火星のローブ状地形の成因 土石流堆積物逆解析による予察的検討
Saved in:
Published in | 地学雑誌 Vol. 125; no. 1; pp. 163 - 170 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 東京地学協会
25.02.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-135X 1884-0884 |
DOI | 10.5026/jgeography.125.163 |
Cover
Author | 成瀬, 元 |
---|---|
Author_xml | – sequence: 1 fullname: 成瀬, 元 organization: 京都大学大学院理学研究科 |
BookMark | eNpFT71KA0EYXCSCZ8wLWNveud_u7d6mlOAvARsFu-XL7e7ljpiEuzQpQxqxshJBQbEVxcpKn-a45DU8iWgxMzAMM8wmaQxHQ0vINtBAUCZ3s8SOkhzH_WkATAQg-RrxQKnQpzU1iEcpYz5wcbFBWkWR9mgoJQhJI4_sLGcvi7vHcvZWzl_L-Wc5v11ef1QP79XXc20urm6q-6ctsu5wUNjWrzbJ-cH-WefI754eHnf2un4GbRH5qOpRC6ytmECIQLqYK6F6EiMeGxtSMIbJGFVoKFNIlYt4ZJx0xoHljvEmOVn1ZsUEE6vHeXqJ-VRjPknjgdX_R3V9VMOKfyD5XyjuY64z5N9dVmAn |
ContentType | Journal Article |
Copyright | 2016 公益社団法人 東京地学協会 |
Copyright_xml | – notice: 2016 公益社団法人 東京地学協会 |
DOI | 10.5026/jgeography.125.163 |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1884-0884 |
EndPage | 170 |
ExternalDocumentID | article_jgeography_125_1_125_125_163_article_char_ja |
GroupedDBID | -~X ALMA_UNASSIGNED_HOLDINGS JSF KQ8 RJT TN5 ~02 |
ID | FETCH-LOGICAL-j1957-a8188e129825a1716fc3858b6a73cde401dd26ca84d028a08f737df6fdf1e3f23 |
ISSN | 0022-135X |
IngestDate | Wed Sep 03 06:28:12 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j1957-a8188e129825a1716fc3858b6a73cde401dd26ca84d028a08f737df6fdf1e3f23 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jgeography/125/1/125_125.163/_article/-char/ja |
PageCount | 8 |
ParticipantIDs | jstage_primary_article_jgeography_125_1_125_125_163_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2016-02-25 |
PublicationDateYYYYMMDD | 2016-02-25 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-25 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | 地学雑誌 |
PublicationTitleAlternate | 地学雑 |
PublicationYear | 2016 |
Publisher | 公益社団法人 東京地学協会 |
Publisher_xml | – name: 公益社団法人 東京地学協会 |
References | Head, J., Marchant, D., Agnew, M., Fassett, C. and Kreslavsky, M. (2006a): Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663-671. Major, J.J. and Pierson, T.C. (1992): Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28, 841-857. Li, J., Yuan, J., Bi, C. and Luo, D. (1983): The main features of the mudflow in Jiang-Jia Ravine. Zeitschrift für Geomorphologie, 27, 325-341. Malin, M.C., Edgett, K.S., Posiolova, L.V., Mccolley, S.M. and Dobrea, E.Z. (2006b): Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573-1577. Miyamoto, H. (2004): Dynamics of unusual debris flows on Martian sand dunes. Geophysical Research Letters, 31, doi: 10.1029/2004gl020313. Morton, D. and Campbell, R. (1974): Spring mudflows at Wrightwood, southern California. Quarterly Journal of Engineering Geology, 7, 377-384. Pierson, T.C. (1980): Erosion and deposition by debris flows at Mt Thomas, north Canterbury, New Zealand. Earth Surface Processes, 5, 227-247. Mellon, M.T. and Phillips, R.J. (2001): Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research: Planets (1991-2012), 106, 23165-23179. Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D. and Wright, S.P. (2013): Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6, 133-138. Hugenholtz, C. (2008): Frosted granular flow: A new hypothesis for mass wasting in martian gullies. Icarus, 197, 65-72. Schofield, J., Barnes, J.R., Crisp, D., Haberle, R.M., Larsen, S., Magalhaes, J., Murphy, J.R., Seiff, A. and Wilson, G. (1997): The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science, 278, 1752-1758. Cox, A.N. and Allen, C. (2000): Astrophysical Quantities. Springer. Shinbrot, T., Duong, N.H., Kwan, L. and Alvarez, M.M. (2004): Dry granular flows can generate surface features resembling those seen in Martian gullies. Proceedings of the National Academy of Sciences of the United States of America, 101, 8542-8546. Head, J.W., Marchant, D.R., Dickson, J.L., Kress, A.M. and Baker, D.M. (2010): Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth and Planetary Science Letters, 294, 306-320. Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J. and Madsen, M.B. (2015): Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8, 357-361. Curry, R.R. (1966): Observation of alpine mudflows in the Tenmile Range, central Colorado. Geological Society of America Bulletin, 77, 771-776. Head, J.W., Nahm, A.L., Marchant, D.R. and Neukum, G. (2006b): Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33, doi:10.1029/2005GL024360. Pelletier, J.D., Kolb, K.J., Mcewen, A.S. and Kirk, R.L. (2008): Recent bright gully deposits on Mars: Wet or dry flow?. Geology, 36, 211. Costard, F., Forget, F., Mangold, N. and Peulvast, J.P. (2002): Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110-113. Ishii, T., Miyamoto, H. and Sasaki, S. (2005): Formation of Martian gullies by avalanches of seasonal CO2 frost. Journal of the Japanese Society of Snow and Ice, 67, 123-132. Mangold, N., Costard, F. and Forget, F. (2003): Debris flows over sand dunes on Mars: Evidence for liquid water. Journal of Geophysical Research, 108, doi: 10.1029/2002je001958. Craddock, R.A. and Howard, A.D. (2002): The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research: Planets (1991-2012), 107, 21-1-21-36. Jiang, L. and LeBlond, P.H. (1993): Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. Journal of Geophysical Research: Oceans (1978-2012), 98, 10303-10317. Iverson, R.M. (1997): The physics of debris flows. Reviews of geophysics, 35, 245-296. Milliken, R.E. (2003): Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108, doi: 10.1029/2002je002005. Levy, J.S., Head, J.W., Dickson, J.L., Fassett, C.I., Morgan, G.A. and Schon, S.C. (2010): Identification of gully debris flow deposits in Protonilus Mensae, Mars: Characterization of a water-bearing, energetic gully-forming process. Earth and Planetary Science Letters, 294, 368-377. Carr, M.H. (2001): Mars Global Surveyor observations of Martian fretted terrain. Journal of Geophysical Research: Planets (1991-2012), 106, 23571-23593. Musselwhite, D.S., Swindle, T.D. and Lunine, J.I. (2001): Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophysical Research Letters, 28, 1283-1285. Clow, G.D. (1987): Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72, 95-127. Sharp, R.P. and Nobles, L.H. (1953): Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin, 64, 547-560. Imran, J., Harff, P. and Parker, G. (2001): A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences, 27, 717-729. Matsuoka, N. (2016): Permafrost and periglacial processes on the Martian surface. Journal of Geography (Chigaku Zasshi), 125, 63-90. Malin, M.C., Edgett, K.S., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., Mcewen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A. and Warren, J.L. (2006a): PIA08105 Gullies Galore. NASA's Planetary Photojournal. http://photojournal.jpl.nasa.gov/ [Cited 2015/11/11]. Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998): Convergence properties of the Nelder—Mead simplex method in low dimensions. SIAM Journal on Optimization, 9, 112-147. Pratson, L., Imran, J., Parker, G., Syvitski, J.P. and Hutton, E. (2000): Debris flows vs. turbidity currents: A modeling comparison of their dynamics and deposits. Special Publication-SEPM, 68, 57-72. |
