高齢女性の下腿のデジタル画像による低骨格筋肉量判定の可能性 Convolutional Neural Network とエッジ検出を用いた分類による予備的研究
【目的】下腿のデジタル画像とエッジ検出により低Skeletal Muscle Index(以下,SMI)である高齢女性を判定できるか予備的に検証すること。【方法】入院中の高齢女性を対象とした。デジタルカメラで撮影した対象者の下腿のデジタル画像を用いて,キャニー法でエッジ検出を行った。低SMI の基準はアジア作業グループが提唱する基準値5.7 kg/m2 を用いて群分けを行い,下腿のデジタル画像とエッジ検出した画像のそれぞれで,Convolutional Neural Network による解析を実施した。【結果】対象者は32 名であった。下腿のデジタル画像およびエッジ検出した画像における低SM...
Saved in:
Published in | 理学療法学 Vol. 48; no. 3; pp. 279 - 286 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
日本理学療法士学会
2021
日本理学療法士協会 |
Subjects | |
Online Access | Get full text |
ISSN | 0289-3770 2189-602X |
DOI | 10.15063/rigaku.11970 |
Cover
Abstract | 【目的】下腿のデジタル画像とエッジ検出により低Skeletal Muscle Index(以下,SMI)である高齢女性を判定できるか予備的に検証すること。【方法】入院中の高齢女性を対象とした。デジタルカメラで撮影した対象者の下腿のデジタル画像を用いて,キャニー法でエッジ検出を行った。低SMI の基準はアジア作業グループが提唱する基準値5.7 kg/m2 を用いて群分けを行い,下腿のデジタル画像とエッジ検出した画像のそれぞれで,Convolutional Neural Network による解析を実施した。【結果】対象者は32 名であった。下腿のデジタル画像およびエッジ検出した画像における低SMI を判定するC 統計量はそれぞれ0.83(95%CI:0.83–1.00)と0.92(95%CI:0.92–1.00)であった。【結論】下腿のデジタル画像を用いることで低SMI 者を判定できる可能性がある。 |
---|---|
AbstractList | 【目的】下腿のデジタル画像とエッジ検出により低Skeletal Muscle Index(以下,SMI)である高齢女性を判定できるか予備的に検証すること。【方法】入院中の高齢女性を対象とした。デジタルカメラで撮影した対象者の下腿のデジタル画像を用いて,キャニー法でエッジ検出を行った。低SMI の基準はアジア作業グループが提唱する基準値5.7 kg/m2 を用いて群分けを行い,下腿のデジタル画像とエッジ検出した画像のそれぞれで,Convolutional Neural Network による解析を実施した。【結果】対象者は32 名であった。下腿のデジタル画像およびエッジ検出した画像における低SMI を判定するC 統計量はそれぞれ0.83(95%CI:0.83–1.00)と0.92(95%CI:0.92–1.00)であった。【結論】下腿のデジタル画像を用いることで低SMI 者を判定できる可能性がある。 「要旨」【目的】下腿のデジタル画像とエッジ検出により低Skeletal Muscle Index (以下, SMI) である高齢女性を判定できるか予備的に検証すること. 【方法】入院中の高齢女性を対象とした. デジタルカメラで撮影した対象者の下腿のデジタル画像を用いて, キャニー法でエッジ検出を行った. 低SMIの基準はアジア作業グループが提唱する基準値5.7kg/m2 を用いて群分けを行い, 下腿のデジタル画像とエッジ検出した画像のそれぞれで, Convolutional Neural Networkによる解析を実施した. 【結果】対象者は32名であった. 下腿のデジタル画像およびエッジ検出した画像における低SMIを判定するC統計量はそれぞれ0.83 (95%CI : 0.83-1.00) と0.92 (95%CI : 0.92-1.00) であった. 【結論】下腿のデジタル画像を用いることで低SMI者を判定できる可能性がある. |
Author | 石本, 泰星 桑田, 一記 田津原, 佑介 福本, 祐真 近藤, 義剛 中口, 拓真 |
Author_xml | – sequence: 1 fullname: 中口, 拓真 organization: 社会医療法人 三車会 貴志川リハビリテーション病院 – sequence: 1 fullname: 近藤, 義剛 organization: 社会医療法人 三車会 貴志川リハビリテーション病院 – sequence: 1 fullname: 桑田, 一記 organization: 社会医療法人 三車会 貴志川リハビリテーション病院 – sequence: 1 fullname: 田津原, 佑介 organization: 社会医療法人 三車会 貴志川リハビリテーション病院 – sequence: 1 fullname: 福本, 祐真 organization: 社会医療法人 三車会 貴志川リハビリテーション病院 – sequence: 1 fullname: 石本, 泰星 organization: 赤ひげクリニック |
BookMark | eNo9kM1Kw0AUhQdRsGqXPkb1zp0kM1mq-AeCG0V3wzSZ2NSaSqILd5oiKgW7cSGuRBTFYl24EbT4MDH9eQtTK27OOXC434UzQUaDaqAJmaYwQ02w2Gzo76jdwxlKbQ4jJIdU2AULcHuU5ACzzDiHcZKPIr8IAIIjRZ4jW_3mdb99lz68dY4fk5PW93u9d_qVhaR2lsTvSfyV1Jrdq4-01khOmkl8nsT17_Zl__mpc_vZfan34ov-WSM9v09bN9lV2njt1doZaoqMeaoS6fyfT5LNpcWNhZXC2vry6sLcWqGMYJgFt0jBdMBCW2tmY9G2UXnK4Axdj7oeY1y7lqMFeK5LleVwUwgTPeoJFxEUskmyPOTuadd3VKUaVPxAy3L1MAyyv9Ipsv3SUeRLBKQSwBDABiYBuZ2JsJhAixlmRpofksrRgdrRcj_091R4JFV44DsVLYf7SkNINpDfnf9Lp6RCWVbsBx3klhY |
ContentType | Journal Article |
Copyright | 2021 日本理学療法士学会 |
Copyright_xml | – notice: 2021 日本理学療法士学会 |
CorporateAuthor | 赤ひげクリニック 社会医療法人 三車会 貴志川リハビリテーション病院 |
CorporateAuthor_xml | – name: 社会医療法人 三車会 貴志川リハビリテーション病院 – name: 赤ひげクリニック |
