脳画像データハーモナイゼーションにおける統計学的解析方法

Saved in:
Bibliographic Details
Published in日本磁気共鳴医学会雑誌 Vol. 42; no. 1; pp. 1 - 14
Main Author 川口, 淳
Format Journal Article
LanguageJapanese
Published 日本磁気共鳴医学会 15.02.2022
Subjects
Online AccessGet full text
ISSN0914-9457
2434-0499
DOI10.2463/jjmrm.2021-1740

Cover

Author 川口, 淳
Author_xml – sequence: 1
  fullname: 川口, 淳
  organization: 佐賀大学医学部地域医療科学教育研究センター
BookMark eNo9kL1KA0EcxBdRMMbUPsXF3b29vd1SQvyAgE2sl73LRnMkUe7SWOY2oMRCBbWwsFAxglhIEBEDPsyffDyGXBSbmWEGpvitoMX2YdsgtEZwkTLurkdRK24VKabEIT7DCyhHmcsczKRcRDksCXMk8_xlVEiSRoA9waQrKMmh6qw3nF59je052BOwI0i_IcsjsPdg-5A-Qjqa9x9gB2CH0H2Bbh-6l5CeTd_fZs-n49en6W1vNniY3F1Mbj4nw-tVtFTXzcQU_jyP9jbL1dK2U9nd2iltVJyIYqkdjqnkIaOCUmm04ITVNPPDUHueCEzAQ-NJU8c-C2SNu6amNfENF1QQT-vAD9w8Kv_-RklH7xt1FDdaOj5WOu40wqZRcyqKUUUyyeiojM7_Hh7oWEXa_QFP_34K
ContentType Journal Article
Copyright 2022 一般社団法人日本磁気共鳴医学会
Copyright_xml – notice: 2022 一般社団法人日本磁気共鳴医学会
DOI 10.2463/jjmrm.2021-1740
DeliveryMethod fulltext_linktorsrc
EISSN 2434-0499
EndPage 14
ExternalDocumentID article_jjmrm_42_1_42_2021_1740_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
RJT
ID FETCH-LOGICAL-j209a-60296c428229ea8614da47cca558beb6ce59ef074b9d63edaa17e682815aab7b3
ISSN 0914-9457
IngestDate Wed Sep 03 06:30:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j209a-60296c428229ea8614da47cca558beb6ce59ef074b9d63edaa17e682815aab7b3
OpenAccessLink https://www.jstage.jst.go.jp/article/jjmrm/42/1/42_2021-1740/_article/-char/ja
PageCount 14
ParticipantIDs jstage_primary_article_jjmrm_42_1_42_2021_1740_article_char_ja
PublicationCentury 2000
PublicationDate 2022/02/15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022/02/15
  day: 15
PublicationDecade 2020
PublicationTitle 日本磁気共鳴医学会雑誌
PublicationTitleAlternate 日磁医誌
PublicationYear 2022
Publisher 日本磁気共鳴医学会
Publisher_xml – name: 日本磁気共鳴医学会
References 8) Pinto MS, Paolella R, Billiet T, Dyck PV, Guns PJ, Jeurissen B, Ribbens A, Dekker AJd, Sijbers J : Harmonization of brain diffusion MRI : concepts and methods. Front Neurosci 2020 ; 14 : 396
16) Yu M, Linn KA, Cook PA, et al. : Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum Brain Mapp. 2018 ; 39 : 4213-4227
3) Sudlow C, Gallacher J, Allen N, et al. : UK biobank : an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015 ; 12 : e1001779
5) Wachinger C, Rieckmann A, Pölsterl S, et al. : Detect and correct bias in multi-site neuroimaging datasets. Med Image Anal 2021 ; 67 : 101879
22) Tax CM, Grussu F, Kaden E, et al. : Cross-scanner and cross-protocol diffusion MRI data harmonisation : A benchmark database and evaluation of algorithms. NeuroImage 2019 ; 195 : 285-299
7) Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA : Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010 ; 11 : 733-739
14) Fortin JP, Cullen N, Sheline YI, et al. : Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 2018 ; 167 : 104-120
11) 根本清貴:すぐできるVBM精神・神経疾患の脳画像解析.東京:学研メディカル秀潤社,2014
2) Jack CR Jr, Bernstein MA, Fox NC, et al. : The alzheimer's disease neuroimaging initiative (ADNI) : MRI methods. J Magn Reson Imaging 2008 ; 27 : 685-691
9) Johnson WE, Li C, Rabinovic A : Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007 ; 8 : 118-127
23) Dewey BE, Zhao C, Reinhold JC, et al. : DeepHarmony : A deep learning approach to contrast harmonization across scanner changes. Magn Reson Imaging 2019 ; 64 : 160-170
21) 山下隆義:イラストで学ぶ ディープラーニング 改訂第2版.東京:講談社,2018
1) Nichols TE, Das S, Eickhoff SB, et al. : Best practices in data analysis and sharing in neuroimaging using MRI. Nat neurosci 2017 ; 20 : 299-303
15) Fortin JP, Parker D, Tunc B, et al. : Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017 ; 161 : 149-170
