機械学習を用いた急性期脳卒中患者における退院時ADLに関する因子の検討 XGBoostおよびSHAP解析

【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting(XGBoost)で,退院時ADL自立の可否を予測した。そして寄与因子をSHapley Additive exPlanations(SHAP)で調査した。【結果】退院時ADLの予測精度は高く,寄与因子としてFunctional Ambulation Category, Brünnstrom Recover...

Full description

Saved in:
Bibliographic Details
Published in理学療法学 Vol. 50; no. 5; pp. 177 - 185
Main Authors 佐藤, 博文, 小林, 陽平, 藤野, 雄次, 宮園, 康太, 仲, 桂吾, 杉水流, 豊, 長谷川, 光輝, 三木, 啓嗣, 西川, 順治, 飯島, 崇敬, 深田, 和浩
Format Journal Article
LanguageJapanese
Published 一般社団法人日本理学療法学会連合 20.10.2023
日本理学療法学会連合
Subjects
Online AccessGet full text
ISSN0289-3770
2189-602X
DOI10.15063/rigaku.12376

Cover

Loading…
Abstract 【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting(XGBoost)で,退院時ADL自立の可否を予測した。そして寄与因子をSHapley Additive exPlanations(SHAP)で調査した。【結果】退院時ADLの予測精度は高く,寄与因子としてFunctional Ambulation Category, Brünnstrom Recovery Stage下肢,Ability for Basic Movement Scale II(以下,ABMS-II)寝返り,Barthel index更衣,ABMS-II立位が高寄与順であった。【結論】急性期脳卒中患者の退院時ADLは,歩行や麻痺側下肢機能,動作能力が最も寄与することが示唆された。
AbstractList 【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting(XGBoost)で,退院時ADL自立の可否を予測した。そして寄与因子をSHapley Additive exPlanations(SHAP)で調査した。【結果】退院時ADLの予測精度は高く,寄与因子としてFunctional Ambulation Category, Brünnstrom Recovery Stage下肢,Ability for Basic Movement Scale II(以下,ABMS-II)寝返り,Barthel index更衣,ABMS-II立位が高寄与順であった。【結論】急性期脳卒中患者の退院時ADLは,歩行や麻痺側下肢機能,動作能力が最も寄与することが示唆された。
「要旨」【目的】本研究は機械学習を用いて, 急性期脳卒中患者の退院時日常生活動作 (Activities of Daily Living : 以下, ADL) に関する因子を検討することとした. 【方法】246名を対象に, 医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting (XGBoost) で, 退院時ADL自立の可否を予測した. そして寄与因子をSHapley Additive exPlanations (SHAP) で調査した. 【結果】退院時ADLの予測精度は高く, 寄与因子としてFunctional Ambulation Category, Brunnstrom Recovery Stage下肢, Ability for Basic Movement Scale II (以下, ABMS-II) 寝返り, Barthel index更衣, ABMS-II立位が高寄与順であった. 【結論】急性期脳卒中患者の退院時ADLは, 歩行や麻痺側下肢機能, 動作能力が最も寄与することが示唆された.
Author 三木, 啓嗣
飯島, 崇敬
藤野, 雄次
長谷川, 光輝
西川, 順治
佐藤, 博文
杉水流, 豊
宮園, 康太
深田, 和浩
仲, 桂吾
小林, 陽平
Author_xml – sequence: 1
  fullname: 佐藤, 博文
  organization: さいたま市民医療センター診療技術部リハビリテーション科
– sequence: 1
  fullname: 小林, 陽平
  organization: 埼玉石心会病院リハビリテーション部
– sequence: 1
  fullname: 藤野, 雄次
  organization: 順天堂大学保健医療学部理学療法学科
– sequence: 1
  fullname: 宮園, 康太
  organization: 埼玉石心会病院リハビリテーション部
– sequence: 1
  fullname: 仲, 桂吾
  organization: 埼玉石心会病院リハビリテーション部
– sequence: 1
  fullname: 杉水流, 豊
  organization: 埼玉石心会病院リハビリテーション部
– sequence: 1
  fullname: 長谷川, 光輝
  organization: 彩の国東大宮メディカルセンターリハビリテーション科
– sequence: 1
  fullname: 三木, 啓嗣
  organization: 東京都済生会中央病院リハビリテーション科
– sequence: 1
  fullname: 西川, 順治
  organization: 埼玉石心会病院リハビリテーション科
– sequence: 1
  fullname: 飯島, 崇敬
  organization: 埼玉石心会病院リハビリテーション部
– sequence: 1
  fullname: 深田, 和浩