DOI | 10.15063/rigaku.11970 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2189-602X |
EndPage | 286 |
ExternalDocumentID | cb3physi_2021_004803_004_0279_02863826345 article_rigaku_48_3_48_11970_article_char_ja |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS EIHBH JSF KQ8 RJT |
ID | FETCH-LOGICAL-j2045-db105c0629ee392b992afa4732df1df337ed6ce80fdd1a6c758852f1f8d220a23 |
ISSN | 0289-3770 |
IngestDate | Thu Jul 10 16:10:27 EDT 2025 Wed Sep 03 06:30:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2045-db105c0629ee392b992afa4732df1df337ed6ce80fdd1a6c758852f1f8d220a23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/rigaku/48/3/48_11970/_article/-char/ja |
PageCount | 8 |
ParticipantIDs | medicalonline_journals_cb3physi_2021_004803_004_0279_02863826345 jstage_primary_article_rigaku_48_3_48_11970_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20210000 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 20210000 |
PublicationDecade | 2020 |
PublicationTitle | 理学療法学 |
PublicationTitleAlternate | 理学療法学 |
PublicationYear | 2021 |
Publisher | 日本理学療法士学会 日本理学療法士協会 |
Publisher_xml | – name: 日本理学療法士学会 – name: 日本理学療法士協会 |
References | 2) Bischoff-Ferrari HA, Orav JE, et al.: Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int. 2015; 26: 2793–2802. 6) Malmstrom TK, Miller DK, et al.: SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016; 7: 28–36. 9) Riccardo A, Barbara Le: When Reporting on Older Patients with Cancer, Frailty Information Is Needed. Ann Surg Oncol. 2011; 18: 4–5. 14) Giuseppe S, Marina D, et al.: Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res. 2017; 29: 591–597. 23) 伊藤 忠,酒井義人,他:入院高齢患者における下腿最大周径による四肢筋量の簡易推定式.理学療法科学.2016; 31(4): 511–515 20) Malmstrom K, Morley J: SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc. 2013; 14(8): 531–532. 22) Tanaka T, Takahashi K, et al.: "Yubi-wakka" (finger-ring) test: A practical self-screening method for sarcopenia, and a predictor of disability and mortality among Japanese community-dwelling older adults. Geriatr Gerontol Int. 2018; 18: 224–232. 16) Yoshimura Y, Wakabayashi H, et al.: Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J Am Med Dir Assoc. 2017; 18(6): 553.e1–553.e16. 32) Lecun Y, Bengio Y, et al.: Deep learning. Nature. 2015; 521: 436–444. 8) Stefanie L, Mirko P, et al.: Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing. 2016; 45: 602–608. 31) International Conference on Learning Representations homepage: On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. https://openreview.net/forum?id=H1oyRlYgg.(2020 年10 月17 日引用) 11) Goodpaster BH, Kelley DE, et al.: Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000; 1: 104–110. 3) Schaap LA, Schoor MN, et al.: Associations of Sarcopenia Definitions, and Their Components, With the Incidence of Recurrent Falling and Fractures: The Longitudinal Aging Study Amsterdam. J Gerontol A Biol Sci Med Sci. 2018; 10: 1199–1204. 15) Yuguchi S, Asahi R, et al.: Gastrocnemius Thickness by Ultrasonography Indicates the Low Skeletal Muscle Mass in Japanese Elderly People. Arch Gerontol Geriatr. 2020; 20: 104093. 