10) 川口, 淳 : メタアナリシスと脳画像解析.神経治療 2017 ; 34 : 229-234
17) Yamashita A, Yahata N, Itahashi T, et al. : Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 2019 ; 17 : e3000042
18) Radua J, Vieta E, Shinohara R, et al. : Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage 2020 ; 218 : 116956
4) Smith SM, Nichols TE : Statistical challenges in “Big Data” human neuroimaging. Neuron 2018 ; 97 : 263-268
24) Dinsdale NK, Jenkinson M, Namburete A IL. : Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage 2021 ; 228 : 117689
13) Kawaguchi A : Multivariate Analysis for Neuroimaging Data. Florida : CRC Press, 2021
19) Pomponio R, Erus G, Habes M, et al. : Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 2020 ; 208 : 116450
6) Alfaro-Almagro F, McCarthy P, Afyouni S, Andersson JLR, Bastiani M, Miller KL, Nichols TE, Smith SM : Confound modelling in UK Biobank brain imaging. Neuroimage 2021 ; 224 : 117002
12) 川口, 淳 : 脳MRIデータの統計解析.計量生物学 2013 ; 33 : 145-174
20) Beer JC, Tustison NJ, Cook PA, et al. : Longitudinal ComBat : A method for harmonizing longitudinal multi-scanner imaging data. NeuroImage 2020 ; 220 : 117129
References_xml – reference: 7) Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, Geman D, Baggerly K, Irizarry RA : Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet 2010 ; 11 : 733-739
– reference: 23) Dewey BE, Zhao C, Reinhold JC, et al. : DeepHarmony : A deep learning approach to contrast harmonization across scanner changes. Magn Reson Imaging 2019 ; 64 : 160-170
– reference: 17) Yamashita A, Yahata N, Itahashi T, et al. : Harmonization of resting-state functional MRI data across multiple imaging sites via the separation of site differences into sampling bias and measurement bias. PLoS Biol. 2019 ; 17 : e3000042
– reference: 21) 山下隆義:イラストで学ぶ ディープラーニング 改訂第2版.東京:講談社,2018
– reference: 2) Jack CR Jr, Bernstein MA, Fox NC, et al. : The alzheimer's disease neuroimaging initiative (ADNI) : MRI methods. J Magn Reson Imaging 2008 ; 27 : 685-691
– reference: 3) Sudlow C, Gallacher J, Allen N, et al. : UK biobank : an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med 2015 ; 12 : e1001779
– reference: 19) Pomponio R, Erus G, Habes M, et al. : Harmonization of large MRI datasets for the analysis of brain imaging patterns throughout the lifespan. NeuroImage 2020 ; 208 : 116450
– reference: 9) Johnson WE, Li C, Rabinovic A : Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007 ; 8 : 118-127
– reference: 13) Kawaguchi A : Multivariate Analysis for Neuroimaging Data. Florida : CRC Press, 2021
– reference: 12) 川口, 淳 : 脳MRIデータの統計解析.計量生物学 2013 ; 33 : 145-174
– reference: 11) 根本清貴:すぐできるVBM精神・神経疾患の脳画像解析.東京:学研メディカル秀潤社,2014
– reference: 20) Beer JC, Tustison NJ, Cook PA, et al. : Longitudinal ComBat : A method for harmonizing longitudinal multi-scanner imaging data. NeuroImage 2020 ; 220 : 117129
– reference: 15) Fortin JP, Parker D, Tunc B, et al. : Harmonization of multi-site diffusion tensor imaging data. Neuroimage 2017 ; 161 : 149-170
– reference: 14) Fortin JP, Cullen N, Sheline YI, et al. : Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 2018 ; 167 : 104-120
– reference: 16) Yu M, Linn KA, Cook PA, et al. : Statistical harmonization corrects site effects in functional connectivity measurements from multi-site fMRI data. Hum Brain Mapp. 2018 ; 39 : 4213-4227
– reference: 1) Nichols TE, Das S, Eickhoff SB, et al. : Best practices in data analysis and sharing in neuroimaging using MRI. Nat neurosci 2017 ; 20 : 299-303
– reference: 10) 川口, 淳 : メタアナリシスと脳画像解析.神経治療 2017 ; 34 : 229-234
