深層学習に基づく気泡検出技術を用いたロッドバンドル流路内3次元可視化計測
Saved in:
Published in | 混相流 Vol. 39; no. 1; pp. 61 - 71 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Japanese |
Published |
日本混相流学会
15.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0914-2843 1881-5790 |
DOI | 10.3811/jjmf.2025.004 |
Cover
Loading…
Author | 上澤, 伸一郎 小野, 綾子 吉田, 啓之 |
---|---|
Author_xml | – sequence: 1 fullname: 小野, 綾子 organization: 日本原子力研究開発機構 炉物理・熱流動研究グループ – sequence: 1 fullname: 上澤, 伸一郎 organization: Corresponding author – sequence: 1 fullname: 吉田, 啓之 organization: 日本原子力研究開発機構 炉物理・熱流動研究グループ |
BookMark | eNo9kE1LAkEAhocoyMxjP2NtZmf2Y44hfYHQpc7LfsyWi1rseunWttkXgWFhl0AEE0HFRMLw0o8ZdtyfkVZ0ed8XHngPzxpYLp-WGQAbCGaxjtCm55XcrAxlJQshWQIppOtIUjQKl0EKUkQkWSd4FWSCoGBBKBOdKKqcAp6YjOJROx50Zl91Hvbi5pSHbzysifcXMW6J9mt8MxX3F0nriV_WZ89dHl7xsMmjAY8iHt3x6JFH45_REx9hMhnG11Us-q24GsW1YdJpxA-NpHsrPvvrYMU1iwHL_HUaHO1sH-b2pPzB7n5uKy95MoJEwip0GDYtAlUGTSI7yMUORdh1EKYWQQwpc6BjRZN1S7cVy6W2ohGH2VS1qWbjNMj9_npBxTxmxplfKJn-uWH6lYJdZMbClIGpgRaxMGbMjf1T-8T0Dc_E36hmizo |
ContentType | Journal Article |
Copyright | 2025 日本混相流学会 |
Copyright_xml | – notice: 2025 日本混相流学会 |
DOI | 10.3811/jjmf.2025.004 |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1881-5790 |
EndPage | 71 |
ExternalDocumentID | article_jjmf_39_1_39_2025_004_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS ARCSS CS3 JSF KQ8 OK1 RJT TUS |
ID | FETCH-LOGICAL-j2104-360de3ab406e0a42d1f3d913fd139b41e156e0835728b8c5bf9c574dec96c97c3 |
ISSN | 0914-2843 |
IngestDate | Wed Sep 03 06:30:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2104-360de3ab406e0a42d1f3d913fd139b41e156e0835728b8c5bf9c574dec96c97c3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jjmf/39/1/39_2025.004/_article/-char/ja |
PageCount | 11 |
ParticipantIDs | jstage_primary_article_jjmf_39_1_39_2025_004_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2025/03/15 |
PublicationDateYYYYMMDD | 2025-03-15 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025/03/15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | 混相流 |
PublicationYear | 2025 |
Publisher | 日本混相流学会 |
Publisher_xml | – name: 日本混相流学会 |
References | [2] Wang, B. and Socolofsky, S. A., A Deep-sea, High-speed, Stereoscopic Imaging System for in situ Measurement of Natural Seep Bubble and Droplet Characteristics., Deep Sea Res. Part I Oceanogr. Res. Pap., Vol. 104, 134-148 (2015). [9] She, W., Gao, Q., Zuo, Z., Liao, X., Zhao, L., Zhang, L., Nie, D. and Shao, X., Experimental Study on a Zigzagging Bubble Using Tomographic Particle Image Velocimetry with Shadow Image Reconstruction, Phys. Fluids, Vol. 33(8), 083313 (2021). [7] Ui, A., Furuya, M., Arai, T. and Shirakawa, K., Measurement of Forced Convection Subcooled Boiling Flow Through a Vertical Annular Channel with High-speed Video