  organization: 武蔵台病院リハビリテーション課
BookMark eNo9kEtLw0AUhQdRsD6W_ozqnZlMJl36Vii4UXA3TJKJptZUEl24S0rdKIoWEYpCpb6RiuDGnT9mbGz_hdGKcDnnci58F84IGgwqgUJoAsMkZmDSqdDfkFt7k5hQbg6gHMFWIW8CWR9EOSDZTjmHYTQeRb4NABYnmPAcctKnZtp67bTvvz7qulr_On_USU0nzTS-S-OH9KrZrb11juuf7-20etOND3TyrJNDnZzp6lEvjnuNVtqoTs8Vs7x30dJJI8s7l9ed9qlOXtLbq-7jyRga8mQ5UuN_PorWFuZXZ5fyxZXF5dnpYr5EwDDzlBYko5hZtlugBkjqmh63iGe7pGBQTrkNysaglIGlzTzDJbZrmq7rScOSwBw6ihb73G3l-o4sV4KyHyhRquyFQfZXODbd2dyPfEGAUAHAsskMC8CcZ2Ixg1iYETMjzfRJpWhXbiixE_rbMtwXMtz1nbIS_a4FA8F-5Lfz_6OzKUNRkvQbPDKb-w
ContentType Journal Article
Copyright 2023 日本理学療法士学会
Copyright_xml – notice: 2023 日本理学療法士学会
CorporateAuthor 埼玉石心会病院リハビリテーション科
彩の国東大宮メディカルセンターリハビリテーション科
順天堂大学保健医療学部理学療法学科
武蔵台病院リハビリテーション課
東京都済生会中央病院リハビリテーション科
埼玉石心会病院リハビリテーション部
さいたま市民医療センター診療技術部リハビリテーション科
CorporateAuthor_xml – name: 埼玉石心会病院リハビリテーション科
– name: 順天堂大学保健医療学部理学療法学科
– name: 武蔵台病院リハビリテーション課
– name: さいたま市民医療センター診療技術部リハビリテーション科
– name: 彩の国東大宮メディカルセンターリハビリテーション科
– name: 埼玉石心会病院リハビリテーション部
– name: 東京都済生会中央病院リハビリテーション科
DOI 10.15063/rigaku.12376
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
EISSN 2189-602X
EndPage 185
ExternalDocumentID cb3physi_2023_005005_001_0177_01854281526
article_rigaku_50_5_50_12376_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j2046-339a53158bd9340a3d6f782fbd2943737b0eb10ee41ab5f4d2bd66ddfa48a05c3
ISSN 0289-3770
IngestDate Thu Jul 10 16:13:42 EDT 2025
Wed Sep 03 06:30:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 5
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2046-339a53158bd9340a3d6f782fbd2943737b0eb10ee41ab5f4d2bd66ddfa48a05c3
OpenAccessLink https://www.jstage.jst.go.jp/article/rigaku/50/5/50_12376/_article/-char/ja
PageCount 9
ParticipantIDs medicalonline_journals_cb3physi_2023_005005_001_0177_01854281526
jstage_primary_article_rigaku_50_5_50_12376_article_char_ja
PublicationCentury 2000
PublicationDate 2023/10/20
20231020
PublicationDateYYYYMMDD 2023-10-20
PublicationDate_xml – month: 10
  year: 2023
  text: 2023/10/20
  day: 20
PublicationDecade 2020
PublicationTitle 理学療法学
PublicationTitleAlternate 理学療法学
PublicationYear 2023
Publisher 一般社団法人日本理学療法学会連合
日本理学療法学会連合
Publisher_xml – name: 一般社団法人日本理学療法学会連合
– name: 日本理学療法学会連合
References 8) Gialanella B, Santoro R, et al.: Predicting outcome after stroke: The role of basic activities of daily living predicting outcome after stroke. Eur J Phys Rehabil Med. 2013; 49: 629–637.
19) Kwakkel G, Veerbeek JM, et al.: EPOS investigators: Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: Does timing of early assessment matter? J Neurol Sci. 2010; 294: 57–61.
27) Fujita T, Sato A, et al.: Motor function cut-off values for independent dressing in stroke patients. Am J Occup Ther. 2016; 70: 7003290010p1–7.