References_xml | – reference: Iverson, R.M. (1997): The physics of debris flows. Reviews of geophysics, 35, 245-296. – reference: Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D. and Wright, S.P. (2013): Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6, 133-138. – reference: Jiang, L. and LeBlond, P.H. (1993): Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. Journal of Geophysical Research: Oceans (1978-2012), 98, 10303-10317. – reference: Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J. and Madsen, M.B. (2015): Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8, 357-361. – reference: Malin, M.C., Edgett, K.S., Posiolova, L.V., Mccolley, S.M. and Dobrea, E.Z. (2006b): Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573-1577. – reference: Mellon, M.T. and Phillips, R.J. (2001): Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research: Planets (1991-2012), 106, 23165-23179. – reference: Ishii, T., Miyamoto, H. and Sasaki, S. (2005): Formation of Martian gullies by avalanches of seasonal CO2 frost. Journal of the Japanese Society of Snow and Ice, 67, 123-132. – reference: Major, J.J. and Pierson, T.C. (1992): Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28, 841-857. – reference: Imran, J., Harff, P. and Parker, G. (2001): A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences, 27, 717-729. – reference: Craddock, R.A. and Howard, A.D. (2002): The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research: Planets (1991-2012), 107, 21-1-21-36. – reference: Hugenholtz, C. (2008): Frosted granular flow: A new hypothesis for mass wasting in martian gullies. Icarus, 197, 65-72. – reference: Malin, M.C., Edgett, K.S., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., Mcewen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A. and Warren, J.L. (2006a): PIA08105 Gullies Galore. NASA's Planetary Photojournal. http://photojournal.jpl.nasa.gov/ [Cited 2015/11/11]. – reference: Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998): Convergence properties of the Nelder—Mead simplex method in low dimensions. SIAM Journal on Optimization, 9, 112-147. – reference: Head, J.W., Marchant, D.R., Dickson, J.L., Kress, A.M. and Baker, D.M. (2010): Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth and Planetary Science Letters, 294, 306-320. – reference: Levy, J.S., Head, J.W., Dickson, J.L., Fassett, C.I., Morgan, G.A. and Schon, S.C. (2010): Identification of gully debris flow deposits in Protonilus Mensae, Mars: Characterization of a water-bearing, energetic gully-forming process. Earth and Planetary Science Letters, 294, 368-377. – reference: Pierson, T.C. (1980): Erosion and deposition by debris flows at Mt Thomas, north Canterbury, New Zealand. Earth Surface Processes, 5, 227-247. – reference: Matsuoka, N. (2016): Permafrost and periglacial processes on the Martian surface. Journal of Geography (Chigaku Zasshi), 125, 63-90. – reference: Morton, D. and Campbell, R. (1974): Spring mudflows at Wrightwood, southern California. Quarterly Journal of Engineering Geology, 7, 377-384. – reference: Schofield, J., Barnes, J.R., Crisp, D., Haberle, R.M., Larsen, S., Magalhaes, J., Murphy, J.R., Seiff, A. and Wilson, G. (1997): The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science, 278, 1752-1758. – reference: Sharp, R.P. and Nobles, L.H. (1953): Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin, 64, 547-560. – reference: Shinbrot, T., Duong, N.H., Kwan, L. and Alvarez, M.M. (2004): Dry granular flows can generate surface features resembling those seen in Martian gullies. Proceedings of the National Academy of Sciences of the United States of America, 101, 8542-8546. – reference: Head, J., Marchant, D., Agnew, M., Fassett, C. and Kreslavsky, M. (2006a): Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663-671. – reference: Mangold, N., Costard, F. and Forget, F. (2003): Debris flows over sand dunes on Mars: Evidence for liquid water. Journal of Geophysical Research, 108, doi: 10.1029/2002je001958. – reference: Pelletier, J.D., Kolb, K.J., Mcewen, A.S. and Kirk, R.L. (2008): Recent bright