Cameras and Image Reconstruction, J. Nucl. Sci. Technol., Vol. 59(2), 148-162 (2022). [3] Fu, Y. and Liu, Y., 3D Bubble Reconstruction Using Multiple Cameras and Space Carving Method, Meas. Sci. Technol., Vol. 29(7), 075206 (2018). [8] Zhang, T., Qian, Y., Yin, J., Zhang, B. and Wang, D., Experimental Study on 3D Bubble Shape Evolution in Swirl Flow, Exp. Therm. Fluid Sci., Vol. 102, 368-375 (2019). [10] Chang, Y., Müller, C., Kováts, P., Guo, L. and Zähringer, K., Hydrodynamics and Shape Reconstruction of Single Rising Air Bubbles in Water Using High-speed Tomographic Particle Tracking Velocimetry and 3D Geometric Reconstruction, Exp. Fluids, Vol. 65(1), 6 (2023). [15] Nagatake, T. and Yoshida, H., Measurement of the Water-vapor Void Fraction in a 4×4 Unheated Rod Bundle, J. Nucl. Sci. Technol., Vol. 60(11), 1417-1430 (2023). [5] Wang, H., Yang, Y., Dou, G., Lou, J., Zhu, X., Song, L. and Dong, F., A 3D Reconstruction Method of Bubble Flow Field Based on Multi-View Images by Bi-direction Filtering Maximum Likelihood Expectation Maximization Algorithm, Int. J. Multiph. Flow, Vol. 165, 104480 (2023). [13] Uesawa, S. and Yoshida, H., Deep Learning-Based Bubble Detection with Swin Transformer, J. Nucl. Sci. Technol., Vol. 61(11), 1438-1452 (2024). [12] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, Proc. 2021 IEEE/CVF Int. Conf. Comput. Vision, 9992-10002 (2021). [1] Bian, Y., Dong, F., Zhang, W., Wang, H. and Tan, C., 3D Reconstruction of Single Rising Bubble in Water Using Digital Image Processing and Characteristic Matrix, Particuology, Vol. 11(2), 170-183 (2013). [6] Wang, H., Xu, Y., Li, S. and Wang, J., Effects of Gas Flow Rate on Rising Bubble Chains and Induced Flow Fields: An Experimental Study, Int. J. Multiph. Flow Vol. 170, 104623 (2024). [11] He, K., Gkioxari, G., Doll?r, P. and Girshick, R., Mask R-CNN, Proc. 2017 IEEE Int. Conf. Comput. Vision, 17467816 (2017). [4] Chen, L., Xu, C., Li, J. and Zhang, B., A 3D Measurement Method of Bubbles Based on Edge Gradient Segmentation of Light Field Images, Chem. Eng. J., Vol. 452, 139590 (2023). [14] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W. and Wang, X., ByteTrack: Multi-Object Tracking by Associating Every Detection Box, European Conf. Comput. Vision (2021). [16] Prasser, H. and Häfeli, R., Signal Response of Wire-mesh Sensors to an Idealized Bubbly Flow, Nucl. Eng. Des. Vol. 336, 3-14 (2018). |