11) Traverso A, Dankers FJWM, et al.: Diving deeper into models. Fundamentals of clinical data science [internet]. Cham(CH): Springer, 2019 [cited 2022 Dec 10]; 121–133. Available from: https://www.ncbi.nlm.nih.gov/books/NBK543520/?report=reader
13) Bzdok D, Altman N, et al.: Statistics versus machine learning. Nat Methods. 2018; 15: 233–234.
21) Kim MS, Joo MC, et al.: Development and validation of a prediction model for home discharge in patients with moderate stroke: The Korean stroke cohort for functioning and rehabilitation study. Top Stroke Rehabil. 2020; 27: 453–461.
15) Lundberg SM, Lee SI: A Unified Approach to Intereprting Model Predictions. Advance in Neural Information Processing Systems. 2017; 30: 4768–4777.
20) Kenmuir CL, Hammer M, et al.: Predictors of outcome in patients presenting with acute ischemic stroke and mild stroke scale scores. J Stroke Cerebrovasc Dis. 2015; 24: 1685–1689.
1) Kalra L, Ratan R: Recent advance in stroke rehabilitation 2006. Stroke. 2007; 38: 235–237.
5) Langhorne P, Colier JM, et al.: Very early versus delayed mobilisation after stroke. Cochrane Database Syst Rev. 2018; 10: CD006187.
30) Nakayama H, Jorgensen HS, et al.: The influence of age stroke outcome. The Copenhagen Stroke Study. Stroke. 1994; 25: 808–813.
12) Wang S, Summers RM: Machine learning and radiology. Med Image Anal. 2012; 16: 933–951.
31) 植松海雲,猪飼哲夫:高齢脳卒中患者が自宅退院するための条件—Classification and regression trees(CART)による解析—.リハ医学.2002; 39: 396–402.
6) Harvey RL: Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am. 2015; 26: 583–598.
26) Fujita T, Nagayama H, et al.: Hierarchy of dysfunction related to dressing performance in stroke patients: A path analysis study. PLoS One. 2016; 11: e0151162.
10) 神田善伸:EZRでやさしく学ぶ統計学—EBMの実践から臨床研究まで—.中外医学社,東京,2012,pp. 13–18.
23) Tokunaga M, Sannomiya K: Explanatory variables to use in a multiple regression analysis to predict stroke patients’ motor FIM score at discharge from convalescent rehabilitation wards: An investigation of patients with a motor FIM score of less than 40 points at admission. Jpn J Compr Rehabil Sci. 2020; 11: 102–108.
33) Scrutinio D, Lanzillo B, et al.: Development and validation of a predictive model for functional outcome after stroke rehabilitation: The maugeri model. Stroke. 2017; 48: 3308–3315.
29) Davis JP, Wong AA, et al.: Impact of premorbid undernutrition on outcome in stroke patients. Stroke. 2004; 35: 1930–1934.
4) Morreale M, Marchione P, et al.: Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: Proprioceptive or cognitive approach? Eur J Phys Rehabil Med. 2016; 52: 81–89.
16) 森下光之助:機械学習を解釈する技術予測力と説明力を両立する実践テクニック.技術評論社,東京,2021,pp. 167–209.
9) Schneider A, Hommel G, et al.: Linear regression analysis: Part14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010; 107: 776–782.
14) Chen T, Guestrin C: XGBoost: A Scalable tree boosting system. In Proc: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016; 785–794. doi: 10.1145/2939672.2939785.
22) Vincent C, Desrosier J, et al.: Burden of caregivers of people with stroke: Evolution and predictors. Cerebrovasc Dis. 2009; 27: 454–464.
24) Chen WC, Hsiao MY, et al.: Prognostic factors of functional outcome in post-acute stroke in the rehabilitation unit. J Formos Med Assoc. 2022; 121: 670–678.
7) Stinear CM, Smith MC, et al.: Prediction tools for stroke rehabilitation. Stroke. 2019; 50: 3314–3322.
18) Kwakkel G, Veerbeek JM, et al.: Early Prediction of functional Outcome after Stroke (EPOS) Investigators: Diagnostic accuracy of the Barthel index for measuring activities of daily living outcome after ischemic hemispheric stroke: Does early post-stroke timing of assessment matter? Stroke. 2011; 42: 342–346.
3) Biernaskie J, Chernenko G, et al.: Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004; 24: 1245–1254.
28) Nakao S, Takata S, et al.: Relationship between Barthel Index scores during the acute phase of rehabilitation and subsequent ADL in stroke patients. J Med Invest. 2010; 57: 81–88.
