動脈硬化の発症・進展に関わる酸化変性リポタンパク質

Saved in:
Bibliographic Details
Published in昭和学士会雑誌 Vol. 81; no. 5; pp. 370 - 379
Main Author 板部, 洋之
Format Journal Article
LanguageJapanese
Published 昭和大学学士会 2021
Online AccessGet full text
ISSN2187-719X
2188-529X
DOI10.14930/jshowaunivsoc.81.370

Cover

Author 板部, 洋之
Author_xml – sequence: 1
  fullname: 板部, 洋之
  organization: 昭和大学薬学部基礎薬学講座生物化学部門
BookMark eNrjYmDJy89LZWCQNTTQMzSxNDbQzyrOyC9PLM3LLCvOT9azMNQzNjdgYuA0MrSw0DU1soxgAbPNdc0NLSM4GHiLizOTDAzNLcyNDc0MORm8n3ZPfdHS8Xzhmqc90x43rns-c9fz6e2Pm3e_bNj0dOPUx42rX05b9Lip_3FT98vWHUA1T5d0PmtY_rh51ePmuY-b9j9u3vy4eeLjpvUvNq_iYWBNS8wpTuWF0twMIW6uIc4euj7-7p7Ojj66WUaGhom6RiapaQZGqclpRhZAN5maG5inmpqapBilpVgkJVkaJKaYmZgkGhqZmRokpZoaGQCFzI2NzFLMzAzS0kwSTYy5GdwhxmYVlySmp8YXFGXmJhZVxicWlWQm56TGowRIvIVhvCmIAIYKXEVyRmJRfFaiMQD8kHv1
ContentType Journal Article
Copyright 2021 昭和大学学士会
Copyright_xml – notice: 2021 昭和大学学士会
DOI 10.14930/jshowaunivsoc.81.370
DeliveryMethod fulltext_linktorsrc
EISSN 2188-529X
EndPage 379
ExternalDocumentID article_jshowaunivsoc_81_5_81_370_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j211a-24ef02ecf287195707e554d2fd8bb90ad644a12650be520b907326d660ff4a43
ISSN 2187-719X
IngestDate Wed Sep 03 06:30:51 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j211a-24ef02ecf287195707e554d2fd8bb90ad644a12650be520b907326d660ff4a43
OpenAccessLink https://www.jstage.jst.go.jp/article/jshowaunivsoc/81/5/81_370/_article/-char/ja
PageCount 10
ParticipantIDs jstage_primary_article_jshowaunivsoc_81_5_81_370_article_char_ja
PublicationCentury 2000
PublicationDate 2021
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle 昭和学士会雑誌
PublicationTitleAlternate 昭和学士会誌
PublicationYear 2021
Publisher 昭和大学学士会
Publisher_xml – name: 昭和大学学士会
References 7) Obama T, Kato R, Masuda Y, et al. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics. 2007;7:2132-2141.
10) Itabe H, Mori M, Fujimoto Y, et al. Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem. 2003;134:459-465.
22) Fraley AE, Schwartz GG, Olsson AG, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53:2186-2196.
42) Megens RT, Vijayan S, Lievens D, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107:597-598.
1) Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670-1681.
34) Bancells C, Sanchez-Quesada JL, Birkelund R, et al. HDL and electronegative LDL exchange anti- and pro-inflammatory properties. J Lipid Res. 2010;51:2947-2956.
44) Obama T, Ohinata H, Takaki T, et al. Cooperative action of oxidized low-density lipoproteins and neutrophils on endothelial inflammatory responses through neutrophil extracellular trap formation. Front Immunol. 2019;10:1899.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696608/pdf/fimmu-10-01899.pdf
25) Kraehling JR, Chidlow JH, Rajagopal C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:13516.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121336/pdf/ncomms13516.pdf
31) De Castellarnau C, Sanchez-Quesada JL, Benitez S, et al. Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:2281-2287.
41) Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arteriosclr Thromb Vasc Biol. 2013;33:2032-2040.
6) Sasabe N, Keyamura Y, Obama T, et al. Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis. 2014;13:48.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007754/pdf/1476-511X-13-48.pdf
33) Gao D, Podrez EA. Characterization of covalent modifications of HDL apoproteins by endogenous oxidized phospholipids. Free Radic Biol Med. 2018;115:57-67.