References_xml | – reference: [16] Prasser, H. and Häfeli, R., Signal Response of Wire-mesh Sensors to an Idealized Bubbly Flow, Nucl. Eng. Des. Vol. 336, 3-14 (2018). – reference: [11] He, K., Gkioxari, G., Doll?r, P. and Girshick, R., Mask R-CNN, Proc. 2017 IEEE Int. Conf. Comput. Vision, 17467816 (2017). – reference: [7] Ui, A., Furuya, M., Arai, T. and Shirakawa, K., Measurement of Forced Convection Subcooled Boiling Flow Through a Vertical Annular Channel with High-speed Video Cameras and Image Reconstruction, J. Nucl. Sci. Technol., Vol. 59(2), 148-162 (2022). – reference: [1] Bian, Y., Dong, F., Zhang, W., Wang, H. and Tan, C., 3D Reconstruction of Single Rising Bubble in Water Using Digital Image Processing and Characteristic Matrix, Particuology, Vol. 11(2), 170-183 (2013). – reference: [2] Wang, B. and Socolofsky, S. A., A Deep-sea, High-speed, Stereoscopic Imaging System for in situ Measurement of Natural Seep Bubble and Droplet Characteristics., Deep Sea Res. Part I Oceanogr. Res. Pap., Vol. 104, 134-148 (2015). – reference: [3] Fu, Y. and Liu, Y., 3D Bubble Reconstruction Using Multiple Cameras and Space Carving Method, Meas. Sci. Technol., Vol. 29(7), 075206 (2018). – reference: [6] Wang, H., Xu, Y., Li, S. and Wang, J., Effects of Gas Flow Rate on Rising Bubble Chains and Induced Flow Fields: An Experimental Study, Int. J. Multiph. Flow Vol. 170, 104623 (2024). – reference: [14] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W. and Wang, X., ByteTrack: Multi-Object Tracking by Associating Every Detection Box, European Conf. Comput. Vision (2021). – reference: [4] Chen, L., Xu, C., Li, J. and Zhang, B., A 3D Measurement Method of Bubbles Based on Edge Gradient Segmentation of Light Field Images, Chem. Eng. J., Vol. 452, 139590 (2023). – reference: [8] Zhang, T., Qian, Y., Yin, J., Zhang, B. and Wang, D., Experimental Study on 3D Bubble Shape Evolution in Swirl Flow, Exp. Therm. Fluid Sci., Vol. 102, 368-375 (2019). – reference: [12] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, Proc. 2021 IEEE/CVF Int. Conf. Comput. Vision, 9992-10002 (2021). – reference: [10] Chang, Y., Müller, C., Kováts, P., Guo, L. and Zähringer, K., Hydrodynamics and Shape Reconstruction of Single Rising Air Bubbles in Water Using High-speed Tomographic Particle Tracking Velocimetry and 3D Geometric Reconstruction, Exp. Fluids, Vol. 65(1), 6 (2023). – reference: [13] Uesawa, S. and Yoshida, H., Deep Learning-Based Bubble Detection with Swin Transformer, J. Nucl. Sci. Technol., Vol. 61(11), 1438-1452 (2024). – reference: [9] She, W., Gao, Q., Zuo, Z., Liao, X., Zhao, L., Zhang, L., Nie, D. and Shao, X., Experimental Study on a Zigzagging Bubble Using Tomographic Particle Image Velocimetry with Shadow Image Reconstruction, Phys. Fluids, Vol. 33(8), 083313 (2021). – reference: [15] Nagatake, T. and Yoshida, H., Measurement of the Water-vapor Void Fraction in a 4×4 Unheated Rod Bundle, J. Nucl. Sci. Technol., Vol. 60(11), 1417-1430 (2023). – reference: [5] Wang, H., Yang, Y., Dou, G., Lou, J., Zhu, X., Song, L. and Dong, F., A 3D Reconstruction Method of Bubble Flow Field Based on Multi-View Images by Bi-direction Filtering Maximum Likelihood Expectation Maximization Algorithm, Int. J. Multiph. Flow, Vol. 165, 104480 (2023). |