gully deposits on Mars: Wet or dry flow?. Geology, 36, 211. – reference: Clow, G.D. (1987): Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72, 95-127. – reference: Miyamoto, H. (2004): Dynamics of unusual debris flows on Martian sand dunes. Geophysical Research Letters, 31, doi: 10.1029/2004gl020313. – reference: Li, J., Yuan, J., Bi, C. and Luo, D. (1983): The main features of the mudflow in Jiang-Jia Ravine. Zeitschrift für Geomorphologie, 27, 325-341. – reference: Milliken, R.E. (2003): Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108, doi: 10.1029/2002je002005. – reference: Costard, F., Forget, F., Mangold, N. and Peulvast, J.P. (2002): Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110-113. – reference: Cox, A.N. and Allen, C. (2000): Astrophysical Quantities. Springer. – reference: Musselwhite, D.S., Swindle, T.D. and Lunine, J.I. (2001): Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophysical Research Letters, 28, 1283-1285. – reference: Carr, M.H. (2001): Mars Global Surveyor observations of Martian fretted terrain. Journal of Geophysical Research: Planets (1991-2012), 106, 23571-23593. – reference: Curry, R.R. (1966): Observation of alpine mudflows in the Tenmile Range, central Colorado. Geological Society of America Bulletin, 77, 771-776. – reference: Head, J.W., Nahm, A.L., Marchant, D.R. and Neukum, G. (2006b): Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33, doi:10.1029/2005GL024360. – reference: Pratson, L., Imran, J., Parker, G., Syvitski, J.P. and Hutton, E. (2000): Debris flows vs. turbidity currents: A modeling comparison of their dynamics and deposits. Special Publication-SEPM, 68, 57-72. |
SSID | ssib046615607 ssib000953964 ssib002549589 ssj0000389124 |
Score | 2.0286279 |
SourceID | jstage |
SourceType | Publisher |
StartPage | 163 |
SubjectTerms | ビンガム流体 土石流 数値モデル 火星のガリー地形 火星の液相の水 逆解析 |
Subtitle | 土石流堆積物逆解析による予察的検討 |
Title | 火星のローブ状地形の成因 |
URI | https://www.jstage.jst.go.jp/article/jgeography/125/1/125_125.163/_article/-char/ja |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 地学雑誌, 2016/02/25, Vol.125(1), pp.163-170 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA_DetCL-Inf7GFzko6Tps3HMe10XRQFYRf2VtI2EeawisxevC1zEU-eRFBQvIriyZP-NcPs3vwbfEk6Mx3Xgy7CTHhk3nvz0te-_JLmJQhtaMINdCwmkqyWUaKJiYQ1TVRLZiuR1rZKXXLyg4dsaye5t5vu9no_O6uW9sdVv37-x7ySk3gV6sCvLkv2Hzy7UAoVQIN_oQQPQ_lXPsYFBySIVYYLhqXAchMX1NcUnqBYDVsiy1tCMi-lcAZEimWOs4EjsiFWcUecYQEK_U8yw2rQRbErgvAXClRJxyYJLgRWCovF5GtHE3fLKlTuvOoEBXxod9aB-IXKIUPZ3yctF4iALKgHq4FQCc6KuV3U6c-gWSkuoB6apW77qzHEGWmrnPxxg0H1EMvE8-RYqm78hqEzoelu6L1CyBYiiSBWJisxvbW1e_OGCE3aeBo6exJOLfm9H0kH_uTL0WPT7hveB4X9hejK_tyt98slcwnMJQml-zJazplcKl05Ajx_KubcLyu4_6gDh2VKV9-Cw_B1eRpAAlgKACpfzCG6zRFJnMw3xHcXJuSFOfvvHLceUNYIxhzz9YoeQm2fQ2fbsc-6ClaeR72RvoBO353LX0QbRwefDt-8nx58mU4-Tyffp5PXRy-_zd59nf34CJWHL17N3n64hHY2i-18K2qP8YhGRKY80oAJhQFcKeJUu92ZbO3eRldMc1o3Bgb4TROzWoukAbCrB8JyyhvLbGOJoTaml9Ha3pM9cwWtGxhA29pawOBxornVmhFSxVxLCzDX6qsoDw0sn4a9WsqTeOfaf9FyHZ1ZPjg30Nr42b65CQB2XN3yXv8FDz2AqA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%81%AB%E6%98%9F%E3%81%AE%E3%83%AD%E3%83%BC%E3%83%96%E7%8A%B6%E5%9C%B0%E5%BD%A2%E3%81%AE%E6%88%90%E5%9B%A0&rft.jtitle=%E5%9C%B0%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E6%88%90%E7%80%AC%2C+%E5%85%83&rft.date=2016-02-25&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%9D%B1%E4%BA%AC%E5%9C%B0%E5%AD%A6%E5%8D%94%E4%BC%9A&rft.issn=0022-135X&rft.eissn=1884-0884&rft.volume=125&rft.issue=1&rft.spage=163&rft.epage=170&rft_id=info:doi/10.5026%2Fjgeography.125.163&rft.externalDocID=article_jgeography_125_1_125_125_163_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-135X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-135X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-135X&client=summon |