43) Quillard T, Araujo HA, Franck G, et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394-1404.
40) Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-1535.
26) Sakiyama Y, Kato R, Inoue S, et al. Detection of oxidized low-density lipoproteins in gingival crevicular fluid from dental patients. J Periodont Res. 2010;45:216-222.
16) Tsimikas S, Bergmark C, Beyer RW, et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol. 2003;41:360-370.
35) Liu R, Saku K, Zhang B, et al. In vivo kinetics of oxidatively modified HDL. Biochem Med Metab Biol. 1993;49:392-397.
3) Kita T, Kume N, Yokode M, et al. Oxidized-LDL and atherosclerosis. Role of LOX-1. Ann NY Acad Sci. 2000;902:95-100; discussion 100-102.
9) Watson AD, Leitinger N, Navab, M, et al. Struc­tur­al identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597-13607.
8) Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260-1266.
4) Itabe H. Kato R, Sawada N, et al. The significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions. Curr Med Chem. 2019;26:1576-1593.
19) Van Berkel TJ, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells J Biol Chem. 1991;266:2282-2289.
5) Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39-75.
23) Kato R, Mori C, Kitazato K, et al. Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vas. Biol. 2009;29:33-39.
12) Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955-1960.
29) Uno M, Kitazato KT, Suzue A, et al. Contribution of an imbalance between oxidant-antioxidant systems to plaque vulnerability in patients with carotid artery stenosis. J Neurosurg. 2005;103:518-525.
28) Tsimikas S, Lau HK, Han KR, et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a). Shortterm and long-term immunologic responses to oxidized low-density lipoprotein. Circulation. 2004;109:3164-3170.
2) Witzum JL, Sterinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785-1792.
30) Sawada N, Obama T, Koba S, et al. Circulating oxidized LDL increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res. 2020;61:816-829.
38) Marechal P, Tridetti J, Nguyen ML, et al. Neutrophil phenotypes in coronary artery disease. J Clin Med. 2020;9:1602.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290445/pdf/jcm-09-01602.pdf
27) Naruko T, Ueda M, Ehara S, et al. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler Thromb Vasc Biol. 2006;26:877-883.
15) Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487-1494.
32) Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312-318.
21) Torzewski M, Shaw PX, Han KR, et al. Reduced In vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol. 2004;24:2307-2312.
20) Tsimikas S, Aikawa M, Miller Jr. FJ, et al. Increased plasma oxidized phospholipid: apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2007;27:175-181.
24) Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983;96:1677-1689.
39) Obama T, Itabe H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int J Mol Sci. 2020;21:8312.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664187/pdf/ijms-21-08312.pdf
37) Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894-2900.
11) Itabe H, Takeshima E, Iwasaki H, et al. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 1994;269:15274-15279.
13) Nishi K, Itabe H, Uno M, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22:1649-1654.
36) Partida RA, Libby P, Crea F, et al. Plaque e­ro­sion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070-2076.
18) Girona J, Manzanares JM, Marimon F, et al. Oxidized to non-oxidized lipoprotein ratios are associated with atherosclerosis and the metabolic syndrome in diabetic patients. Nutr Metab Cardiovasc Dis. 2008;18:380-387.
17) Itabe H, Ueda M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb. 2007;14:1-11.
14) Yla-Herttuala S, Palinski W, Butler SW, et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32-40.
References_xml – reference: 21) Torzewski M, Shaw PX, Han KR, et al. Reduced In vivo aortic uptake of radiolabeled oxidation-specific antibodies reflects changes in plaque composition consistent with plaque stabilization. Arterioscler Thromb Vasc Biol. 2004;24:2307-2312.
– reference: 30) Sawada N, Obama T, Koba S, et al. Circulating oxidized LDL increased in patients with acute myocardial infarction, is accompanied by heavily modified HDL. J Lipid Res. 2020;61:816-829.
– reference: 26) Sakiyama Y, Kato R, Inoue S, et al. Detection of oxidized low-density lipoproteins in gingival crevicular fluid from dental patients. J Periodont Res. 2010;45:216-222.
