COVID-19重症肺炎患者の脊柱起立筋体積減少量と運動機能低下の関連について

【背景】人工呼吸中に骨格筋が喪失し運動機能低下の原因となることが報告されているが,人工呼吸中の骨格筋の体積減少量はまだ報告が少ない.また,骨格筋体積減少量と運動機能低下の程度との関連は明らかではない.【目的】人工呼吸を受けたCOVID-19肺炎患者の脊柱起立筋の減少を体積量として算出し,脊柱起立筋体積減少量と運動機能低下との関連を明らかにする.【方法】研究デザインは単施設後ろ向き症例集積研究で,2020年3月1日から2021年10月31日の間に集中治療室(ICU)において人工呼吸を受けた18歳以上のCOVID-19重症肺炎の患者のうち,早期リハビリテーションを受けた患者で,かつ,挿管時・抜管後...

Full description

Saved in:
Bibliographic Details
Published in昭和学士会雑誌 Vol. 84; no. 5; pp. 403 - 410
Main Authors 小谷, 透, 森, 麻衣子, 村上, 幸三, 松永, 奈緒, 久保寺, 宏太, 関本, 篤人
Format Journal Article
LanguageJapanese
Published 昭和大学学士会 2024
Subjects
Online AccessGet full text
ISSN2187-719X
2188-529X
DOI10.14930/jshowaunivsoc.84.403

Cover

Loading…
Abstract 【背景】人工呼吸中に骨格筋が喪失し運動機能低下の原因となることが報告されているが,人工呼吸中の骨格筋の体積減少量はまだ報告が少ない.また,骨格筋体積減少量と運動機能低下の程度との関連は明らかではない.【目的】人工呼吸を受けたCOVID-19肺炎患者の脊柱起立筋の減少を体積量として算出し,脊柱起立筋体積減少量と運動機能低下との関連を明らかにする.【方法】研究デザインは単施設後ろ向き症例集積研究で,2020年3月1日から2021年10月31日の間に集中治療室(ICU)において人工呼吸を受けた18歳以上のCOVID-19重症肺炎の患者のうち,早期リハビリテーションを受けた患者で,かつ,挿管時・抜管後の2時点で胸部CT検査を行った患者を抽出した.脊柱起立筋体積量の測定はCT画像の第11胸椎レベルの脊柱起立筋を1枚ずつトレースし解析ソフトにより体積量として算出し,挿管時・抜管時で比較した.また脊柱起立筋体積減少量とICU退室時運動機能評価スコアとの関連を調査した.【結果】合計27名の患者が登録された.脊柱起立筋体積量の中央値は挿管時85.3mm3,抜管後73.6mm3で有意な減少がみられた(p=0.0025).脊柱起立筋体積減少量と運動機能評価の間には負の相関が,人工呼吸期間,筋弛緩薬投与期間,最大CRP値の間には正の相関が示唆されたが有意ではなかった.脊柱起立筋体積減少率が25%以上であった重度筋喪失群と,25%未満の軽度筋喪失群との比較ではIntensive Care Unit Mobility Scale(IMS)で有意差がみられた(p=0.044).【結論】人工呼吸を受けたCOVID-19肺炎患者では脊柱起立筋体積量の有意な減少がみられ,脊柱起立筋体積減少率の25%以上の減少はICU退室時のIMSスコア低下と関連した.
