深層学習に基づく気泡検出技術を用いたロッドバンドル流路内3次元可視化計測

Saved in:
Bibliographic Details
Published in混相流 Vol. 39; no. 1; pp. 61 - 71
Main Authors 小野, 綾子, 上澤, 伸一郎, 吉田, 啓之
Format Journal Article
LanguageJapanese
Published 日本混相流学会 15.03.2025
Subjects
Online AccessGet full text
ISSN0914-2843
1881-5790
DOI10.3811/jjmf.2025.004

Cover

Loading…
Author 上澤, 伸一郎
小野, 綾子
吉田, 啓之
Author_xml – sequence: 1
  fullname: 小野, 綾子
  organization: 日本原子力研究開発機構 炉物理・熱流動研究グループ
– sequence: 1
  fullname: 上澤, 伸一郎
  organization: Corresponding author
– sequence: 1
  fullname: 吉田, 啓之
  organization: 日本原子力研究開発機構 炉物理・熱流動研究グループ
BookMark eNo9kE1LAkEAhocoyMxjP2NtZmf2Y44hfYHQpc7LfsyWi1rseunWttkXgWFhl0AEE0HFRMLw0o8ZdtyfkVZ0ed8XHngPzxpYLp-WGQAbCGaxjtCm55XcrAxlJQshWQIppOtIUjQKl0EKUkQkWSd4FWSCoGBBKBOdKKqcAp6YjOJROx50Zl91Hvbi5pSHbzysifcXMW6J9mt8MxX3F0nriV_WZ89dHl7xsMmjAY8iHt3x6JFH45_REx9hMhnG11Us-q24GsW1YdJpxA-NpHsrPvvrYMU1iwHL_HUaHO1sH-b2pPzB7n5uKy95MoJEwip0GDYtAlUGTSI7yMUORdh1EKYWQQwpc6BjRZN1S7cVy6W2ohGH2VS1qWbjNMj9_npBxTxmxplfKJn-uWH6lYJdZMbClIGpgRaxMGbMjf1T-8T0Dc_E36hmizo
ContentType Journal Article
Copyright 2025 日本混相流学会
Copyright_xml – notice: 2025 日本混相流学会
DOI 10.3811/jjmf.2025.004
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-5790
EndPage 71
ExternalDocumentID article_jjmf_39_1_39_2025_004_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ARCSS
CS3
JSF
KQ8
OK1
RJT
TUS
ID FETCH-LOGICAL-j2104-360de3ab406e0a42d1f3d913fd139b41e156e0835728b8c5bf9c574dec96c97c3
ISSN 0914-2843
IngestDate Wed Sep 03 06:30:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2104-360de3ab406e0a42d1f3d913fd139b41e156e0835728b8c5bf9c574dec96c97c3
OpenAccessLink https://www.jstage.jst.go.jp/article/jjmf/39/1/39_2025.004/_article/-char/ja
PageCount 11
ParticipantIDs jstage_primary_article_jjmf_39_1_39_2025_004_article_char_ja
PublicationCentury 2000
PublicationDate 2025/03/15
PublicationDateYYYYMMDD 2025-03-15
PublicationDate_xml – month: 03
  year: 2025
  text: 2025/03/15
  day: 15
PublicationDecade 2020
PublicationTitle 混相流
PublicationYear 2025
Publisher 日本混相流学会
Publisher_xml – name: 日本混相流学会
References [2] Wang, B. and Socolofsky, S. A., A Deep-sea, High-speed, Stereoscopic Imaging System for in situ Measurement of Natural Seep Bubble and Droplet Characteristics., Deep Sea Res. Part I Oceanogr. Res. Pap., Vol. 104, 134-148 (2015).
[9] She, W., Gao, Q., Zuo, Z., Liao, X., Zhao, L., Zhang, L., Nie, D. and Shao, X., Experimental Study on a Zigzagging Bubble Using Tomographic Particle Image Velocimetry with Shadow Image Reconstruction, Phys. Fluids, Vol. 33(8), 083313 (2021).