29) Parthasarathy G, Ramanathan L, et al.: Predicting Source and Age of Brain Tumor Using Canny Edge Detection Algorithm and Threshold Technique. Asian Pac J Cancer Prev. 2019; 25: 1409–1414. 4) Bahat G, IIhan B, et al.: Sarcopenia and the cardiometabolic syndrome: A narrative review. Eur Geriatr Med. 2016; 7: 220–223. 13) Mitsiopoulos N, Baumgartner RN, et al.: Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998; 85: 115–122. 17) Hanach N, McCullough F, et al.: The Impact of Dairy Protein Intake on Muscle Mass, Muscle Strength, and Physical Performance in Middle-Aged to Older Adults with or without Existing Sarcopenia: A Systematic Review and Meta-Analysis. Adv Nutr. 2019; 10(1): 59–69. 19) Yang M, Xiaoyi H, et al.: SARC-F for Sarcopenia Screening in Community-Dwelling Older Adults: Are 3 Items Enough? Medicine. 2018; 9730: 11726. 26) Gulshan V, Peng L, et al.: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Jama. 2016; 316: 2402–2410. 10) Vicente V, Neda A, et al.: Sarcopenia Adversely Impacts Postoperative Complications Following Resection or Transplantation in Patients with Primary Liver Tumors. J Gastrointest Surg. 2015; 19: 272–281. 28) Syed Muhammad A, Muhammad M, et al.: Medical Image Analysis Using Convolutional Neural Networks: A Review. J Med Syst. 2018; 8: 226. 27) Ehteshami B, Veta M, et al.: Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. Jama. 2017; 338; 2199–2210. 5) Bone AE, Hepgul N, et al.: Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis. 2017; 14: 85–99. 25) Ribli D, Horvath A, et al.: Detecting and classifying lesions in mammograms with Deep Learning. Sci Rep. 2018; 8: 4165. 18) Gielem E, Beckwee D, et al.: Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. 2020; nuaa011. 1) Chen LK, Woo J, et al.: Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020; 21: 300–307. 21) Yang M, Xiaoyi H, et al.: Screening Sarcopenia in Community-Dwelling Older Adults: SARC-F vs SARC-F Combined With Calf Circumference (SARC-CalF). J Am Med Dir Assoc. 2018; 19: 277.e1–277.e8. 30) Honda H, Qureshi A, et al.: Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am J Clin Nutr. 2007; 86: 633–638. 24) Kawakami R, Murakami H, et al.: Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2015; 15(8): 969–976. 35) Eugene B, Anastasia G, et al.: PhotoAgeClock: Deep Learning Algorithms for Development of Non-Invasive Visual Biomarkers of Aging. Aging (Albany NY). 2018: 9: 3249–3259. 33) Villani M, Maria C, et al.: Appendicular Skeletal Muscle in Hospitalised Hip-Fracture Patients: Development and Cross-Validation of Anthropometric Prediction Equations Against Dual-Energy X-ray Absorptiometry. Age Ageing. 2014; 43: 857–862. 34) Ida S, Murata K, et al.: Development of a Japanese Version of the SARC-F for Diabetic Patients: An Examination of Reliability and Validity. Aging Clin Exp Res. 2017; 29: 935–939. 12) Schweitzer L, Geisler C, et al.: What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015; 102: 58–65. 7) Beaudart C, Emmanuel B, et al.: Validation of the SarQoL, a specific health-related quality of life questionnaire for Sarcopenia. J Cachexia Sarcopenia Muscle. 2017; 8: 238–244. 36) Mijnarends DM, Meijers M, et al.: Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc. 2013; 14(3): 170–178. |