2) Bamford J, Dennis M, et al.: The frequency, causes and timing of death within 30 days of a first stroke: The Oxfordshier Community Stroke Project. J Neurol Neurosurg Psychiatry. 1990; 53: 824–829.
17) Park D, Jeong E, et al.: Machine learning-based three-month outcome prediction in acute ischemic stroke: A single cerebrovascular-specialty hospital study in South Korea. Diagnostics (Basel). 2021; 11: 1909.
25) Tanaka T, Hashimoto K, et al.: Revised version of the ability for basic movement scale (ABMS II) as an early predictor of functioning related to activities of daily living in patients after stroke. J Rehabil Med. 2010; 42: 179–181.
32) Yen HC, Jeng JS, et al.: Early mobilization of mild-moderate intracerebral hemorrhage patients in a stroke center: A randomized controlled trial. Neurorehabil Neural Repair. 2020; 34: 72–81.
References_xml – reference: 17) Park D, Jeong E, et al.: Machine learning-based three-month outcome prediction in acute ischemic stroke: A single cerebrovascular-specialty hospital study in South Korea. Diagnostics (Basel). 2021; 11: 1909.
– reference: 10) 神田善伸:EZRでやさしく学ぶ統計学—EBMの実践から臨床研究まで—.中外医学社,東京,2012,pp. 13–18.
– reference: 33) Scrutinio D, Lanzillo B, et al.: Development and validation of a predictive model for functional outcome after stroke rehabilitation: The maugeri model. Stroke. 2017; 48: 3308–3315.
– reference: 28) Nakao S, Takata S, et al.: Relationship between Barthel Index scores during the acute phase of rehabilitation and subsequent ADL in stroke patients. J Med Invest. 2010; 57: 81–88.
– reference: 24) Chen WC, Hsiao MY, et al.: Prognostic factors of functional outcome in post-acute stroke in the rehabilitation unit. J Formos Med Assoc. 2022; 121: 670–678.
– reference: 19) Kwakkel G, Veerbeek JM, et al.: EPOS investigators: Predictive value of the NIHSS for ADL outcome after ischemic hemispheric stroke: Does timing of early assessment matter? J Neurol Sci. 2010; 294: 57–61.
– reference: 26) Fujita T, Nagayama H, et al.: Hierarchy of dysfunction related to dressing performance in stroke patients: A path analysis study. PLoS One. 2016; 11: e0151162.
– reference: 14) Chen T, Guestrin C: XGBoost: A Scalable tree boosting system. In Proc: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016; 785–794. doi: 10.1145/2939672.2939785.
– reference: 8) Gialanella B, Santoro R, et al.: Predicting outcome after stroke: The role of basic activities of daily living predicting outcome after stroke. Eur J Phys Rehabil Med. 2013; 49: 629–637.
– reference: 31) 植松海雲,猪飼哲夫:高齢脳卒中患者が自宅退院するための条件—Classification and regression trees(CART)による解析—.リハ医学.2002; 39: 396–402.
– reference: 5) Langhorne P, Colier JM, et al.: Very early versus delayed mobilisation after stroke. Cochrane Database Syst Rev. 2018; 10: CD006187.
– reference: 23) Tokunaga M, Sannomiya K: Explanatory variables to use in a multiple regression analysis to predict stroke patients’ motor FIM score at discharge from convalescent rehabilitation wards: An investigation of patients with a motor FIM score of less than 40 points at admission. Jpn J Compr Rehabil Sci. 2020; 11: 102–108.
– reference: 18) Kwakkel G, Veerbeek JM, et al.: Early Prediction of functional Outcome after Stroke (EPOS) Investigators: Diagnostic accuracy of the Barthel index for measuring activities of daily living outcome after ischemic hemispheric stroke: Does early post-stroke timing of assessment matter? Stroke. 2011; 42: 342–346.
– reference: 22) Vincent C, Desrosier J, et al.: Burden of caregivers of people with stroke: Evolution and predictors. Cerebrovasc Dis. 2009; 27: 454–464.
– reference: 6) Harvey RL: Predictors of functional outcome following stroke. Phys Med Rehabil Clin N Am. 2015; 26: 583–598.
– reference: 25) Tanaka T, Hashimoto K, et al.: Revised version of the ability for basic movement scale (ABMS II) as an early predictor of functioning related to activities of daily living in patients after stroke. J Rehabil Med. 2010; 42: 179–181.
– reference: 2) Bamford J, Dennis M, et al.: The frequency, causes and timing of death within 30 days of a first stroke: The Oxfordshier Community Stroke Project. J Neurol Neurosurg Psychiatry. 1990; 53: 824–829.