[7] Ui, A., Furuya, M., Arai, T. and Shirakawa, K., Measurement of Forced Convection Subcooled Boiling Flow Through a Vertical Annular Channel with High-speed Video Cameras and Image Reconstruction, J. Nucl. Sci. Technol., Vol. 59(2), 148-162 (2022).
[3] Fu, Y. and Liu, Y., 3D Bubble Reconstruction Using Multiple Cameras and Space Carving Method, Meas. Sci. Technol., Vol. 29(7), 075206 (2018).
[8] Zhang, T., Qian, Y., Yin, J., Zhang, B. and Wang, D., Experimental Study on 3D Bubble Shape Evolution in Swirl Flow, Exp. Therm. Fluid Sci., Vol. 102, 368-375 (2019).
[10] Chang, Y., Müller, C., Kováts, P., Guo, L. and Zähringer, K., Hydrodynamics and Shape Reconstruction of Single Rising Air Bubbles in Water Using High-speed Tomographic Particle Tracking Velocimetry and 3D Geometric Reconstruction, Exp. Fluids, Vol. 65(1), 6 (2023).
[15] Nagatake, T. and Yoshida, H., Measurement of the Water-vapor Void Fraction in a 4×4 Unheated Rod Bundle, J. Nucl. Sci. Technol., Vol. 60(11), 1417-1430 (2023).
[5] Wang, H., Yang, Y., Dou, G., Lou, J., Zhu, X., Song, L. and Dong, F., A 3D Reconstruction Method of Bubble Flow Field Based on Multi-View Images by Bi-direction Filtering Maximum Likelihood Expectation Maximization Algorithm, Int. J. Multiph. Flow, Vol. 165, 104480 (2023).
[13] Uesawa, S. and Yoshida, H., Deep Learning-Based Bubble Detection with Swin Transformer, J. Nucl. Sci. Technol., Vol. 61(11), 1438-1452 (2024).
[12] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, Proc. 2021 IEEE/CVF Int. Conf. Comput. Vision, 9992-10002 (2021).
[1] Bian, Y., Dong, F., Zhang, W., Wang, H. and Tan, C., 3D Reconstruction of Single Rising Bubble in Water Using Digital Image Processing and Characteristic Matrix, Particuology, Vol. 11(2), 170-183 (2013).
[6] Wang, H., Xu, Y., Li, S. and Wang, J., Effects of Gas Flow Rate on Rising Bubble Chains and Induced Flow Fields: An Experimental Study, Int. J. Multiph. Flow Vol. 170, 104623 (2024).
[11] He, K., Gkioxari, G., Doll?r, P. and Girshick, R., Mask R-CNN, Proc. 2017 IEEE Int. Conf. Comput. Vision, 17467816 (2017).
[4] Chen, L., Xu, C., Li, J. and Zhang, B., A 3D Measurement Method of Bubbles Based on Edge Gradient Segmentation of Light Field Images, Chem. Eng. J., Vol. 452, 139590 (2023).
[14] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W. and Wang, X., ByteTrack: Multi-Object Tracking by Associating Every Detection Box, European Conf. Comput. Vision (2021).
[16] Prasser, H. and Häfeli, R., Signal Response of Wire-mesh Sensors to an Idealized Bubbly Flow, Nucl. Eng. Des. Vol. 336, 3-14 (2018).
References_xml – reference: [16] Prasser, H. and Häfeli, R., Signal Response of Wire-mesh Sensors to an Idealized Bubbly Flow, Nucl. Eng. Des. Vol. 336, 3-14 (2018).
– reference: [11] He, K., Gkioxari, G., Doll?r, P. and Girshick, R., Mask R-CNN, Proc. 2017 IEEE Int. Conf. Comput. Vision, 17467816 (2017).
– reference: [7] Ui, A., Furuya, M., Arai, T. and Shirakawa, K., Measurement of Forced Convection Subcooled Boiling Flow Through a Vertical Annular Channel with High-speed Video Cameras and Image Reconstruction, J. Nucl. Sci. Technol., Vol. 59(2), 148-162 (2022).
