火星のローブ状地形の成因 土石流堆積物逆解析による予察的検討

Saved in:
Bibliographic Details
Published in地学雑誌 Vol. 125; no. 1; pp. 163 - 170
Main Author 成瀬, 元
Format Journal Article
LanguageJapanese
Published 公益社団法人 東京地学協会 25.02.2016
Subjects
Online AccessGet full text
ISSN0022-135X
1884-0884
DOI10.5026/jgeography.125.163

Cover

Author 成瀬, 元
Author_xml – sequence: 1
  fullname: 成瀬, 元
  organization: 京都大学大学院理学研究科
BookMark eNpFT71KA0EYXCSCZ8wLWNveud_u7d6mlOAvARsFu-XL7e7ljpiEuzQpQxqxshJBQbEVxcpKn-a45DU8iWgxMzAMM8wmaQxHQ0vINtBAUCZ3s8SOkhzH_WkATAQg-RrxQKnQpzU1iEcpYz5wcbFBWkWR9mgoJQhJI4_sLGcvi7vHcvZWzl_L-Wc5v11ef1QP79XXc20urm6q-6ctsu5wUNjWrzbJ-cH-WefI754eHnf2un4GbRH5qOpRC6ytmECIQLqYK6F6EiMeGxtSMIbJGFVoKFNIlYt4ZJx0xoHljvEmOVn1ZsUEE6vHeXqJ-VRjPknjgdX_R3V9VMOKfyD5XyjuY64z5N9dVmAn
ContentType Journal Article
Copyright 2016 公益社団法人 東京地学協会
Copyright_xml – notice: 2016 公益社団法人 東京地学協会
DOI 10.5026/jgeography.125.163
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1884-0884
EndPage 170
ExternalDocumentID article_jgeography_125_1_125_125_163_article_char_ja
GroupedDBID -~X
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
TN5
~02
ID FETCH-LOGICAL-j1957-a8188e129825a1716fc3858b6a73cde401dd26ca84d028a08f737df6fdf1e3f23
ISSN 0022-135X
IngestDate Wed Sep 03 06:28:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j1957-a8188e129825a1716fc3858b6a73cde401dd26ca84d028a08f737df6fdf1e3f23
OpenAccessLink https://www.jstage.jst.go.jp/article/jgeography/125/1/125_125.163/_article/-char/ja
PageCount 8
ParticipantIDs jstage_primary_article_jgeography_125_1_125_125_163_article_char_ja
PublicationCentury 2000
PublicationDate 2016-02-25
PublicationDateYYYYMMDD 2016-02-25
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-02-25
  day: 25
PublicationDecade 2010
PublicationTitle 地学雑誌
PublicationTitleAlternate 地学雑
PublicationYear 2016
Publisher 公益社団法人 東京地学協会
Publisher_xml – name: 公益社団法人 東京地学協会
References Head, J., Marchant, D., Agnew, M., Fassett, C. and Kreslavsky, M. (2006a): Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663-671.
Major, J.J. and Pierson, T.C. (1992): Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28, 841-857.
Li, J., Yuan, J., Bi, C. and Luo, D. (1983): The main features of the mudflow in Jiang-Jia Ravine. Zeitschrift für Geomorphologie, 27, 325-341.
Malin, M.C., Edgett, K.S., Posiolova, L.V., Mccolley, S.M. and Dobrea, E.Z. (2006b): Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573-1577.
Miyamoto, H. (2004): Dynamics of unusual debris flows on Martian sand dunes. Geophysical Research Letters, 31, doi: 10.1029/2004gl020313.
Morton, D. and Campbell, R. (1974): Spring mudflows at Wrightwood, southern California. Quarterly Journal of Engineering Geology, 7, 377-384.
Pierson, T.C. (1980): Erosion and deposition by debris flows at Mt Thomas, north Canterbury, New Zealand. Earth Surface Processes, 5, 227-247.
Mellon, M.T. and Phillips, R.J. (2001): Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research: Planets (1991-2012), 106, 23165-23179.
Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D. and Wright, S.P. (2013): Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6, 133-138.
Hugenholtz, C. (2008): Frosted granular flow: A new hypothesis for mass wasting in martian gullies. Icarus, 197, 65-72.
Schofield, J., Barnes, J.R., Crisp, D., Haberle, R.M., Larsen, S., Magalhaes, J., Murphy, J.R., Seiff, A. and Wilson, G. (1997): The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science, 278, 1752-1758.
Cox, A.N. and Allen, C. (2000): Astrophysical Quantities. Springer.
Shinbrot, T., Duong, N.H., Kwan, L. and Alvarez, M.M. (2004): Dry granular flows can generate surface features resembling those seen in Martian gullies. Proceedings of the National Academy of Sciences of the United States of America, 101, 8542-8546.