– reference: 7) Obama T, Kato R, Masuda Y, et al. Analysis of modified apolipoprotein B-100 structures formed in oxidized low-density lipoprotein using LC-MS/MS. Proteomics. 2007;7:2132-2141.
– reference: 33) Gao D, Podrez EA. Characterization of covalent modifications of HDL apoproteins by endogenous oxidized phospholipids. Free Radic Biol Med. 2018;115:57-67.
– reference: 22) Fraley AE, Schwartz GG, Olsson AG, et al. Relationship of oxidized phospholipids and biomarkers of oxidized low-density lipoprotein with cardiovascular risk factors, inflammatory biomarkers, and effect of statin therapy in patients with acute coronary syndromes: results from the MIRACL (Myocardial Ischemia Reduction with Aggressive Cholesterol Lowering) trial. J Am Coll Cardiol. 2009;53:2186-2196.
– reference: 43) Quillard T, Araujo HA, Franck G, et al. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J. 2015;36:1394-1404.
– reference: 27) Naruko T, Ueda M, Ehara S, et al. Persistent high levels of plasma oxidized low-density lipoprotein after acute myocardial infarction predict stent restenosis. Arterioscler Thromb Vasc Biol. 2006;26:877-883.
– reference: 23) Kato R, Mori C, Kitazato K, et al. Transient increase in plasma oxidized LDL during the progression of atherosclerosis in apolipoprotein E knockout mice. Arterioscler Thromb Vas. Biol. 2009;29:33-39.
– reference: 38) Marechal P, Tridetti J, Nguyen ML, et al. Neutrophil phenotypes in coronary artery disease. J Clin Med. 2020;9:1602.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290445/pdf/jcm-09-01602.pdf
– reference: 36) Partida RA, Libby P, Crea F, et al. Plaque e­ro­sion: a new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur Heart J. 2018;39:2070-2076.
– reference: 32) Kontush A, Chapman MJ. Antiatherogenic function of HDL particle subpopulations: focus on antioxidative activities. Curr Opin Lipidol. 2010;21:312-318.
– reference: 17) Itabe H, Ueda M. Measurement of plasma oxidized low-density lipoprotein and its clinical implications. J Atheroscler Thromb. 2007;14:1-11.
– reference: 40) Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-1535.
– reference: 34) Bancells C, Sanchez-Quesada JL, Birkelund R, et al. HDL and electronegative LDL exchange anti- and pro-inflammatory properties. J Lipid Res. 2010;51:2947-2956.
– reference: 5) Levitan I, Volkov S, Subbaiah PV. Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid Redox Signal. 2010;13:39-75.
– reference: 44) Obama T, Ohinata H, Takaki T, et al. Cooperative action of oxidized low-density lipoproteins and neutrophils on endothelial inflammatory responses through neutrophil extracellular trap formation. Front Immunol. 2019;10:1899.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696608/pdf/fimmu-10-01899.pdf
– reference: 11) Itabe H, Takeshima E, Iwasaki H, et al. A monoclonal antibody against oxidized lipoprotein recognizes foam cells in atherosclerotic lesions. Complex formation of oxidized phosphatidylcholines and polypeptides. J Biol Chem. 1994;269:15274-15279.
– reference: 28) Tsimikas S, Lau HK, Han KR, et al. Percutaneous coronary intervention results in acute increases in oxidized phospholipids and lipoprotein(a). Shortterm and long-term immunologic responses to oxidized low-density lipoprotein. Circulation. 2004;109:3164-3170.
– reference: 19) Van Berkel TJ, De Rijke YB, Kruijt JK. Different fate in vivo of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells J Biol Chem. 1991;266:2282-2289.
– reference: 39) Obama T, Itabe H. Neutrophils as a novel target of modified low-density lipoproteins and an accelerator of cardiovascular diseases. Int J Mol Sci. 2020;21:8312.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7664187/pdf/ijms-21-08312.pdf
– reference: 1) Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670-1681.