AbstractList 【背景】人工呼吸中に骨格筋が喪失し運動機能低下の原因となることが報告されているが,人工呼吸中の骨格筋の体積減少量はまだ報告が少ない.また,骨格筋体積減少量と運動機能低下の程度との関連は明らかではない.【目的】人工呼吸を受けたCOVID-19肺炎患者の脊柱起立筋の減少を体積量として算出し,脊柱起立筋体積減少量と運動機能低下との関連を明らかにする.【方法】研究デザインは単施設後ろ向き症例集積研究で,2020年3月1日から2021年10月31日の間に集中治療室(ICU)において人工呼吸を受けた18歳以上のCOVID-19重症肺炎の患者のうち,早期リハビリテーションを受けた患者で,かつ,挿管時・抜管後の2時点で胸部CT検査を行った患者を抽出した.脊柱起立筋体積量の測定はCT画像の第11胸椎レベルの脊柱起立筋を1枚ずつトレースし解析ソフトにより体積量として算出し,挿管時・抜管時で比較した.また脊柱起立筋体積減少量とICU退室時運動機能評価スコアとの関連を調査した.【結果】合計27名の患者が登録された.脊柱起立筋体積量の中央値は挿管時85.3mm3,抜管後73.6mm3で有意な減少がみられた(p=0.0025).脊柱起立筋体積減少量と運動機能評価の間には負の相関が,人工呼吸期間,筋弛緩薬投与期間,最大CRP値の間には正の相関が示唆されたが有意ではなかった.脊柱起立筋体積減少率が25%以上であった重度筋喪失群と,25%未満の軽度筋喪失群との比較ではIntensive Care Unit Mobility Scale(IMS)で有意差がみられた(p=0.044).【結論】人工呼吸を受けたCOVID-19肺炎患者では脊柱起立筋体積量の有意な減少がみられ,脊柱起立筋体積減少率の25%以上の減少はICU退室時のIMSスコア低下と関連した.
Author 久保寺, 宏太
小谷, 透
村上, 幸三
松永, 奈緒
関本, 篤人
森, 麻衣子
Author_xml – sequence: 1
  fullname: 小谷, 透
  organization: 昭和大学医学部集中治療医学講座
– sequence: 1
  fullname: 森, 麻衣子
  organization: 昭和大学医学部集中治療医学講座
– sequence: 1
  fullname: 村上, 幸三
  organization: 昭和大学医学部放射線医学講座放射線治療学部門
– sequence: 1
  fullname: 松永, 奈緒
  organization: 昭和大学医学部集中治療医学講座
– sequence: 1
  fullname: 久保寺, 宏太
  organization: 昭和大学病院リハビリテーションセンター
– sequence: 1
  fullname: 関本, 篤人
  organization: 昭和大学医学部放射線医学講座放射線科学部門
BookMark eNpVkM1KAlEAhS9hkJmP0COM3Tt3_u4yrEwQ3FS4G-7M3EnFNGasaOeYITRoRFSLFkJGJFLUIpLApxmdn7fIfgjanHMW55zFtwhi1VqVAbCMYAoJBMOVsl2sHdGDaunQrukpRUgJEM-BOI8UhRN5Uoh9Z5mTESksgKRtlzSIZEXGSEJxwNL5newah0jU7gQ37bD5ETS7frMfNk495zlsnfm91_DtPRi6wZM7GV8Gg44_up2-XETtc895jBx36l75g154Mp6Mu5ORO1tF13dRo-85Q8-595yW5zwsgXmTVmyW_PUE2N5Y30pvcrl8JptezXFlHiHK8RAhgxqiIfCGLjFDIzI0BYnyMhOxpumKpBuQmoKGoMkwgxgyKhFNJwZWDEYIToDMz2_ZrtNdpu5bpT1qHavUqpf0ClP_sVIVQRW_ZAbsr6EXqaWWKf4EOrKMng
ContentType Journal Article
Copyright 2024 昭和大学学士会
Copyright_xml – notice: 2024 昭和大学学士会
DOI 10.14930/jshowaunivsoc.84.403
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2188-529X
EndPage 410
ExternalDocumentID article_jshowaunivsoc_84_5_84_403_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j211a-2011dad5d42dc6edb970f46a27e53bbc86cd0af4b10fe3e030ea69bc9d38de993
ISSN 2187-719X
IngestDate Wed Sep 03 06:30:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j211a-2011dad5d42dc6edb970f46a27e53bbc86cd0af4b10fe3e030ea69bc9d38de993
OpenAccessLink https://www.jstage.jst.go.jp/article/jshowaunivsoc/84/5/84_403/_article/-char/ja
PageCount 8
ParticipantIDs jstage_primary_article_jshowaunivsoc_84_5_84_403_article_char_ja
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 昭和学士会雑誌
PublicationTitleAlternate 昭和学士会誌
PublicationYear 2024
Publisher 昭和大学学士会
Publisher_xml – name: 昭和大学学士会
References 9) Vanpee G, Hermans G, Segers J, et al. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42:701-711.
12) Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452-458.
3) Yanagi N, Koike T, Kamiya K, et al. Assessment of sarcopenia in the intensive care unit and 1-year mortality in survivors of critical illness. Nutrients. 2021;13:2726.
14) Musheyev B, Borg L, Janowicz R, et al. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. J Intensive Care. 2021;9:31.
4) Damanti S, Cristel G, Ramirez GA, et al. Influence of reduced muscle mass and quality on ventilator weaning and complications during intensive care unit stay in COVID-19 patients. Clin Nutr. 2021;41:2965-2972.
7) Yuan G, Zhang J, Mou Z, et al. Acute reduction of erector spinae muscle cross-sectional area is associated with ICU-AW and worse prognosis in patients with mechanical ventilation in the ICU: a prospective observational study. Medicine (Baltimore). 2021;100:e27806.
10) Tipping CJ, Bailey MJ, Bellomo R, et al. The ICU mobility scale has construct and predictive validity and is responsive. a multicenter observational study. Ann Am Thorac Soc. 2016;13:887-893.
13) Wiertz CMH, Vints WAJ, Maas GJCM, et al. COVID-19: patient characteristics in the first phase of postintensive care rehabilitation. Arch Rehabil Res Clin Transl. 2021;3:100108.
18) Derstine BA, Holcombe SA, Goulson RL, et al. Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J Nutr Health Aging. 2017;21:180-185.
11) Thrush A, Rozek M, Dekerlegand JL. The clinical utility of the functional status score for the intensive care unit (FSS-ICU) at a longterm acute care hospital: a prospective cohort study. Phys Ther. 2012;92:1536-1545.
8) Ali AM, Kunugi H. Skeletal muscle damage in COVID-19: a call for action. Medicina (Kaunas). 2021;57:372.
2) Herridge MS, Tansey CM, Matte A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293-1304.
15) Moon SW, Kim SY, Choi JS, et al. Thoracic skeletal muscle quantification using computed tomography and prognosis of elderly ICU patients. Sci Rep. 2021;11:23461.
5) Akbarialiabad H, Taghrir MH, Abdollahi A, et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021;49:1163-1186.
16) Tanimura K, Sato S, Fuseya Y, et al. Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease. Novel chest computed tomography-derived index for prognosis. Ann Am Thorac Soc. 2016;13:334-341.
1) Batt J, Herridge M, Dos Santos C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness. Intensive Care Med. 2017;43:1844-1846.
6) Braunschweig CA, Sheean PM, Peterson SJ, et al. Exploitation of diagnostic computed tomography scans to assess the impact of nutrition support on body composition changes in respiratory failure patients. JPEN J Parenter Enteral Nutr. 2014;38:880-885.
17) Nakano A, Ohkubo H, Taniguchi H, et al. Early decrease in erector spinae muscle area and future risk of mortality in idiopathic pulmonary fibrosis. Sci Rep. 2020;10:2312.
References_xml – reference: 3) Yanagi N, Koike T, Kamiya K, et al. Assessment of sarcopenia in the intensive care unit and 1-year mortality in survivors of critical illness. Nutrients. 2021;13:2726.
– reference: 17) Nakano A, Ohkubo H, Taniguchi H, et al. Early decrease in erector spinae muscle area and future risk of mortality in idiopathic pulmonary fibrosis. Sci Rep. 2020;10:2312.
– reference: 4) Damanti S, Cristel G, Ramirez GA, et al. Influence of reduced muscle mass and quality on ventilator weaning and complications during intensive care unit stay in COVID-19 patients. Clin Nutr. 2021;41:2965-2972.
