Nonsymmetrical Rigid Punch Problem for a Semi-Infinite Body with Inhomogeneous Material Property
In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation G (z)=G0 (1+z/a)m (G0, α and m are constants) is developed. In our previous paper, we derived the fundamental equations system for such inho...
Saved in:
Published in | Transactions of the Japan Society of Mechanical Engineers Series A Vol. 65; no. 630; pp. 364 - 371 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
The Japan Society of Mechanical Engineers
1999
|
Subjects | |
Online Access | Get full text |
ISSN | 0387-5008 1884-8338 |
DOI | 10.1299/kikaia.65.364 |
Cover
Loading…
Abstract | In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation G (z)=G0 (1+z/a)m (G0, α and m are constants) is developed. In our previous paper, we derived the fundamental equations system for such inhomogeneous medium by using three kinds of displacement functions and applied them to determining the elastic stress distribution in a semi-infinite body subject to an arbitrary shaped distributed load (not necessarily axisymmetric) on its plane surface. In this paper, we apply these fundamental equations system to the inhomogeneous semi-infinite body whose plane surface is penetrated slowly by a rigid cylindrical punch of arbitrary shape. As an example, we consider the case where the inclined flat-ended cylinder indents the plane surface of the inhomogeneous semi-infinite body. Numerical calculations are carried out for several cases taking into account the variation in inhomogeneous elastic properties, and the numerical results for displacements, stress and stress intensity factor at the edge of the rigid punch are shown graphically. |
---|---|
AbstractList | In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation G (z)=G0 (1+z/a)m (G0, α and m are constants) is developed. In our previous paper, we derived the fundamental equations system for such inhomogeneous medium by using three kinds of displacement functions and applied them to determining the elastic stress distribution in a semi-infinite body subject to an arbitrary shaped distributed load (not necessarily axisymmetric) on its plane surface. In this paper, we apply these fundamental equations system to the inhomogeneous semi-infinite body whose plane surface is penetrated slowly by a rigid cylindrical punch of arbitrary shape. As an example, we consider the case where the inclined flat-ended cylinder indents the plane surface of the inhomogeneous semi-infinite body. Numerical calculations are carried out for several cases taking into account the variation in inhomogeneous elastic properties, and the numerical results for displacements, stress and stress intensity factor at the edge of the rigid punch are shown graphically. |
Author | TANIGAWA, Yoshinobu MORISHITA, Hiroyuki |
Author_xml | – sequence: 1 fullname: TANIGAWA, Yoshinobu – sequence: 1 fullname: MORISHITA, Hiroyuki |
BookMark | eNo9kMlOwzAURS0EEqV0yd4_kOIhcewlVAxFBSqGdXhJXlq3iV05rlD-nkoFVmdz71mcC3LqvENCrjibcmHM9dZuwcJUZVOp0hMy4lqniZZSn5IRkzpPMsb0OZn0vS0ZkzznTIkR-Xrxrh-6DmOwFbT0za5sTZd7V63pMviyxY42PlCg79jZZO4a62xEeuvrgX7buKZzt_adX6FDv-_pM0QM9iA6nHcY4nBJzhpoe5z8ckw-7-8-Zo_J4vVhPrtZJBtuREy0wDJDoaQQTIPRyvC8TLECnrNUaaNykaWom9SkdYamAqlqU-bamKw0AKUck6ejd9NHWGGxC7aDMBQQoq1aLI59uMlNobJCSfaHQ67_UbWGUKCTP-QDZ6k |
ContentType | Journal Article |
Copyright | The Japan Society of Mechanical Engineers |
Copyright_xml | – notice: The Japan Society of Mechanical Engineers |
DOI | 10.1299/kikaia.65.364 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1884-8338 |
EndPage | 371 |
ExternalDocumentID | article_kikaia1979_65_630_65_630_364_article_char_en |
GroupedDBID | ALMA_UNASSIGNED_HOLDINGS JSF |
ID | FETCH-LOGICAL-j192t-82eb5e2632208a986917b4eca170468967254e8f494d5e9ca36d9b78995b9aab3 |
ISSN | 0387-5008 |
IngestDate | Wed Sep 03 06:29:24 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 630 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j192t-82eb5e2632208a986917b4eca170468967254e8f494d5e9ca36d9b78995b9aab3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/kikaia1979/65/630/65_630_364/_article/-char/en |
PageCount | 8 |
ParticipantIDs | jstage_primary_article_kikaia1979_65_630_65_630_364_article_char_en |
PublicationCentury | 1900 |
PublicationDate | 1999-00-00 |
PublicationDateYYYYMMDD | 1999-01-01 |
PublicationDate_xml | – year: 1999 text: 1999-00-00 |