Head, J.W., Marchant, D.R., Dickson, J.L., Kress, A.M. and Baker, D.M. (2010): Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth and Planetary Science Letters, 294, 306-320.
Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J. and Madsen, M.B. (2015): Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8, 357-361.
Curry, R.R. (1966): Observation of alpine mudflows in the Tenmile Range, central Colorado. Geological Society of America Bulletin, 77, 771-776.
Head, J.W., Nahm, A.L., Marchant, D.R. and Neukum, G. (2006b): Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33, doi:10.1029/2005GL024360.
Pelletier, J.D., Kolb, K.J., Mcewen, A.S. and Kirk, R.L. (2008): Recent bright gully deposits on Mars: Wet or dry flow?. Geology, 36, 211.
Costard, F., Forget, F., Mangold, N. and Peulvast, J.P. (2002): Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110-113.
Ishii, T., Miyamoto, H. and Sasaki, S. (2005): Formation of Martian gullies by avalanches of seasonal CO2 frost. Journal of the Japanese Society of Snow and Ice, 67, 123-132.
Mangold, N., Costard, F. and Forget, F. (2003): Debris flows over sand dunes on Mars: Evidence for liquid water. Journal of Geophysical Research, 108, doi: 10.1029/2002je001958.
Craddock, R.A. and Howard, A.D. (2002): The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research: Planets (1991-2012), 107, 21-1-21-36.
Jiang, L. and LeBlond, P.H. (1993): Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. Journal of Geophysical Research: Oceans (1978-2012), 98, 10303-10317.
Iverson, R.M. (1997): The physics of debris flows. Reviews of geophysics, 35, 245-296.
Milliken, R.E. (2003): Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108, doi: 10.1029/2002je002005.
Levy, J.S., Head, J.W., Dickson, J.L., Fassett, C.I., Morgan, G.A. and Schon, S.C. (2010): Identification of gully debris flow deposits in Protonilus Mensae, Mars: Characterization of a water-bearing, energetic gully-forming process. Earth and Planetary Science Letters, 294, 368-377.
Carr, M.H. (2001): Mars Global Surveyor observations of Martian fretted terrain. Journal of Geophysical Research: Planets (1991-2012), 106, 23571-23593.
Musselwhite, D.S., Swindle, T.D. and Lunine, J.I. (2001): Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophysical Research Letters, 28, 1283-1285.
Clow, G.D. (1987): Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72, 95-127.
Sharp, R.P. and Nobles, L.H. (1953): Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin, 64, 547-560.
Imran, J., Harff, P. and Parker, G. (2001): A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences, 27, 717-729.
Matsuoka, N. (2016): Permafrost and periglacial processes on the Martian surface. Journal of Geography (Chigaku Zasshi), 125, 63-90.
Malin, M.C., Edgett, K.S., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., Mcewen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A. and Warren, J.L. (2006a): PIA08105 Gullies Galore. NASA's Planetary Photojournal. http://photojournal.jpl.nasa.gov/ [Cited 2015/11/11].
Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998): Convergence properties of the Nelder—Mead simplex method in low dimensions. SIAM Journal on Optimization, 9, 112-147.
Pratson, L., Imran, J., Parker, G., Syvitski, J.P. and Hutton, E. (2000): Debris flows vs. turbidity currents: A modeling comparison of their dynamics and deposits. Special Publication-SEPM, 68, 57-72.
References_xml – reference: Iverson, R.M. (1997): The physics of debris flows. Reviews of geophysics, 35, 245-296.
– reference: Michalski, J.R., Cuadros, J., Niles, P.B., Parnell, J., Rogers, A.D. and Wright, S.P. (2013): Groundwater activity on Mars and implications for a deep biosphere. Nature Geoscience, 6, 133-138.
– reference: Jiang, L. and LeBlond, P.H. (1993): Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. Journal of Geophysical Research: Oceans (1978-2012), 98, 10303-10317.
– reference: Martín-Torres, F.J., Zorzano, M.-P., Valentín-Serrano, P., Harri, A.-M., Genzer, M., Kemppinen, O., Rivera-Valentin, E.G., Jun, I., Wray, J. and Madsen, M.B. (2015): Transient liquid water and water activity at Gale crater on Mars. Nature Geoscience, 8, 357-361.
– reference: Malin, M.C., Edgett, K.S., Posiolova, L.V., Mccolley, S.M. and Dobrea, E.Z. (2006b): Present-day impact cratering rate and contemporary gully activity on Mars. Science, 314, 1573-1577.
– reference: Mellon, M.T. and Phillips, R.J. (2001): Recent gullies on Mars and the source of liquid water. Journal of Geophysical Research: Planets (1991-2012), 106, 23165-23179.
– reference: Ishii, T., Miyamoto, H. and Sasaki, S. (2005): Formation of Martian gullies by avalanches of seasonal CO2 frost. Journal of the Japanese Society of Snow and Ice, 67, 123-132.