– reference: 9) Vanpee G, Hermans G, Segers J, et al. Assessment of limb muscle strength in critically ill patients: a systematic review. Crit Care Med. 2014;42:701-711.
– reference: 10) Tipping CJ, Bailey MJ, Bellomo R, et al. The ICU mobility scale has construct and predictive validity and is responsive. a multicenter observational study. Ann Am Thorac Soc. 2016;13:887-893.
– reference: 5) Akbarialiabad H, Taghrir MH, Abdollahi A, et al. Long COVID, a comprehensive systematic scoping review. Infection. 2021;49:1163-1186.
– reference: 7) Yuan G, Zhang J, Mou Z, et al. Acute reduction of erector spinae muscle cross-sectional area is associated with ICU-AW and worse prognosis in patients with mechanical ventilation in the ICU: a prospective observational study. Medicine (Baltimore). 2021;100:e27806.
– reference: 15) Moon SW, Kim SY, Choi JS, et al. Thoracic skeletal muscle quantification using computed tomography and prognosis of elderly ICU patients. Sci Rep. 2021;11:23461.
– reference: 13) Wiertz CMH, Vints WAJ, Maas GJCM, et al. COVID-19: patient characteristics in the first phase of postintensive care rehabilitation. Arch Rehabil Res Clin Transl. 2021;3:100108.
– reference: 2) Herridge MS, Tansey CM, Matte A, et al. Functional disability 5 years after acute respiratory distress syndrome. N Engl J Med. 2011;364:1293-1304.
– reference: 11) Thrush A, Rozek M, Dekerlegand JL. The clinical utility of the functional status score for the intensive care unit (FSS-ICU) at a longterm acute care hospital: a prospective cohort study. Phys Ther. 2012;92:1536-1545.
– reference: 18) Derstine BA, Holcombe SA, Goulson RL, et al. Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J Nutr Health Aging. 2017;21:180-185.
– reference: 16) Tanimura K, Sato S, Fuseya Y, et al. Quantitative assessment of erector spinae muscles in patients with chronic obstructive pulmonary disease. Novel chest computed tomography-derived index for prognosis. Ann Am Thorac Soc. 2016;13:334-341.
– reference: 1) Batt J, Herridge M, Dos Santos C. Mechanism of ICU-acquired weakness: skeletal muscle loss in critical illness. Intensive Care Med. 2017;43:1844-1846.
– reference: 8) Ali AM, Kunugi H. Skeletal muscle damage in COVID-19: a call for action. Medicina (Kaunas). 2021;57:372.
– reference: 12) Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant. 2013;48:452-458.
– reference: 6) Braunschweig CA, Sheean PM, Peterson SJ, et al. Exploitation of diagnostic computed tomography scans to assess the impact of nutrition support on body composition changes in respiratory failure patients. JPEN J Parenter Enteral Nutr. 2014;38:880-885.
– reference: 14) Musheyev B, Borg L, Janowicz R, et al. Functional status of mechanically ventilated COVID-19 survivors at ICU and hospital discharge. J Intensive Care. 2021;9:31.
SSID ssib017873161
ssib058494430
ssj0003304619
Score 2.3405704
Snippet ...