– reference: 1) Kalra L, Ratan R: Recent advance in stroke rehabilitation 2006. Stroke. 2007; 38: 235–237.
– reference: 3) Biernaskie J, Chernenko G, et al.: Efficacy of rehabilitative experience declines with time after focal ischemic brain injury. J Neurosci. 2004; 24: 1245–1254.
– reference: 21) Kim MS, Joo MC, et al.: Development and validation of a prediction model for home discharge in patients with moderate stroke: The Korean stroke cohort for functioning and rehabilitation study. Top Stroke Rehabil. 2020; 27: 453–461.
– reference: 9) Schneider A, Hommel G, et al.: Linear regression analysis: Part14 of a series on evaluation of scientific publications. Dtsch Arztebl Int. 2010; 107: 776–782.
– reference: 15) Lundberg SM, Lee SI: A Unified Approach to Intereprting Model Predictions. Advance in Neural Information Processing Systems. 2017; 30: 4768–4777.
– reference: 7) Stinear CM, Smith MC, et al.: Prediction tools for stroke rehabilitation. Stroke. 2019; 50: 3314–3322.
– reference: 16) 森下光之助:機械学習を解釈する技術予測力と説明力を両立する実践テクニック.技術評論社,東京,2021,pp. 167–209.
– reference: 4) Morreale M, Marchione P, et al.: Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: Proprioceptive or cognitive approach? Eur J Phys Rehabil Med. 2016; 52: 81–89.
– reference: 30) Nakayama H, Jorgensen HS, et al.: The influence of age stroke outcome. The Copenhagen Stroke Study. Stroke. 1994; 25: 808–813.
– reference: 20) Kenmuir CL, Hammer M, et al.: Predictors of outcome in patients presenting with acute ischemic stroke and mild stroke scale scores. J Stroke Cerebrovasc Dis. 2015; 24: 1685–1689.
– reference: 13) Bzdok D, Altman N, et al.: Statistics versus machine learning. Nat Methods. 2018; 15: 233–234.
– reference: 32) Yen HC, Jeng JS, et al.: Early mobilization of mild-moderate intracerebral hemorrhage patients in a stroke center: A randomized controlled trial. Neurorehabil Neural Repair. 2020; 34: 72–81.
– reference: 27) Fujita T, Sato A, et al.: Motor function cut-off values for independent dressing in stroke patients. Am J Occup Ther. 2016; 70: 7003290010p1–7.
– reference: 12) Wang S, Summers RM: Machine learning and radiology. Med Image Anal. 2012; 16: 933–951.
– reference: 11) Traverso A, Dankers FJWM, et al.: Diving deeper into models. Fundamentals of clinical data science [internet]. Cham(CH): Springer, 2019 [cited 2022 Dec 10]; 121–133. Available from: https://www.ncbi.nlm.nih.gov/books/NBK543520/?report=reader
– reference: 29) Davis JP, Wong AA, et al.: Impact of premorbid undernutrition on outcome in stroke patients. Stroke. 2004; 35: 1930–1934.
SSID ssib000872127
ssib022575314
ssib044219340
ssib001527063
ssib005902260
ssj0003304640
ssib003110431
ssib044759789
ssib023161324
Score 1.9308494
Snippet 【目的】本研究は機械学習を用いて,急性期脳卒中患者の退院時日常生活動作(Activities of Daily Living:以下,ADL)に関する因子を検討することとした。【方法】246名を対象に,医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient...
「要旨」【目的】本研究は機械学習を用いて, 急性期脳卒中患者の退院時日常生活動作 (Activities of Daily Living : 以下, ADL) に関する因子を検討することとした. 【方法】246名を対象に, 医学的情報や臨床的評価等の下位項目点を用いてeXtreme Gardient Boosting...