References_xml | – reference: 12) Schweitzer L, Geisler C, et al.: What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr. 2015; 102: 58–65. – reference: 21) Yang M, Xiaoyi H, et al.: Screening Sarcopenia in Community-Dwelling Older Adults: SARC-F vs SARC-F Combined With Calf Circumference (SARC-CalF). J Am Med Dir Assoc. 2018; 19: 277.e1–277.e8. – reference: 2) Bischoff-Ferrari HA, Orav JE, et al.: Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int. 2015; 26: 2793–2802. – reference: 32) Lecun Y, Bengio Y, et al.: Deep learning. Nature. 2015; 521: 436–444. – reference: 4) Bahat G, IIhan B, et al.: Sarcopenia and the cardiometabolic syndrome: A narrative review. Eur Geriatr Med. 2016; 7: 220–223. – reference: 24) Kawakami R, Murakami H, et al.: Calf circumference as a surrogate marker of muscle mass for diagnosing sarcopenia in Japanese men and women. Geriatr Gerontol Int. 2015; 15(8): 969–976. – reference: 33) Villani M, Maria C, et al.: Appendicular Skeletal Muscle in Hospitalised Hip-Fracture Patients: Development and Cross-Validation of Anthropometric Prediction Equations Against Dual-Energy X-ray Absorptiometry. Age Ageing. 2014; 43: 857–862. – reference: 18) Gielem E, Beckwee D, et al.: Nutritional interventions to improve muscle mass, muscle strength, and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. 2020; nuaa011. – reference: 26) Gulshan V, Peng L, et al.: Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. Jama. 2016; 316: 2402–2410. – reference: 28) Syed Muhammad A, Muhammad M, et al.: Medical Image Analysis Using Convolutional Neural Networks: A Review. J Med Syst. 2018; 8: 226. – reference: 29) Parthasarathy G, Ramanathan L, et al.: Predicting Source and Age of Brain Tumor Using Canny Edge Detection Algorithm and Threshold Technique. Asian Pac J Cancer Prev. 2019; 25: 1409–1414. – reference: 8) Stefanie L, Mirko P, et al.: Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing. 2016; 45: 602–608. – reference: 10) Vicente V, Neda A, et al.: Sarcopenia Adversely Impacts Postoperative Complications Following Resection or Transplantation in Patients with Primary Liver Tumors. J Gastrointest Surg. 2015; 19: 272–281. – reference: 16) Yoshimura Y, Wakabayashi H, et al.: Interventions for Treating Sarcopenia: A Systematic Review and Meta-Analysis of Randomized Controlled Studies. J Am Med Dir Assoc. 2017; 18(6): 553.e1–553.e16. – reference: 13) Mitsiopoulos N, Baumgartner RN, et al.: Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol. 1998; 85: 115–122. – reference: 17) Hanach N, McCullough F, et al.: The Impact of Dairy Protein Intake on Muscle Mass, Muscle Strength, and Physical Performance in Middle-Aged to Older Adults with or without Existing Sarcopenia: A Systematic Review and Meta-Analysis. Adv Nutr. 2019; 10(1): 59–69. – reference: 22) Tanaka T, Takahashi K, et al.: "Yubi-wakka" (finger-ring) test: A practical self-screening method for sarcopenia, and a predictor of disability and mortality among Japanese community-dwelling older adults. Geriatr Gerontol Int. 2018; 18: 224–232. – reference: 7) Beaudart C, Emmanuel B, et al.: Validation of the SarQoL, a specific health-related quality of life questionnaire for Sarcopenia. J Cachexia Sarcopenia Muscle. 