緩和的双曲型保存則系の数学解析

Saved in:
Bibliographic Details
Published in数学 Vol. 61; no. 3; pp. 248 - 269
Main Author 川島, 秀一
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本数学会 2009
Subjects
Online AccessGet full text

Cover

Loading…
Author 川島, 秀一
Author_xml – sequence: 1
  fullname: 川島, 秀一
  organization: 九州大学大学院数理学研究院
BookMark eNo9jz9Lw0AYhw-pYKyd_RSp7713Se5GLf6DgouCW3iTXGtqrZK0g6MgiLSgCIIodhEUh4ro4ODgh9EkfgyFiMvzGx74wTPLKr39nmFsnkOdc4l6IR20aXdQB5cLlGqKWVwpYbscvQqzAIS2pQfbM6yWpnEACNJzOILF7OLtMbsYFdfH2dkov3nJxsOvj9tscpWdnhSv759HT_nlcza5_364y8fnc2y6Rd3U1P62yrZWljcba3ZzY3W9sdi0OwjKtR1SmtCJeGQUtkAoR6iQVAgatWsMhYheFIGHkohMEAgpAxMYV6NCozmIKlsqfztpn9rGP0jiPUoOfUr6cdg1flnru9wXJX6b_2W4Q4nfIfEDOE1jYQ
ContentType Journal Article
Copyright 2009 一般社団法人 日本数学会
Copyright_xml – notice: 2009 一般社団法人 日本数学会
DOI 10.11429/sugaku.0613248
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1883-6127
EndPage 269
ExternalDocumentID article_sugaku_61_3_61_3_248_article_char_ja
GroupedDBID ACGFS
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
JSF
KQ8
RJT
ID FETCH-LOGICAL-j2086-5a89a25d1de82f038538ca8c09296eeac227dd0724aaaebb344bebe69282e9103
ISSN 0039-470X
IngestDate Wed Apr 05 11:33:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2086-5a89a25d1de82f038538ca8c09296eeac227dd0724aaaebb344bebe69282e9103
OpenAccessLink https://www.jstage.jst.go.jp/article/sugaku/61/3/61_3_248/_article/-char/ja
PageCount 22
ParticipantIDs jstage_primary_article_sugaku_61_3_61_3_248_article_char_ja
PublicationCentury 2000
PublicationDate 2009
PublicationDateYYYYMMDD 2009-01-01
PublicationDate_xml – year: 2009
  text: 2009
PublicationDecade 2000
PublicationTitle 数学
PublicationTitleAlternate 数学
PublicationYear 2009
Publisher 一般社団法人 日本数学会
Publisher_xml – name: 一般社団法人 日本数学会
References [38] S. Ukai, Les solutions globales de l'équation de Boltzmann dans l'espace tout entier et dans le demi-espace, C. R. Acad. Sci. Paris Sér. A-B, 282A (1976), 317–320.
[32] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13 (1959), 115–162.
[33] T. Nishida and K. Imai, Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. Res. Inst. Math. Sci., 12 (1976), 229–239.
[31] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids, Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 337–342.
[12] K. Ide and S. Kawashima, Decay property of regularity-loss type and nonlinear effects for dissipative Timoshenko system, Math. Models Methods Appl. Sci., 18 (2008), 1001–1025.
[40] W.-A. Yong, Entropy and global existence for hyperbolic balance laws, Arch. Ration. Mech. Anal., 172 (2004), 247–266.
[28] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Appl. Math. Sci., 53, Springer, New York, 1984.
[5] K. O. Friedrichs, Symmetric hyperbolic linear differential equations, Comm. Pure Appl. Math., 7 (1954), 345–392.
[27] P. D. Lax, Shock waves and entropy, In: Contributions to nonlinear functional analysis, Proceedings of the Symposium held at the Mathematics Research Center, Univ. of Wisconsin, Madison, 1971, (Ed. E. H. Zarantonello), Mathematics Research Center, Publ., no. 27, Academic Press, New York, 1971, pp. 603–634.
[34] R. Racke, Lecture on nonlinear evolution equations —— Initial value problems, Braunschweig, Wiesbaden, Vieweg, 1992.
[19] S. Kawashima, Large-time behavior of solutions of the discrete Boltzmann equation, Comm. Math. Phys., 109 (1987), 563–589.