– reference: 24) Dinsdale NK, Jenkinson M, Namburete A IL. : Deep learning-based unlearning of dataset bias for MRI harmonisation and confound removal. Neuroimage 2021 ; 228 : 117689
– reference: 22) Tax CM, Grussu F, Kaden E, et al. : Cross-scanner and cross-protocol diffusion MRI data harmonisation : A benchmark database and evaluation of algorithms. NeuroImage 2019 ; 195 : 285-299
– reference: 8) Pinto MS, Paolella R, Billiet T, Dyck PV, Guns PJ, Jeurissen B, Ribbens A, Dekker AJd, Sijbers J : Harmonization of brain diffusion MRI : concepts and methods. Front Neurosci 2020 ; 14 : 396
– reference: 5) Wachinger C, Rieckmann A, Pölsterl S, et al. : Detect and correct bias in multi-site neuroimaging datasets. Med Image Anal 2021 ; 67 : 101879
– reference: 6) Alfaro-Almagro F, McCarthy P, Afyouni S, Andersson JLR, Bastiani M, Miller KL, Nichols TE, Smith SM : Confound modelling in UK Biobank brain imaging. Neuroimage 2021 ; 224 : 117002
– reference: 18) Radua J, Vieta E, Shinohara R, et al. : Increased power by harmonizing structural MRI site differences with the ComBat batch adjustment method in ENIGMA. NeuroImage 2020 ; 218 : 116956
– reference: 4) Smith SM, Nichols TE : Statistical challenges in “Big Data” human neuroimaging. Neuron 2018 ; 97 : 263-268
SSID ssib058493821
ssib044754443
ssib002004297
ssj0003314441
Score 2.2705474
SourceID jstage
SourceType Publisher
StartPage 1
SubjectTerms Bayes estimation
bias correction
data sharing
general linear model
machine learning
Title 脳画像データハーモナイゼーションにおける統計学的解析方法
URI https://www.jstage.jst.go.jp/article/jjmrm/42/1/42_2021-1740/_article/-char/ja
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 日本磁気共鳴医学会雑誌, 2022/02/15, Vol.42(1), pp.1-14
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9VAEA-1XryIouI3PbjH1CS72Y-LkLzmUYR6aqG3kH3JOzywSmkvHoS-FJR6UMF68OBBxQriQYqI-MA_ZunHn-HM5qPP1oNVL2HY2Z397c4mOxN2Zh3nRuZnNO8p4Wov6Lmsr3N4pZR0-zIvuNAhFz0MFJ67w2cX2O3FcHHixObYqaXVFT3de_DbuJK_0SqUgV4xSvYYmm2FQgHQoF94gobh-Uc6JokkkpGYkkQQBURMkpBISmSXJNQSoibijiUCEres7q8sSqKgYUV15Yg1rTpH5DSSo7YLagmfRHFN1HJ8ovy6lYwRahyS2EfwEeCXiDmaIRG3o4hwRMgSJAKBnKiEKM8SnMQKCeioujKzsaotF-qHluiQqIOiIts11veQizNT9atQQsxsSaeetBoAwwECBqijYgsbkACk9l8y1oWhqxnbuoudwCK1vcC46PhPFPC_8UqXsF32_x3m-H9Wn7mKVVm4pwtbFjCKp3-qm6GabYgFR163ak_xx4yTKuD28LYXMI7pNwaDu8uYXCHwXfAzvYMdvj13Wa_U1NZMWZD6-MAWKbZIGz5G_KUDcDtOBkLY0w9zD5MDq85aMa3Viikj2VgWRTBpFW3Cr9EgohS8dnuHbDsZVZItxH3zEGqwBAfgFzVnKq2ZN3_GOV37Z1NRBfGsMzHIzjnz--vbey--75RPTfnIlCMz_GGQHpnyjSk3zPCdGY5s-VdTbply26x9NGsbZu25GT7Z-_J5_8PjnU_v916t72-93X39bPflt93tzfPOQjeZ78y69XUk7iDwVOZyL1C8x_DctSoyCXZtnjEBX8AwlLrQHAMaiz6Y5FrlnBZ5lvmi4DKQfphlWmh6wZlcurdUXHSm4AOZcaFEpqVgPVrIPve518-5pkyDA3PJuVVNQnq_yjmTHlNzl_9VwBXn1MF7ctWZXFleLa6B-b2ir9vF8BP1_bc7
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%84%B3%E7%94%BB%E5%83%8F%E3%83%87%E3%83%BC%E3%82%BF%E3%83%8F%E3%83%BC%E3%83%A2%E3%83%8A%E3%82%A4%E3%82%BC%E3%83%BC%E3%82%B7%E3%83%A7%E3%83%B3%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E7%B5%B1%E8%A8%88%E5%AD%A6%E7%9A%84%E8%A7%A3%E6%9E%90%E6%96%B9%E6%B3%95&rft.jtitle=%E6%97%A5%E6%9C%AC%E7%A3%81%E6%B0%97%E5%85%B1%E9%B3%B4%E5%8C%BB%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E5%B7%9D%E5%8F%A3%2C+%E6%B7%B3&rft.date=2022-02-15&rft.pub=%E6%97%A5%E6%9C%AC%E7%A3%81%E6%B0%97%E5%85%B1%E9%B3%B4%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0914-9457&rft.eissn=2434-0499&rft.volume=42&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.2463%2Fjjmrm.2021-1740&rft.externalDocID=article_jjmrm_42_1_42_2021_1740_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-9457&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-9457&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-9457&client=summon