2017; 8: 238–244. – reference: 1) Chen LK, Woo J, et al.: Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020; 21: 300–307. – reference: 5) Bone AE, Hepgul N, et al.: Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis. 2017; 14: 85–99. – reference: 31) International Conference on Learning Representations homepage: On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima. https://openreview.net/forum?id=H1oyRlYgg.(2020 年10 月17 日引用) – reference: 14) Giuseppe S, Marina D, et al.: Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res. 2017; 29: 591–597. – reference: 25) Ribli D, Horvath A, et al.: Detecting and classifying lesions in mammograms with Deep Learning. Sci Rep. 2018; 8: 4165. – reference: 3) Schaap LA, Schoor MN, et al.: Associations of Sarcopenia Definitions, and Their Components, With the Incidence of Recurrent Falling and Fractures: The Longitudinal Aging Study Amsterdam. J Gerontol A Biol Sci Med Sci. 2018; 10: 1199–1204. – reference: 6) Malmstrom TK, Miller DK, et al.: SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016; 7: 28–36. – reference: 23) 伊藤 忠,酒井義人,他:入院高齢患者における下腿最大周径による四肢筋量の簡易推定式.理学療法科学.2016; 31(4): 511–515. – reference: 11) Goodpaster BH, Kelley DE, et al.: Skeletal muscle attenuation determined by computed tomography is associated with skeletal muscle lipid content. J Appl Physiol. 2000; 1: 104–110. – reference: 9) Riccardo A, Barbara Le: When Reporting on Older Patients with Cancer, Frailty Information Is Needed. Ann Surg Oncol. 2011; 18: 4–5. – reference: 15) Yuguchi S, Asahi R, et al.: Gastrocnemius Thickness by Ultrasonography Indicates the Low Skeletal Muscle Mass in Japanese Elderly People. Arch Gerontol Geriatr. 2020; 20: 104093. – reference: 36) Mijnarends DM, Meijers M, et al.: Validity and reliability of tools to measure muscle mass, strength, and physical performance in community-dwelling older people: a systematic review. J Am Med Dir Assoc. 2013; 14(3): 170–178. – reference: 27) Ehteshami B, Veta M, et al.: Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. Jama. 2017; 338; 2199–2210. – reference: 20) Malmstrom K, Morley J: SARC-F: a simple questionnaire to rapidly diagnose sarcopenia. J Am Med Dir Assoc. 2013; 14(8): 531–532. – reference: 30) Honda H, Qureshi A, et al.: Obese sarcopenia in patients with end-stage renal disease is associated with inflammation and increased mortality. Am J Clin Nutr. 2007; 86: 633–638. – reference: 19) Yang M, Xiaoyi H, et al.: SARC-F for Sarcopenia Screening in Community-Dwelling Older Adults: Are 3 Items Enough? Medicine. 2018; 9730: 11726. – reference: 34) Ida S, Murata K, et al.: Development of a Japanese Version of the SARC-F for Diabetic Patients: An Examination of Reliability and Validity. Aging Clin Exp Res. 2017; 29: 935–939. – reference: 35) Eugene B, Anastasia G, et al.: PhotoAgeClock: Deep Learning Algorithms for Development of Non-Invasive Visual Biomarkers of Aging. Aging (Albany NY). 2018: 9: 3249–3259. |
SSID | ssib000872127 ssib022575314 ssib044219340 ssib001527063 ssib005902260 ssj0003304640 ssib003110431 ssib044759789 ssib023161324 |