SourceID medicalonline
jstage
SourceType Publisher
StartPage 177
SubjectTerms 急性期脳卒中
機械学習
退院時ADL
Subtitle XGBoostおよびSHAP解析
Title 機械学習を用いた急性期脳卒中患者における退院時ADLに関する因子の検討
URI https://www.jstage.jst.go.jp/article/rigaku/50/5/50_12376/_article/-char/ja
http://mol.medicalonline.jp/en/journal/download?GoodsID=cb3physi/2023/005005/001&name=0177-0185j
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 理学療法学, 2023/10/20, Vol.50(5), pp.177-185
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-lXgQRRcX6RQ_OceskmUlm8GKyTSl-gdBCD0JINhtxxSq1vXjaXepFUbSIUCxU6ldFKoIXb_4xcbftf-F7L8luRA-tXsLszJs3835vJvPe7OSNYZw3E267iTBrWgteE7ZIYErJqCZiUzREwlMV44fC164707Pi8pycGxm9WTm1tLQYTzQe_vW7kn_RKuSBXvEr2X1odsAUMiAN-oUnaBiee9IxCxzmaaanKGExn7NAMm-SeQ4LXOZPMW2xwGbKooTLtGCeohyTKVEk8uqKM0-WCRcTuk5FCil9GzmrSeIDPxW2gsQW82yi4UzJgqHnl014ZRNm0Q0FRZqIOSa0xm5jW5BpeZNXKxyglIQqOOgKB8m0z7xSWM3LWgHhILDn0CWQVAVV45sQgKad31CiprEiyKjloKgciSRu3ohi2kX2MCpLNDzqPODgDukl6kERqDrAKkRPwgIjLIaEPaQv2SIwLnR5QO-TjkCiOvPMKn8QFGWVpCKr7I_vMd-lYtCyV93OsehgoMUHE7DQoSKhlMIWAuqDH5To2hVIBPHOZXWLYQJN57X2jCjxqRNmNAQ8GlNYvbI04l_SsBzl17xMNCkP7ENdc7g1V11P80DCxXtDVhZHs7iwJ7ezzPyqpj-WcAlGM0y8hdu3ojtLEyae2hraKoMTpMWcC3OyUPJQ4oPIw7IQP1wMW-A9HbDAicSLXa7cqDofLl5vUHEeLJdXgtHZYBlXI09hoCNruJkACyG4-sMzCOAogWk8vPtACDAG7GEkJYqsWd7tgHYi7iQ6It8ELqAtggAjBBeqAIB53AJnEaOAHLqb_4GbB9Kp2MIzR4zDhRM77uUAHDVGWtExo9H_tN7f-Nrb-rD9YyXrrmy_3Mw6y1lnvd9-329_7K-t7yx_6z1d-fl9q999u9N-lHU-Z53HWedF1n2y227vrm70V7vwDoD83VcbWWcV8nuv3_S2nmedL_13azubz44bs1PBTH26VlzhUmtZIF3NtnUEIEkVJ4hFZCdOCj5JGieWxqBqbszBWOTNpjCjWKYiseLEcZIkjYSKuGzYJ4zR-XvzzZPGeJxqM224jtlMwQ3VkXKa4Hsp105EbKe6OWZczDEK7-dxesL9jJEx49JvwIbFa_5B2Iht2mQOcbaGGC-LSzwJHHK6JgGGsbAUjB3n1H914LRxcPg6OGOMLi4sNc-Cv7MYn6Nh-wtuWBSs
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%A9%9F%E6%A2%B0%E5%AD%A6%E7%BF%92%E3%82%92%E7%94%A8%E3%81%84%E3%81%9F%E6%80%A5%E6%80%A7%E6%9C%9F%E8%84%B3%E5%8D%92%E4%B8%AD%E6%82%A3%E8%80%85%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E9%80%80%E9%99%A2%E6%99%82ADL%E3%81%AB%E9%96%A2%E3%81%99%E3%82%8B%E5%9B%A0%E5%AD%90%E3%81%AE%E6%A4%9C%E8%A8%8E&rft.jtitle=%E7%90%86%E5%AD%A6%E7%99%82%E6%B3%95%E5%AD%A6&rft.au=%E4%BD%90%E8%97%A4%2C+%E5%8D%9A%E6%96%87&rft.au=%E5%B0%8F%E6%9E%97%2C+%E9%99%BD%E5%B9%B3&rft.au=%E8%97%A4%E9%87%8E%2C+%E9%9B%84%E6%AC%A1&rft.au=%E5%AE%AE%E5%9C%92%2C+%E5%BA%B7%E5%A4%AA&rft.date=2023-10-20&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA%E6%97%A5%E6%9C%AC%E7%90%86%E5%AD%A6%E7%99%82%E6%B3%95%E5%AD%A6%E4%BC%9A%E9%80%A3%E5%90%88&rft.issn=0289-3770&rft.eissn=2189-602X&rft.volume=50&rft.issue=5&rft.spage=177&rft.epage=185&rft_id=info:doi/10.15063%2Frigaku.12376&rft.externalDocID=article_rigaku_50_5_50_12376_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0289-3770&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0289-3770&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0289-3770&client=summon