– reference: [1] Bian, Y., Dong, F., Zhang, W., Wang, H. and Tan, C., 3D Reconstruction of Single Rising Bubble in Water Using Digital Image Processing and Characteristic Matrix, Particuology, Vol. 11(2), 170-183 (2013).
– reference: [2] Wang, B. and Socolofsky, S. A., A Deep-sea, High-speed, Stereoscopic Imaging System for in situ Measurement of Natural Seep Bubble and Droplet Characteristics., Deep Sea Res. Part I Oceanogr. Res. Pap., Vol. 104, 134-148 (2015).
– reference: [3] Fu, Y. and Liu, Y., 3D Bubble Reconstruction Using Multiple Cameras and Space Carving Method, Meas. Sci. Technol., Vol. 29(7), 075206 (2018).
– reference: [6] Wang, H., Xu, Y., Li, S. and Wang, J., Effects of Gas Flow Rate on Rising Bubble Chains and Induced Flow Fields: An Experimental Study, Int. J. Multiph. Flow Vol. 170, 104623 (2024).
– reference: [14] Zhang, Y., Sun, P., Jiang, Y., Yu, D., Yuan, Z., Luo, P., Liu, W. and Wang, X., ByteTrack: Multi-Object Tracking by Associating Every Detection Box, European Conf. Comput. Vision (2021).
– reference: [4] Chen, L., Xu, C., Li, J. and Zhang, B., A 3D Measurement Method of Bubbles Based on Edge Gradient Segmentation of Light Field Images, Chem. Eng. J., Vol. 452, 139590 (2023).
– reference: [8] Zhang, T., Qian, Y., Yin, J., Zhang, B. and Wang, D., Experimental Study on 3D Bubble Shape Evolution in Swirl Flow, Exp. Therm. Fluid Sci., Vol. 102, 368-375 (2019).
– reference: [12] Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S. and Guo, B., Swin Transformer: Hierarchical Vision Transformer Using Shifted Windows, Proc. 2021 IEEE/CVF Int. Conf. Comput. Vision, 9992-10002 (2021).
– reference: [10] Chang, Y., Müller, C., Kováts, P., Guo, L. and Zähringer, K., Hydrodynamics and Shape Reconstruction of Single Rising Air Bubbles in Water Using High-speed Tomographic Particle Tracking Velocimetry and 3D Geometric Reconstruction, Exp. Fluids, Vol. 65(1), 6 (2023).
– reference: [13] Uesawa, S. and Yoshida, H., Deep Learning-Based Bubble Detection with Swin Transformer, J. Nucl. Sci. Technol., Vol. 61(11), 1438-1452 (2024).
– reference: [9] She, W., Gao, Q., Zuo, Z., Liao, X., Zhao, L., Zhang, L., Nie, D. and Shao, X., Experimental Study on a Zigzagging Bubble Using Tomographic Particle Image Velocimetry with Shadow Image Reconstruction, Phys. Fluids, Vol. 33(8), 083313 (2021).
– reference: [15] Nagatake, T. and Yoshida, H., Measurement of the Water-vapor Void Fraction in a 4×4 Unheated Rod Bundle, J. Nucl. Sci. Technol., Vol. 60(11), 1417-1430 (2023).
– reference: [5] Wang, H., Yang, Y., Dou, G., Lou, J., Zhu, X., Song, L. and Dong, F., A 3D Reconstruction Method of Bubble Flow Field Based on Multi-View Images by Bi-direction Filtering Maximum Likelihood Expectation Maximization Algorithm, Int. J. Multiph. Flow, Vol. 165, 104480 (2023).