Score | 1.8226212 |
Snippet | 【目的】下腿のデジタル画像とエッジ検出により低Skeletal Muscle Index(以下,SMI)である高齢女性を判定できるか予備的に検証すること。【方法】入院中の高齢女性を対象とした。デジタルカメラで撮影した対象者の下腿のデジタル画像を用いて,キャニー法でエッジ検出を行った。低SMI... 「要旨」【目的】下腿のデジタル画像とエッジ検出により低Skeletal Muscle Index (以下, SMI) である高齢女性を判定できるか予備的に検証すること. 【方法】入院中の高齢女性を対象とした. デジタルカメラで撮影した対象者の下腿のデジタル画像を用いて, キャニー法でエッジ検出を行った.... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 279 |
SubjectTerms | 機械学習 畳み込みニューラルネットワーク 骨格筋量 高齢者 |
Subtitle | Convolutional Neural Network とエッジ検出を用いた分類による予備的研究 |
Title | 高齢女性の下腿のデジタル画像による低骨格筋肉量判定の可能性 |
URI | https://www.jstage.jst.go.jp/article/rigaku/48/3/48_11970/_article/-char/ja http://mol.medicalonline.jp/library/journal/download?GoodsID=cb3physi/2021/004803/004&name=0279-0286j |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 理学療法学, 2021, Vol.48(3), pp.279-286 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1PaxQxFB9KvQgiior1Hz2Y49ZskplJ8GJmO0tREIQWextmZ2bFFavU9uLJ7iKtFOzFg3gSURSL9eCloKUfZrpt91v4XjK7M6KHqrBkQ-aXlzfvZTbvZTPvOc5VH0x4fEWzlrmYwiyVoqYSmdXSJAVrNokFT81pi9vezJy4Oe_Oj42PVU4tLS-1ppKnf3yv5F-0Cm2gV3xL9i80OyIKDVAH_UIJGobySDomoSI6IEpiJZgmmpHQJdolASehh4cYtE9CDtYi0SEJBQkkkQEJoQRMs3IJKvCxYIawotIsLsEooU8UUAhwCASPugcFWA574RAC-ZGh4VATLZEfTUnQQDp6esgGgBViYGgk6CIRLcxdhETpCocuAnTT9OJIfHiDVfPaMEmJ9AwFEIhnWhQOBHgQi3JHl4ZzrRAMtBWDcJx3hj7IlhsKDaKaJV6iYFQdK8pHfg3eJ0FItDJUFFFBiYdbrxu8FSG1eKsOilRAPkqW-CEMWRaoTyQJ8miOOk4bckYdMqju3LByzwa7I3uuqTSIbhxZPFbhI4xAvSldWTTAgYZFwyZjmcpMG1hxquZRk7Z-tOoJWXm6eXUJs8l9CmuI2UDlvy20Lpi28Hgs3r8XP1iewv-iaWlRjM55Fk9GZGGRkBHHwsCj4UV8vTDqgI9zjPl-HY_l3rpTdRF8TEJQMfGZTysh4zjYr9X4UBiOiJUuPyxX4JCXJwXAnQEDtsxQIAQs2byMd2TiXw4zMKA1h_t9nrBbtYVoi1C9KIJrVQGAEdsBlw5jdZx4aP9mteFuKhbr7CnnZOFqTmorgNPOWCc-49wdbL4e7Lzrf_i2_-xjvrK1t71--HwXKnlvNe9u593dvLd58Op7v7eRr2zm3bW8u76383Lw-dP-2x8HX9YPuy8Gqxv9tff9rTfQq7_x9bC3A6TOOnPNcLYxUyuSq9Q6mIGilrbAs0qox1SWgY_UUorF7Vj4nKXtetrm3M9SL8kkbadpPfYS35XSZe16W6aM0Zjxc874wqOF7LwzGTOMkdXKaAKSShhv0QTq0IcCMU6zCee6lUv02EbQif5mXkw4N34RZlT8AD-JkhY3278RPlyRiY7B8SuiMIehkGBbMI8L98J_MXDROY4D2H3XS8740uJydhk8kaXWFTNVfwKlwfz4 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%AB%98%E9%BD%A2%E5%A5%B3%E6%80%A7%E3%81%AE%E4%B8%8B%E8%85%BF%E3%81%AE%E3%83%87%E3%82%B8%E3%82%BF%E3%83%AB%E7%94%BB%E5%83%8F%E3%81%AB%E3%82%88%E3%82%8B%E4%BD%8E%E9%AA%A8%E6%A0%BC%E7%AD%8B%E8%82%89%E9%87%8F%E5%88%A4%E5%AE%9A%E3%81%AE%E5%8F%AF%E8%83%BD%E6%80%A7&rft.jtitle=%E7%90%86%E5%AD%A6%E7%99%82%E6%B3%95%E5%AD%A6&rft.au=%E4%B8%AD%E5%8F%A3%2C+%E6%8B%93%E7%9C%9F&rft.au=%E8%BF%91%E8%97%A4%2C+%E7%BE%A9%E5%89%9B&rft.au=%E6%A1%91%E7%94%B0%2C+%E4%B8%80%E8%A8%98&rft.au=%E7%94%B0%E6%B4%A5%E5%8E%9F%2C+%E4%BD%91%E4%BB%8B&rft.date=2021&rft.pub=%E6%97%A5%E6%9C%AC%E7%90%86%E5%AD%A6%E7%99%82%E6%B3%95%E5%A3%AB%E5%AD%A6%E4%BC%9A&rft.issn=0289-3770&rft.eissn=2189-602X&rft.volume=48&rft.issue=3&rft.spage=279&rft.epage=286&rft_id=info:doi/10.15063%2Frigaku.11970&rft.externalDocID=article_rigaku_48_3_48_11970_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0289-3770&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0289-3770&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0289-3770&client=summon |