory responses through neutrophil extracellular trap formation. Front Immunol. 2019;10:1899.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696608/pdf/fimmu-10-01899.pdf – reference: 11) Itabe H, Takeshima E, Iwasaki H, et al. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 1994;269:15274-15279. – reference: 28) Tsimikas S, Lau HK, Han KR, et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a). Shortterm and long-term immunologic responses to oxidized low-density lipoprotein. Circulation. 2004;109:3164-3170. – reference: 19) Van Berkel TJ, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells J Biol Chem. 1991;266:2282-2289. – reference: 39) Obama T, Itabe H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int J Mol Sci. 2020;21:8312.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664187/pdf/ijms-21-08312.pdf – reference: 1) Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670-1681. – reference: 41) Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arteriosclr Thromb Vasc Biol. 2013;33:2032-2040. – reference: 3) Kita T, Kume N, Yokode M, et al. Oxidized-LDL and atherosclerosis. Role of LOX-1. Ann NY Acad Sci. 2000;902:95-100; discussion 100-102. – reference: 14) Yla-Herttuala S, Palinski W, Butler SW, et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32-40. – reference: 35) Liu R, Saku K, Zhang B, et al. In vivo kinetics of oxidatively modified HDL. Biochem Med Metab Biol. 1993;49:392-397. – reference: 42) Megens RT, Vijayan S, Lievens D, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107:597-598. – reference: 13) Nishi K, Itabe H, Uno M, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22:1649-1654. – reference: 37) Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894-2900. – reference: 4) Itabe H. Kato R, Sawada N, et al. The significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions. Curr Med Chem. 2019;26:1576-1593. – reference: 31) De Castellarnau C, Sanchez-Quesada JL, Benitez S, et al. Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:2281-2287. – reference: 6) Sasabe N, Keyamura Y, Obama T, et al. Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis. 2014;13:48.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007754/pdf/1476-511X-13-48.pdf – reference: 8) Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260-1266. – reference: 20) Tsimikas S, Aikawa M, Miller Jr. FJ, et al. Increased plasma oxidized phospholipid: apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2007;27:175-181. – reference: 29) Uno M, Kitazato KT, Suzue A, et al. Contribution of an imbalance between oxidant-antioxidant systems to plaque vulnerability in patients with carotid artery stenosis. J Neurosurg. 2005;103:518-525. – reference: 9) Watson AD, Leitinger N, Navab, M, et al. Structural identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597-13607. – reference: 16) Tsimikas S, Bergmark C, Beyer RW, et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol. 2003;41:360-370. – reference: 25) Kraehling JR, Chidlow JH, Rajagopal C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:13516.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121336/pdf/ncomms13516.pdf – reference: 15) Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487-1494. – reference: 24) Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983;96:1677-1689. – reference: 2) Witzum JL, Sterinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785-1792. – reference: 12) Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955-1960. – reference: 10) Itabe H, Mori M, Fujimoto Y, et al. Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem. 2003;134:459-465. – reference: 18) Girona J, Manzanares JM, Marimon F, et al. Oxidized to non-oxidized lipoprotein ratios are associated with atherosclerosis and the metabolic syndrome in diabetic patients. Nutr Metab Cardiovasc Dis. 2008;18:380-387. |
SSID | ssib017873161 ssib058494430 ssj0003304619 |
Score | 2.2233624 |
SourceID | jstage |
SourceType | Publisher |
StartPage | 370 |
Title | 動脈硬化の発症・進展に関わる酸化変性リポタンパク質 |
URI | https://www.jstage.jst.go.jp/article/jshowaunivsoc/81/5/81_370/_article/-char/ja |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 昭和学士会雑誌, 2021, Vol.81(5), pp.370-379 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANNR68SKKit_04ByzZiYfM3NzZjdLsSgoK_QWkk2C7qEV3VXw1O4qKhXEQysePCiCUEXRXkQP_piwbvdf-GaSbFNcwdbLMLzvycvMvDfMh2FcCBOe2tgLTcbS1HQ4JiYnUdsEapaElhszrA4KX7nqzd9wLi-6izMHrld2LfW6Ua39YOq5kv14FWDgV3VKdg-enQgFANTBv1CCh6H8Jx8j30VMIu4inyEGUSFDPkUCI1HXqDriHvJtiBaR8BWKcySFrlDEqEbZSErkc7XjQRLFJbEWmHNpFAgRREMIYs2yknMBPavocpEAMzjyPSVQlCqEKCq8UbDLZqndLlG4QImmao5UXNXQWcnkDImG0sKJ0qjUNZDI9draWgdJsERos6WWyZR2NlkM1mIaWj_XpjH1lymodHSjQAIgZHU5hOwshPzFCke3tWrOdLt2xl0IeqhJsX7hF6bIEsYgZy9gxcSRvzVTdBC3MgvY-VsoRUBh56_l_DFXOdxWuzs7d28u3w97S7fuQXesMVybcO-6Brz4yYJd5AHDgasK4AlKCnVcL-hAznCQUIrVNteFa5MxFsMADX1zMqZD_Mmd8gZ-Fb3Y-gp-lTVOvkNx8E3Ze3GatRC8dSCVKbdB6sisdcQ4XKRUcyI37Kgx0wmPGQvDtfXth09Gbz4On21kq59Gr76PXj7OBj_GK1-HX9az1Q_jjbdZ_3nWXxs_-gY0w3dPf628zwab2eB11v-ZDbaywYus_3l7a_O40Wr6rfq8WTwcYnYIxqFJnCS1SNJO1XIAd6lFE4iaY5LGLIq4FcaQBISYQHISJS6xAEQhi4k9z0pTJ3TsE8bs0vJSctKYw5EXMjdMKLW4Q6gVUqCKEhonaRrD5HjKuJQ3PbidXw4T7NlPp_9fxBnjkOoK-crgWWO2e6eXnINYuRud187_DXNFqhg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8B%95%E8%84%88%E7%A1%AC%E5%8C%96%E3%81%AE%E7%99%BA%E7%97%87%E3%83%BB%E9%80%B2%E5%B1%95%E3%81%AB%E9%96%A2%E3%82%8F%E3%82%8B%E9%85%B8%E5%8C%96%E5%A4%89%E6%80%A7%E3%83%AA%E3%83%9D%E3%82%BF%E3%83%B3%E3%83%91%E3%82%AF%E8%B3%AA&rft.jtitle=%E6%98%AD%E5%92%8C%E5%AD%A6%E5%A3%AB%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E6%9D%BF%E9%83%A8%2C+%E6%B4%8B%E4%B9%8B&rft.date=2021&rft.pub=%E6%98%AD%E5%92%8C%E5%A4%A7%E5%AD%A6%E5%AD%A6%E5%A3%AB%E4%BC%9A&rft.issn=2187-719X&rft.eissn=2188-529X&rft.volume=81&rft.issue=5&rft.spage=370&rft.epage=379&rft_id=info:doi/10.14930%2Fjshowaunivsoc.81.370&rft.externalDocID=article_jshowaunivsoc_81_5_81_370_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-719X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-719X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-719X&client=summon |