[26] P. D. Lax, Hyperbolic systems of conservation laws, II, Comm. Pure Appl. Math., 10 (1957), 537–566.
[37] S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179–184.
[6] K. O. Friedrichs and P. D. Lax, Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U. S. A., 68 (1971), 1686–1688.
[20] S. Kawashima, The Boltzmann equation and thirteen moments, Japan. J. Appl. Math., 7 (1990), 301–320.
[11] K. Ide, K. Haramoto and S. Kawashima, Decay property of regularity-loss type for dissipative Timoshenko system, Math. Models Methods Appl. Sci., 18 (2008), 647–667.
[14] T. Kato, Quasi-linear equations of evolution, with applications to partial differential eqations, Spectral Theory and Differential Equations, (ed. W. N. Everitt), Lecture Notes in Math., Springer, 448 (1975), 25–70.
[21] S. Kawashima, A. Matsumura and T. Nishida, On the fluid-dynamical approximation to the Boltzmann equation at the level of the Navier–Stokes equation, Comm. Math. Phys., 70 (1979), 97–124.
[36] Y. Shizuta and S. Kawashima, Systems of equations of hyperbolic-parabolic type with applications to the discrete Boltzmann equation, Hokkaido Math. J., 14 (1985), 249–275.
[22] S. Kawashima and Y. Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tôhoku Math. J. (2), 40 (1988), 449–464.
[8] S. K. Godunov, An interesting class of quasi-linear systems, Dokl. Acad. Nauk SSSR, 139 (1961), 521–523.
[39] T. Umeda, S. Kawashima and Y. Shizuta, On the decay of solutions to the linearized equations of electro-magneto-fluid dynamics, Japan J. Appl. Math., 1 (1984), 435–457.
[16] S. Kawashima, Global existence and stability of solutions for discrete velocity models of the Boltzmann equation, In: Recent topics in nonlinear PDE, Proceedings of the Meeting on nonlinear partial differential equations held at Hiroshima Univ., Hiroshima, 1983, (Eds. M. Mimura and T. Nishida), Lecture Notes in Numerical and Applied Analysis, 6, Kinokuniya Company Ltd., Tokyo, 1984, 59–85.
[10] T. Hosono and S. Kawashima, Decay property of regularity-loss type and application to some nonlinear hyperbolic-elliptic system, Math. Models Methods Appl. Sci., 16 (2006), 1839–1859.
[17] S. Kawashima, Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics, Doctoral Thesis, Kyoto Univ., 1984.
[2] S. Chapman and T. G. Cowling, The mathematical theory of non-uniform gases, 3rd ed., London, Cambridge Univ. Press, 1970.
[15] T. Kato, Perturbation theory for linear operators, 2nd ed., Springer, Berlin-New York, 1976.
[29] A. Matsumura, An energy method for the equations of motion of compressible viscous and heat-conductive fluids, MRC Technical Summary Report, Univ. of Wisconsin-Madison, 2194 (1981), 1–16.
[25] S. Kawashima and W.-A. Yong, Decay estimates for hyperbolic balance laws, to appear in Z. Anal. Awend (J. Anal. Appl.).
[35] J. E. M. Rivera and R. Racke, Global stability for damped Timoshenko systems, Discrete Contin. Dyn. Syst., 9 (2003), 1625–1639.
[18] S. Kawashima, Large-time behaviour of solutions to hyperbolic-parabolic systems of conservation laws and applications, Proc. Roy. Soc. Edinburgh Sect. A, 106 (1987), 169–194.
[3] G. Q. Chen, C. D. Levermore and T.-P. Liu, Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math., 47 (1994), 787–830.
[9] B. Hanouzet and R. Natalini, Global existence of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Arch. Ration. Mech. Anal., 169 (2003), 89–117.
[7] R. Gatignol, Théorie cinétique des gaz à répartition discrète de vitesse, Lecture Notes in Physics, 36, Springer, 1975.
[1] S. Bianchini, B. Hanouzet and R. Natalini, Asymptotic behavior of smooth solutions for partially dissipative hyperbolic systems with a convex entropy, Comm. Pure Appl. Math., 60 (2007), 1559–1622.