– reference: Major, J.J. and Pierson, T.C. (1992): Debris flow rheology: Experimental analysis of fine-grained slurries. Water Resources Research, 28, 841-857.
– reference: Imran, J., Harff, P. and Parker, G. (2001): A numerical model of submarine debris flow with graphical user interface. Computers & Geosciences, 27, 717-729.
– reference: Craddock, R.A. and Howard, A.D. (2002): The case for rainfall on a warm, wet early Mars. Journal of Geophysical Research: Planets (1991-2012), 107, 21-1-21-36.
– reference: Hugenholtz, C. (2008): Frosted granular flow: A new hypothesis for mass wasting in martian gullies. Icarus, 197, 65-72.
– reference: Malin, M.C., Edgett, K.S., Carr, M.H., Danielson, G.E., Davies, M.E., Hartmann, W.K., Ingersoll, A.P., James, P.B., Masursky, H., Mcewen, A.S., Soderblom, L.A., Thomas, P., Veverka, J., Caplinger, M.A., Ravine, M.A., Soulanille, T.A. and Warren, J.L. (2006a): PIA08105 Gullies Galore. NASA's Planetary Photojournal. http://photojournal.jpl.nasa.gov/ [Cited 2015/11/11].
– reference: Lagarias, J.C., Reeds, J.A., Wright, M.H. and Wright, P.E. (1998): Convergence properties of the Nelder—Mead simplex method in low dimensions. SIAM Journal on Optimization, 9, 112-147.
– reference: Head, J.W., Marchant, D.R., Dickson, J.L., Kress, A.M. and Baker, D.M. (2010): Northern mid-latitude glaciation in the Late Amazonian period of Mars: Criteria for the recognition of debris-covered glacier and valley glacier landsystem deposits. Earth and Planetary Science Letters, 294, 306-320.
– reference: Levy, J.S., Head, J.W., Dickson, J.L., Fassett, C.I., Morgan, G.A. and Schon, S.C. (2010): Identification of gully debris flow deposits in Protonilus Mensae, Mars: Characterization of a water-bearing, energetic gully-forming process. Earth and Planetary Science Letters, 294, 368-377.
– reference: Pierson, T.C. (1980): Erosion and deposition by debris flows at Mt Thomas, north Canterbury, New Zealand. Earth Surface Processes, 5, 227-247.
– reference: Matsuoka, N. (2016): Permafrost and periglacial processes on the Martian surface. Journal of Geography (Chigaku Zasshi), 125, 63-90.
– reference: Morton, D. and Campbell, R. (1974): Spring mudflows at Wrightwood, southern California. Quarterly Journal of Engineering Geology, 7, 377-384.
– reference: Schofield, J., Barnes, J.R., Crisp, D., Haberle, R.M., Larsen, S., Magalhaes, J., Murphy, J.R., Seiff, A. and Wilson, G. (1997): The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science, 278, 1752-1758.
– reference: Sharp, R.P. and Nobles, L.H. (1953): Mudflow of 1941 at Wrightwood, southern California. Geological Society of America Bulletin, 64, 547-560.
– reference: Shinbrot, T., Duong, N.H., Kwan, L. and Alvarez, M.M. (2004): Dry granular flows can generate surface features resembling those seen in Martian gullies. Proceedings of the National Academy of Sciences of the United States of America, 101, 8542-8546.
– reference: Head, J., Marchant, D., Agnew, M., Fassett, C. and Kreslavsky, M. (2006a): Extensive valley glacier deposits in the northern mid-latitudes of Mars: Evidence for Late Amazonian obliquity-driven climate change. Earth and Planetary Science Letters, 241, 663-671.
– reference: Mangold, N., Costard, F. and Forget, F. (2003): Debris flows over sand dunes on Mars: Evidence for liquid water. Journal of Geophysical Research, 108, doi: 10.1029/2002je001958.
– reference: Pelletier, J.D., Kolb, K.J., Mcewen, A.S. and Kirk, R.L. (2008): Recent bright gully deposits on Mars: Wet or dry flow?. Geology, 36, 211.
– reference: Clow, G.D. (1987): Generation of liquid water on Mars through the melting of a dusty snowpack. Icarus, 72, 95-127.
– reference: Miyamoto, H. (2004): Dynamics of unusual debris flows on Martian sand dunes. Geophysical Research Letters, 31, doi: 10.1029/2004gl020313.
– reference: Li, J., Yuan, J., Bi, C. and Luo, D. (1983): The main features of the mudflow in Jiang-Jia Ravine. Zeitschrift für Geomorphologie, 27, 325-341.
– reference: Milliken, R.E. (2003): Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. Journal of Geophysical Research, 108, doi: 10.1029/2002je002005.