PublicationDecade | 1990 |
PublicationTitle | Transactions of the Japan Society of Mechanical Engineers Series A |
PublicationTitleAlternate | JSMET |
PublicationYear | 1999 |
Publisher | The Japan Society of Mechanical Engineers |
Publisher_xml | – name: The Japan Society of Mechanical Engineers |
References | (4) 谷川義信•銭相杓•畑俊明, Kassirの不均質特牲を有する 半無限体の軸対称弾性解析, 機論, 63-608, A(1997), 742- 749. (2) Kassir, M, K. and Sih, G. C., Three-Dimensional Crack Problems, Mech. Fract., 2(1975), 382-409, Noordhoff. (8) 宮本博, 3次元弾性論, (1967), 16, 裳華房. (3) 谷川義信•銭相杓•曽根大輔, カシヤの不均質体における 軸対称熱弾性問題の定式化と半無限体に対する熱応力解 析, 機論, 63-605, A(1997), 94-101. (6) 森下博之•谷川義信, 不均質材料の三次元弾性問題の定式 化と半無限体に対する解析例, 機論, 64-623, A(1998), 97 -104. (5) 銭相杓•谷川義信, 不均質材料特性を有する半無限体の軸 対称圧入問題, 機論, 64-617, A(1998), 73-79. (1) Kassir, M. K., Boussinesq problem for non homogeneous solid, Journal of the Engineering Mechanics Division, ASCE, 98, EM2(1972), 457-470. (7) Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, (1966), 106-118, North-Holland Pub. Co. |
References_xml | – reference: (4) 谷川義信•銭相杓•畑俊明, Kassirの不均質特牲を有する 半無限体の軸対称弾性解析, 機論, 63-608, A(1997), 742- 749. – reference: (2) Kassir, M, K. and Sih, G. C., Three-Dimensional Crack Problems, Mech. Fract., 2(1975), 382-409, Noordhoff. – reference: (3) 谷川義信•銭相杓•曽根大輔, カシヤの不均質体における 軸対称熱弾性問題の定式化と半無限体に対する熱応力解 析, 機論, 63-605, A(1997), 94-101. – reference: (6) 森下博之•谷川義信, 不均質材料の三次元弾性問題の定式 化と半無限体に対する解析例, 機論, 64-623, A(1998), 97 -104. – reference: (8) 宮本博, 3次元弾性論, (1967), 16, 裳華房. – reference: (7) Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, (1966), 106-118, North-Holland Pub. Co. – reference: (5) 銭相杓•谷川義信, 不均質材料特性を有する半無限体の軸 対称圧入問題, 機論, 64-617, A(1998), 73-79. – reference: (1) Kassir, M. K., Boussinesq problem for non homogeneous solid, Journal of the Engineering Mechanics Division, ASCE, 98, EM2(1972), 457-470. |
SSID | ssib003171062 ssib020472909 ssib012348311 ssib023160638 ssib006634344 ssib005439746 ssib002252314 ssib000936936 ssib003117832 ssib002223790 ssj0000578916 ssib002222542 ssj0000608107 |
Score | 1.5105349 |
Snippet | In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation... |
SourceID | jstage |
SourceType | Publisher |
StartPage | 364 |
SubjectTerms | Analytical Treatment Elasticity Inhomogeneous Medium Rigid Punch Problem Semi-Infinite Body Singular Stress Field Stress Intensity Factor Three Dimensional Problem |
Title | Nonsymmetrical Rigid Punch Problem for a Semi-Infinite Body with Inhomogeneous Material Property |
URI | https://www.jstage.jst.go.jp/article/kikaia1979/65/630/65_630_364/_article/-char/en |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Transactions of the Japan Society of Mechanical Engineers Series A, 1999/02/25, Vol.65(630), pp.364-371 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfKuMAB8SlggHzgNqUksRPbx24C2qEVmDKxW3ASl6VVm2lrD-X_4__ivThuEsFhTFzSNo2dyO_bee_3CHnLIdyaFXrmhaJQHpe58tAMe5opbSIhRFC_wT-ZxuMzfnwenQ8GvzpZS5t1Nsx__rWu5DZUhXNAV6yS_QfK7iaFE_Ad6AtHoDAcb0TjKUy8XS6xKRYu9Wn5oywOvoClusACAGwUY5MkQSMsS2-ympXoYR4cVsXWbsBOVhfVsoL5DWbCnuh1_dQ4-BIxd7uea9I2Fr92iQXHYGlXu8RPTKYxWEhcP4wDOrxGdQTheLtpmoymk4-jb6Na-1e4BVZlmx3hP5_iFlpS_zsur6rtZlG2WxMIZ7Bjo-Smj9DRdgjyG_m-VcbGamMpObCOhX9x6tq2lmjYMm5e6ljtyywgemPIme3t8oeNAAMMhF2UC13qYRwNd6N6sNsNUVN7XaCESuMohfu5DxiWuouwQg4Y8g65GwJ3Y2bpp68dLxebJrIuKh0oUR52fzPRK0eOwl5TgSAQslP-Cy4fBPIdlDV0KjtRPTiRnLVeG_gmXLJWjYcIEKpa1Da4V-w7NWwh8YV0UYN1aMBvtMADjkgNWi0s5bveQoIfN4eoxmVE1k5a8pA8aKIrOrIL9ogM5voxud_B3HxCvveFhtZCQ2uhoY3QUBAaqmlPaCgKDUWhoT2hoU5oqBOap-Tsw_vkaOw1bUa8OYQ3a0-GJosM9i0IfamVjFUgMm5yHQifx1LFAqhl5IwrXkRG5ZrFhcpgiVSUKa0z9ozsraqVeU5oYZgOcolNBzCUz7TIFcwpo1zOfCbEC3Jklye9tFgy6W3Y7OV_mWWf3LMQJLid-Irsra825jU42OvsTc2-vwEDfsQD |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonsymmetrical+Rigid+Punch+Problem+for+a+Semi-Infinite+Body+with+Inhomogeneous+Material+Property&rft.jtitle=Transactions+of+the+Japan+Society+of+Mechanical+Engineers+Series+A&rft.au=TANIGAWA%2C+Yoshinobu&rft.au=MORISHITA%2C+Hiroyuki&rft.date=1999&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.issn=0387-5008&rft.eissn=1884-8338&rft.volume=65&rft.issue=630&rft.spage=364&rft.epage=371&rft_id=info:doi/10.1299%2Fkikaia.65.364&rft.externalDocID=article_kikaia1979_65_630_65_630_364_article_char_en |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5008&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5008&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5008&client=summon |