[30] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases, J. Math. Kyoto Univ., 20 (1980), 67–104.
[24] S. Kawashima and W.-A. Yong, Dissipative structure and entropy for hyperbolic systems of balance laws, Arch. Ration. Mech. Anal., 174 (2004), 345–364.
[23] S. Kawashima and Y. Shizuta, The Navier–Stokes equation in the discrete kinetic theory, J. Méc. théor. appl., 7 (1988), 597–621.
[4] C. M. Dafermos, Hyperbolic conservation laws in continuum physics, 2nd ed., Springer, Berlin, 2005.
[13] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181–205.
References_xml
SSID ssib020475120
ssib026598222
ssib021064343
ssib022787386
ssj0000491490
ssib002483705
Score 1.7912241
SourceID jstage
SourceType Publisher
StartPage 248
SubjectTerms エネルギー評価
エントロピー
双曲型保存則系
安定性
流体力学的近似
消散構造
減衰評価
Title 緩和的双曲型保存則系の数学解析
URI https://www.jstage.jst.go.jp/article/sugaku/61/3/61_3_248/_article/-char/ja
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 数学, 2009, Vol.61(3), pp.248-269
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9QwFA_DetGD-Inf7MGcpGs3SZNXPLWzHRZlBWEX5laatiOMsIrOXLwJgogLiiCI4l4ExcOK6MGDB_8Y7Yx_hi9J251lPLgKQ-i8vHy8vvLye_l4IeRi7gutpLLbKkpPQAgeaF56bKBAF7IoM20OOK9dl6sb4mo_6Hc61cyupfFIL-X3_3iu5F-0ijTUqzkluw_NtpUiAZ9Rv5iihjH9Kx3TRNFY0SikSUBDRqFrKGFEQRgK9CxF0jCmMbM8CYWYJoLGPRquGEq0QkOwzCEFZSvkNEYejhiTRoktHtDYr5kjSROgETbKbVZC3T2cDcCd529UagjYWdesaUQa9ZoWsTbwba-AuguX2nmIXTvX5pv2AbtgZY2QmFjJ4rpHWDO2b5gj_F2y_UG-wD50bbF5iZC7i-9t1oSbpWvl990A5qw2AEcf2AUZaMy6i_Fef7581ka70J71cM_cTTHzIwkO1PajuZndGi8Z1NOW2xOeu1Z-6hhTuZxylyB72mSaE3TpEGH8AYb20Ow8vXZj1uszEYhas8p8oRCGtWYUnXJpzv-2_xkaWb4b9Y9JG4SRtVOL6PSh31sHJHUvqw5qZYS6vFckRF5D9EOaPYwWVq0fIYdrf2gxciIcJZ1hdowcWmuDCd87Trzp1w_V863pq4fV063J68_V9pOf399UOy-rx4-mX779ePBx8uJTtfPu1_u3k-1nJ8hGL1nvrnr1LR_ekKE_7QUZhBkLiuWiBDYwC9Uc8gxyH4G7LBEXoLxF4SsmsiwrteZCaLQ8MmTASgS7_CRZ2Ly9WZ4iizLQCMizHGRQCp-LDMXVShUIqgdS5eI0ueJkTe-4UC7pfrR35r9KnyUH3UKkmb07RxZGd8flecSzI33Bfg2_AW1LhOo
link.rule.ids 315,783,787,4031,27935,27936,27937
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%B7%A9%E5%92%8C%E7%9A%84%E5%8F%8C%E6%9B%B2%E5%9E%8B%E4%BF%9D%E5%AD%98%E5%89%87%E7%B3%BB%E3%81%AE%E6%95%B0%E5%AD%A6%E8%A7%A3%E6%9E%90&rft.jtitle=%E6%95%B0%E5%AD%A6&rft.au=%E5%B7%9D%E5%B3%B6%2C+%E7%A7%80%E4%B8%80&rft.date=2009&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E6%95%B0%E5%AD%A6%E4%BC%9A&rft.issn=0039-470X&rft.eissn=1883-6127&rft.volume=61&rft.issue=3&rft.spage=248&rft.epage=269&rft_id=info:doi/10.11429%2Fsugaku.0613248&rft.externalDocID=article_sugaku_61_3_61_3_248_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-470X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-470X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-470X&client=summon