– reference: Costard, F., Forget, F., Mangold, N. and Peulvast, J.P. (2002): Formation of recent martian debris flows by melting of near-surface ground ice at high obliquity. Science, 295, 110-113.
– reference: Cox, A.N. and Allen, C. (2000): Astrophysical Quantities. Springer.
– reference: Musselwhite, D.S., Swindle, T.D. and Lunine, J.I. (2001): Liquid CO2 breakout and the formation of recent small gullies on Mars. Geophysical Research Letters, 28, 1283-1285.
– reference: Carr, M.H. (2001): Mars Global Surveyor observations of Martian fretted terrain. Journal of Geophysical Research: Planets (1991-2012), 106, 23571-23593.
– reference: Curry, R.R. (1966): Observation of alpine mudflows in the Tenmile Range, central Colorado. Geological Society of America Bulletin, 77, 771-776.
– reference: Head, J.W., Nahm, A.L., Marchant, D.R. and Neukum, G. (2006b): Modification of the dichotomy boundary on Mars by Amazonian mid-latitude regional glaciation. Geophysical Research Letters, 33, doi:10.1029/2005GL024360.
– reference: Pratson, L., Imran, J., Parker, G., Syvitski, J.P. and Hutton, E. (2000): Debris flows vs. turbidity currents: A modeling comparison of their dynamics and deposits. Special Publication-SEPM, 68, 57-72.
SSID ssib046615607
ssib000953964
ssib002549589
ssj0000389124
Score 2.0286279
SourceID jstage
SourceType Publisher
StartPage 163
SubjectTerms ビンガム流体
土石流
数値モデル
火星のガリー地形
火星の液相の水
逆解析
Subtitle 土石流堆積物逆解析による予察的検討
Title 火星のローブ状地形の成因
URI https://www.jstage.jst.go.jp/article/jgeography/125/1/125_125.163/_article/-char/ja
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 地学雑誌, 2016/02/25, Vol.125(1), pp.163-170
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA_DetCL-Inf7GFzko6Tps3HMe10XRQFYRf2VtI2EeawisxevC1zEU-eRFBQvIriyZP-NcPs3vwbfEk6Mx3Xgy7CTHhk3nvz0te-_JLmJQhtaMINdCwmkqyWUaKJiYQ1TVRLZiuR1rZKXXLyg4dsaye5t5vu9no_O6uW9sdVv37-x7ySk3gV6sCvLkv2Hzy7UAoVQIN_oQQPQ_lXPsYFBySIVYYLhqXAchMX1NcUnqBYDVsiy1tCMi-lcAZEimWOs4EjsiFWcUecYQEK_U8yw2rQRbErgvAXClRJxyYJLgRWCovF5GtHE3fLKlTuvOoEBXxod9aB-IXKIUPZ3yctF4iALKgHq4FQCc6KuV3U6c-gWSkuoB6apW77qzHEGWmrnPxxg0H1EMvE8-RYqm78hqEzoelu6L1CyBYiiSBWJisxvbW1e_OGCE3aeBo6exJOLfm9H0kH_uTL0WPT7hveB4X9hejK_tyt98slcwnMJQml-zJazplcKl05Ajx_KubcLyu4_6gDh2VKV9-Cw_B1eRpAAlgKACpfzCG6zRFJnMw3xHcXJuSFOfvvHLceUNYIxhzz9YoeQm2fQ2fbsc-6ClaeR72RvoBO353LX0QbRwefDt-8nx58mU4-Tyffp5PXRy-_zd59nf34CJWHL17N3n64hHY2i-18K2qP8YhGRKY80oAJhQFcKeJUu92ZbO3eRldMc1o3Bgb4TROzWoukAbCrB8JyyhvLbGOJoTaml9Ha3pM9cwWtGxhA29pawOBxornVmhFSxVxLCzDX6qsoDw0sn4a9WsqTeOfaf9FyHZ1ZPjg30Nr42b65CQB2XN3yXv8FDz2AqA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E7%81%AB%E6%98%9F%E3%81%AE%E3%83%AD%E3%83%BC%E3%83%96%E7%8A%B6%E5%9C%B0%E5%BD%A2%E3%81%AE%E6%88%90%E5%9B%A0&rft.jtitle=%E5%9C%B0%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E6%88%90%E7%80%AC%2C+%E5%85%83&rft.date=2016-02-25&rft.pub=%E5%85%AC%E7%9B%8A%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%9D%B1%E4%BA%AC%E5%9C%B0%E5%AD%A6%E5%8D%94%E4%BC%9A&rft.issn=0022-135X&rft.eissn=1884-0884&rft.volume=125&rft.issue=1&rft.spage=163&rft.epage=170&rft_id=info:doi/10.5026%2Fjgeography.125.163&rft.externalDocID=article_jgeography_125_1_125_125_163_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-135X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-135X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-135X&client=summon