SSID | ssib002484562 ssib000961619 ssib005901927 ssj0069034 |
Score | 2.3854108 |
SourceID | jstage |
SourceType | Publisher |
StartPage | 61 |
SubjectTerms | 3D Visualization Bubble Detection Bubbly Flow Deep Learning Rod Bundle |
Title | 深層学習に基づく気泡検出技術を用いたロッドバンドル流路内3次元可視化計測 |
URI | https://www.jstage.jst.go.jp/article/jjmf/39/1/39_2025.004/_article/-char/ja |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 混相流, 2025/03/15, Vol.39(1), pp.61-71 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-1XvQgfuI3PZhjNMnMJDPgJbtmKYqC0EJvYTfJHhb8QNqLJ9e1fiFUqtSLUAq1FNpSS5FKL_4xIeniX-F7L8lu6gdYvYTHmzdv3vxehvdedmZW066YzdiKXFMYdqyEwUXIDBlHLcM1MTg1pczPcd--44xP8ptTYmrk0PfKrqWZ6dbV8PFvz5X8i1eBB37FU7IH8OxAKTCABv_CEzwMz7_yse47es3Va5buC3x6HAnvhu45ug_8hq5s3WeQLepeDZtUQ695JUcUhGyQHlNXLhFM9ywkQJuqYy_pUi9Hlx5ujPAlCihG3W0awtUV1z1ZKuQFAcMhwdCknJCsJFRBKLMgar80oc1gj0BVMCjM1GuQPWCJYGRinWwFliDVAieDQhIhUA5x6kRItE9K0gh0vZqVlzi6NJMaCpQDly8kIWwSVgoBkbSLlFAGSb_AXZlDeY5qJOEG7QAmyQO3TvrzZpPUwWz96kCACYJAqMKg1BG4gkAHFnSpVT_X2AL3q-UHVmmB4aDgTXSxg04EnP48xco7Q9Ypr_r91uIG5BZ5dIjz6AVLyxBuMdcivOV3Re1bxnmsyi_BL7Ke_H9wfo6nkM5RPO3cw9tubfz8yIeJw2A7Z7EAApQLmAosfKB8APJB2YrHCIMO1DKHbSjpMIjeulspBZQDxUc1VZdYnA9jhcJiZPAxxVEm7RgZwJDfn4sGX9tnLmSWHaizyj2alDZOHNeOFfXemJdbd0Ib6TRPakcrt4Ce0jrZzla6tZxurOx9m0-6a-nibtL9lHTnss8fsu2lbPlj-mI3e_2kv_QueTq_93416T5LuotJbyPp9ZLeq6T3NultE7GWfen2dzbT57MsW19KZ3vp3GZ_ZSF9s9BffZl9XT-tTTb8ifq4UfwFitGxLfzN0jGjmDVbkHbHZpPbkdVmkbJYO4LKrcWt2BLQAFWUa8uWDEWrrULh8igOlRMqN2RntNH7D-7HZ7UxFdJdhSbnoM6RkWpGTcWVZG03lg7j57TrOVDBw_yem-BAbj3_f90vaEeGq-WiNjr9aCa-BOn-dOsyvSc_APF42Ow |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B1%E5%B1%A4%E5%AD%A6%E7%BF%92%E3%81%AB%E5%9F%BA%E3%81%A5%E3%81%8F%E6%B0%97%E6%B3%A1%E6%A4%9C%E5%87%BA%E6%8A%80%E8%A1%93%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E3%83%AD%E3%83%83%E3%83%89%E3%83%90%E3%83%B3%E3%83%89%E3%83%AB%E6%B5%81%E8%B7%AF%E5%86%853%E6%AC%A1%E5%85%83%E5%8F%AF%E8%A6%96%E5%8C%96%E8%A8%88%E6%B8%AC&rft.jtitle=%E6%B7%B7%E7%9B%B8%E6%B5%81&rft.au=%E5%B0%8F%E9%87%8E%2C+%E7%B6%BE%E5%AD%90&rft.au=%E4%B8%8A%E6%BE%A4%2C+%E4%BC%B8%E4%B8%80%E9%83%8E&rft.au=%E5%90%89%E7%94%B0%2C+%E5%95%93%E4%B9%8B&rft.date=2025-03-15&rft.pub=%E6%97%A5%E6%9C%AC%E6%B7%B7%E7%9B%B8%E6%B5%81%E5%AD%A6%E4%BC%9A&rft.issn=0914-2843&rft.eissn=1881-5790&rft.volume=39&rft.issue=1&rft.spage=61&rft.epage=71&rft_id=info:doi/10.3811%2Fjjmf.2025.004&rft.externalDocID=article_jjmf_39_1_39_2025_004_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-2843&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-2843&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-2843&client=summon |