– reference: 41) Borissoff JI, Joosen IA, Versteylen MO, et al. Elevated levels of circulating DNA and chromatin are independently associated with severe coronary atherosclerosis and a prothrombotic state. Arteriosclr Thromb Vasc Biol. 2013;33:2032-2040.
– reference: 3) Kita T, Kume N, Yokode M, et al. Oxidized-LDL and atherosclerosis. Role of LOX-1. Ann NY Acad Sci. 2000;902:95-100; discussion 100-102.
– reference: 14) Yla-Herttuala S, Palinski W, Butler SW, et al. Rabbit and human atherosclerotic lesions contain IgG that recognizes epitopes of oxidized LDL. Arterioscler Thromb. 1994;14:32-40.
– reference: 35) Liu R, Saku K, Zhang B, et al. In vivo kinetics of oxidatively modified HDL. Biochem Med Metab Biol. 1993;49:392-397.
– reference: 42) Megens RT, Vijayan S, Lievens D, et al. Presence of luminal neutrophil extracellular traps in atherosclerosis. Thromb Haemost. 2012;107:597-598.
– reference: 13) Nishi K, Itabe H, Uno M, et al. Oxidized LDL in carotid plaques and plasma associates with plaque instability. Arterioscler Thromb Vasc Biol. 2002;22:1649-1654.
– reference: 37) Naruko T, Ueda M, Haze K, et al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation. 2002;106:2894-2900.
– reference: 4) Itabe H. Kato R, Sawada N, et al. The significance of oxidized low-density lipoprotein in body fluids as a marker related to diseased conditions. Curr Med Chem. 2019;26:1576-1593.
– reference: 31) De Castellarnau C, Sanchez-Quesada JL, Benitez S, et al. Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler Thromb Vasc Biol. 2000;20:2281-2287.
– reference: 6) Sasabe N, Keyamura Y, Obama T, et al. Time course-changes in phosphatidylcholine profile during oxidative modification of low-density lipoprotein. Lipids Health Dis. 2014;13:48.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4007754/pdf/1476-511X-13-48.pdf
– reference: 8) Berliner JA, Territo MC, Sevanian A, et al. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;85:1260-1266.
– reference: 20) Tsimikas S, Aikawa M, Miller Jr. FJ, et al. Increased plasma oxidized phospholipid: apolipoprotein B-100 ratio with concomitant depletion of oxidized phospholipids from atherosclerotic lesions after dietary lipid-lowering: a potential biomarker of early atherosclerosis regression. Arterioscler Thromb Vasc Biol. 2007;27:175-181.
– reference: 29) Uno M, Kitazato KT, Suzue A, et al. Contribution of an imbalance between oxidant-antioxidant systems to plaque vulnerability in patients with carotid artery stenosis. J Neurosurg. 2005;103:518-525.
– reference: 9) Watson AD, Leitinger N, Navab, M, et al. Struc­tur­al identification by mass spectrometry of oxidized phospholipids in minimally oxidized low density lipoprotein that induce monocyte/endothelial interactions and evidence for their presence in vivo. J Biol Chem. 1997;272:13597-13607.
– reference: 16) Tsimikas S, Bergmark C, Beyer RW, et al. Temporal increases in plasma markers of oxidized low-density lipoprotein strongly reflect the presence of acute coronary syndromes. J Am Coll Cardiol. 2003;41:360-370.
– reference: 25) Kraehling JR, Chidlow JH, Rajagopal C, et al. Genome-wide RNAi screen reveals ALK1 mediates LDL uptake and transcytosis in endothelial cells. Nat Commun. 2016;7:13516.(accessed 2021 Mar 4)https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5121336/pdf/ncomms13516.pdf
– reference: 15) Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation. 1998;98:1487-1494.
– reference: 24) Vasile E, Simionescu M, Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983;96:1677-1689.
– reference: 2) Witzum JL, Sterinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest. 1991;88:1785-1792.
– reference: 12) Ehara S, Ueda M, Naruko T, et al. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. Circulation. 2001;103:1955-1960.
– reference: 10) Itabe H, Mori M, Fujimoto Y, et al. Minimally modified LDL is an oxidized LDL enriched with oxidized phosphatidylcholines. J Biochem. 2003;134:459-465.