SSID ssib002484562
ssib000961619
ssib005901927
ssj0069034
Score 2.3854108
SourceID jstage
SourceType Publisher
StartPage 61
SubjectTerms 3D Visualization
Bubble Detection
Bubbly Flow
Deep Learning
Rod Bundle
Title 深層学習に基づく気泡検出技術を用いたロッドバンドル流路内3次元可視化計測
URI https://www.jstage.jst.go.jp/article/jjmf/39/1/39_2025.004/_article/-char/ja
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 混相流, 2025/03/15, Vol.39(1), pp.61-71
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-1XvQgfuI3PZhjNMnMJDPgJbtmKYqC0EJvYTfJHhb8QNqLJ9e1fiFUqtSLUAq1FNpSS5FKL_4xIeniX-F7L8lu6gdYvYTHmzdv3vxehvdedmZW066YzdiKXFMYdqyEwUXIDBlHLcM1MTg1pczPcd--44xP8ptTYmrk0PfKrqWZ6dbV8PFvz5X8i1eBB37FU7IH8OxAKTCABv_CEzwMz7_yse47es3Va5buC3x6HAnvhu45ug_8hq5s3WeQLepeDZtUQ695JUcUhGyQHlNXLhFM9ywkQJuqYy_pUi9Hlx5ujPAlCihG3W0awtUV1z1ZKuQFAcMhwdCknJCsJFRBKLMgar80oc1gj0BVMCjM1GuQPWCJYGRinWwFliDVAieDQhIhUA5x6kRItE9K0gh0vZqVlzi6NJMaCpQDly8kIWwSVgoBkbSLlFAGSb_AXZlDeY5qJOEG7QAmyQO3TvrzZpPUwWz96kCACYJAqMKg1BG4gkAHFnSpVT_X2AL3q-UHVmmB4aDgTXSxg04EnP48xco7Q9Ypr_r91uIG5BZ5dIjz6AVLyxBuMdcivOV3Re1bxnmsyi_BL7Ke_H9wfo6nkM5RPO3cw9tubfz8yIeJw2A7Z7EAApQLmAosfKB8APJB2YrHCIMO1DKHbSjpMIjeulspBZQDxUc1VZdYnA9jhcJiZPAxxVEm7RgZwJDfn4sGX9tnLmSWHaizyj2alDZOHNeOFfXemJdbd0Ib6TRPakcrt4Ce0jrZzla6tZxurOx9m0-6a-nibtL9lHTnss8fsu2lbPlj-mI3e_2kv_QueTq_93416T5LuotJbyPp9ZLeq6T3NultE7GWfen2dzbT57MsW19KZ3vp3GZ_ZSF9s9BffZl9XT-tTTb8ifq4UfwFitGxLfzN0jGjmDVbkHbHZpPbkdVmkbJYO4LKrcWt2BLQAFWUa8uWDEWrrULh8igOlRMqN2RntNH7D-7HZ7UxFdJdhSbnoM6RkWpGTcWVZG03lg7j57TrOVDBw_yem-BAbj3_f90vaEeGq-WiNjr9aCa-BOn-dOsyvSc_APF42Ow
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%B7%B1%E5%B1%A4%E5%AD%A6%E7%BF%92%E3%81%AB%E5%9F%BA%E3%81%A5%E3%81%8F%E6%B0%97%E6%B3%A1%E6%A4%9C%E5%87%BA%E6%8A%80%E8%A1%93%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E3%83%AD%E3%83%83%E3%83%89%E3%83%90%E3%83%B3%E3%83%89%E3%83%AB%E6%B5%81%E8%B7%AF%E5%86%853%E6%AC%A1%E5%85%83%E5%8F%AF%E8%A6%96%E5%8C%96%E8%A8%88%E6%B8%AC&rft.jtitle=%E6%B7%B7%E7%9B%B8%E6%B5%81&rft.au=%E5%B0%8F%E9%87%8E%2C+%E7%B6%BE%E5%AD%90&rft.au=%E4%B8%8A%E6%BE%A4%2C+%E4%BC%B8%E4%B8%80%E9%83%8E&rft.au=%E5%90%89%E7%94%B0%2C+%E5%95%93%E4%B9%8B&rft.date=2025-03-15&rft.pub=%E6%97%A5%E6%9C%AC%E6%B7%B7%E7%9B%B8%E6%B5%81%E5%AD%A6%E4%BC%9A&rft.issn=0914-2843&rft.eissn=1881-5790&rft.volume=39&rft.issue=1&rft.spage=61&rft.epage=71&rft_id=info:doi/10.3811%2Fjjmf.2025.004&rft.externalDocID=article_jjmf_39_1_39_2025_004_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-2843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-2843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-2843&client=summon