SourceID jstage
SourceType Publisher
StartPage 403
SubjectTerms COVID-19肺炎
人工呼吸療法
集中治療室
骨格筋喪失
Title COVID-19重症肺炎患者の脊柱起立筋体積減少量と運動機能低下の関連について
URI https://www.jstage.jst.go.jp/article/jshowaunivsoc/84/5/84_403/_article/-char/ja
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 昭和学士会雑誌, 2024, Vol.84(5), pp.403-410
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RANJR68SKK31_04BxT8zFJZm4mu1mqoiK00lvIJLPoHlrRVsFTUysFl1ZE1IOHghWxFEUPYhH6a7bdj3_he5Nkd6sV_LiElzfva97L5L0JMxlNuyCFITzpWHrM3VSnTip1EQtDT3gsIMMmicNxv_O16-7EFL0y7UyPjJ4YWrU0PyfGk0f77iv5l6gCDuKKu2T_IrJ9oYAAGOILV4gwXP8oxpUbty5XdZOTkBOY1LMqCT3CPYRDRphFAh8xALCQhC4Cvq2aDMIcEtpQRxI_VBioKX2k4TUSmIgJHBJ4yO4HhAUKqCqAkqBKuK0wXCl1ScAIhyZgMQg3S3tqpQqmMKZid_DKHeQCdlCH2m2UmUtGUykKROK-hUAJ9JaSY6he5E19GloArAR8d7jwVl1j2AUwgINDKgjAre8qwFaiQG-FcF-pC1RHgMUH4vK5LLrIlNUAgIfgGS2sYrUBmatEhmUrBCIIlDRTGa9Uc2OYnleVwrzrfs4IyjjeF1j-E32goopmsJLeB_cyDA1Ylh__V37TsQZfc3_jDEp8b69X9nfPIHlA5ebpnqmOKYY8X-KY7lgFrsh--QF9xSh3hlIZNeyhqojmi49_SbiU27hEtXH_9uzDeH7mzgN4p4wzOt7n3vMv82KkRHvII0YjBy_AE5UUuOcwasDE54AF8z_MuFdv9hOFCVnGNgcbsqGI5rQ8RgBLMFudI4BT374fit17aO_F_ayFCrQB87FyLacqLycPa4eKeeGYnxt2RBtpxEc1WQ7w3vJK5_Vyd_F7Z3G1vbjeXXjSyj51l5621750v37rbDY7H5s72y86GyvtrTe7n5_3lp-1sg-9rLnbfNneWOs-3t7ZXt3ZagJX79Xb3sJ6K9tsZe9a2VIre39Mm6qFk5UJvTgXRW9YphnrWLOnceqk1EoTV6aCe0adurEFL11biIS5SWrEdSpMoy5tCWlcxi4XCU9tlkqYkBzXRmdmZ-RJbUx6qSnqqSvrLgcneHjagsQfYIlUsHpCT2mXcq9Ed_Of30R_HcLT_y_ijHYQR0n-5fOsNjp3b16eg7nAnDivnosfxhTm7w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-19%E9%87%8D%E7%97%87%E8%82%BA%E7%82%8E%E6%82%A3%E8%80%85%E3%81%AE%E8%84%8A%E6%9F%B1%E8%B5%B7%E7%AB%8B%E7%AD%8B%E4%BD%93%E7%A9%8D%E6%B8%9B%E5%B0%91%E9%87%8F%E3%81%A8%E9%81%8B%E5%8B%95%E6%A9%9F%E8%83%BD%E4%BD%8E%E4%B8%8B%E3%81%AE%E9%96%A2%E9%80%A3%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6&rft.jtitle=%E6%98%AD%E5%92%8C%E5%AD%A6%E5%A3%AB%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E5%B0%8F%E8%B0%B7%2C+%E9%80%8F&rft.au=%E6%A3%AE%2C+%E9%BA%BB%E8%A1%A3%E5%AD%90&rft.au=%E6%9D%91%E4%B8%8A%2C+%E5%B9%B8%E4%B8%89&rft.au=%E6%9D%BE%E6%B0%B8%2C+%E5%A5%88%E7%B7%92&rft.date=2024&rft.pub=%E6%98%AD%E5%92%8C%E5%A4%A7%E5%AD%A6%E5%AD%A6%E5%A3%AB%E4%BC%9A&rft.issn=2187-719X&rft.eissn=2188-529X&rft.volume=84&rft.issue=5&rft.spage=403&rft.epage=410&rft_id=info:doi/10.14930%2Fjshowaunivsoc.84.403&rft.externalDocID=article_jshowaunivsoc_84_5_84_403_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2187-719X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2187-719X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2187-719X&client=summon