– reference: 18) Girona J, Manzanares JM, Marimon F, et al. Oxidized to non-oxidized lipoprotein ratios are associated with atherosclerosis and the metabolic syndrome in diabetic patients. Nutr Metab Cardiovasc Dis. 2008;18:380-387.
SSID ssib017873161
ssib058494430
ssj0003304619
Score 2.2233624
SourceID jstage
SourceType Publisher
StartPage 370
Title 動脈硬化の発症・進展に関わる酸化変性リポタンパク質
URI https://www.jstage.jst.go.jp/article/jshowaunivsoc/81/5/81_370/_article/-char/ja
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 昭和学士会雑誌, 2021, Vol.81(5), pp.370-379
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANNR68SKKit_04ByzZiYfM3NzZjdLsSgoK_QWkk2C7qEV3VXw1O4qKhXEQysePCiCUEXRXkQP_piwbvdf-GaSbFNcwdbLMLzvycvMvDfMh2FcCBOe2tgLTcbS1HQ4JiYnUdsEapaElhszrA4KX7nqzd9wLi-6izMHrld2LfW6Ua39YOq5kv14FWDgV3VKdg-enQgFANTBv1CCh6H8Jx8j30VMIu4inyEGUSFDPkUCI1HXqDriHvJtiBaR8BWKcySFrlDEqEbZSErkc7XjQRLFJbEWmHNpFAgRREMIYs2yknMBPavocpEAMzjyPSVQlCqEKCq8UbDLZqndLlG4QImmao5UXNXQWcnkDImG0sKJ0qjUNZDI9draWgdJsERos6WWyZR2NlkM1mIaWj_XpjH1lymodHSjQAIgZHU5hOwshPzFCke3tWrOdLt2xl0IeqhJsX7hF6bIEsYgZy9gxcSRvzVTdBC3MgvY-VsoRUBh56_l_DFXOdxWuzs7d28u3w97S7fuQXesMVybcO-6Brz4yYJd5AHDgasK4AlKCnVcL-hAznCQUIrVNteFa5MxFsMADX1zMqZD_Mmd8gZ-Fb3Y-gp-lTVOvkNx8E3Ze3GatRC8dSCVKbdB6sisdcQ4XKRUcyI37Kgx0wmPGQvDtfXth09Gbz4On21kq59Gr76PXj7OBj_GK1-HX9az1Q_jjbdZ_3nWXxs_-gY0w3dPf628zwab2eB11v-ZDbaywYus_3l7a_O40Wr6rfq8WTwcYnYIxqFJnCS1SNJO1XIAd6lFE4iaY5LGLIq4FcaQBISYQHISJS6xAEQhi4k9z0pTJ3TsE8bs0vJSctKYw5EXMjdMKLW4Q6gVUqCKEhonaRrD5HjKuJQ3PbidXw4T7NlPp_9fxBnjkOoK-crgWWO2e6eXnINYuRud187_DXNFqhg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%8B%95%E8%84%88%E7%A1%AC%E5%8C%96%E3%81%AE%E7%99%BA%E7%97%87%E3%83%BB%E9%80%B2%E5%B1%95%E3%81%AB%E9%96%A2%E3%82%8F%E3%82%8B%E9%85%B8%E5%8C%96%E5%A4%89%E6%80%A7%E3%83%AA%E3%83%9D%E3%82%BF%E3%83%B3%E3%83%91%E3%82%AF%E8%B3%AA&rft.jtitle=%E6%98%AD%E5%92%8C%E5%AD%A6%E5%A3%AB%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E6%9D%BF%E9%83%A8%2C+%E6%B4%8B%E4%B9%8B&rft.date=2021&rft.pub=%E6%98%AD%E5%92%8C%E5%A4%A7%E5%AD%A6%E5%AD%A6%E5%A3%AB%E4%BC%9A&rft.issn=2187-719X&rft.eissn=2188-529X&rft.volume=81&rft.issue=5&rft.spage=370&rft.epage=379&rft_id=info:doi/10.14930%2Fjshowaunivsoc.81.370&rft.externalDocID=article_jshowaunivsoc_81_5_81_370_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-719X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-719X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-719X&client=summon