Nonsymmetrical Rigid Punch Problem for a Semi-Infinite Body with Inhomogeneous Material Property

In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation G (z)=G0 (1+z/a)m (G0, α and m are constants) is developed. In our previous paper, we derived the fundamental equations system for such inho...

Full description

Saved in:
Bibliographic Details
Published inTransactions of the Japan Society of Mechanical Engineers Series A Vol. 65; no. 630; pp. 364 - 371
Main Authors TANIGAWA, Yoshinobu, MORISHITA, Hiroyuki
Format Journal Article
LanguageJapanese
Published The Japan Society of Mechanical Engineers 1999
Subjects
Online AccessGet full text
ISSN0387-5008
1884-8338
DOI10.1299/kikaia.65.364

Cover

Loading…
Abstract In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation G (z)=G0 (1+z/a)m (G0, α and m are constants) is developed. In our previous paper, we derived the fundamental equations system for such inhomogeneous medium by using three kinds of displacement functions and applied them to determining the elastic stress distribution in a semi-infinite body subject to an arbitrary shaped distributed load (not necessarily axisymmetric) on its plane surface. In this paper, we apply these fundamental equations system to the inhomogeneous semi-infinite body whose plane surface is penetrated slowly by a rigid cylindrical punch of arbitrary shape. As an example, we consider the case where the inclined flat-ended cylinder indents the plane surface of the inhomogeneous semi-infinite body. Numerical calculations are carried out for several cases taking into account the variation in inhomogeneous elastic properties, and the numerical results for displacements, stress and stress intensity factor at the edge of the rigid punch are shown graphically.
AbstractList In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation G (z)=G0 (1+z/a)m (G0, α and m are constants) is developed. In our previous paper, we derived the fundamental equations system for such inhomogeneous medium by using three kinds of displacement functions and applied them to determining the elastic stress distribution in a semi-infinite body subject to an arbitrary shaped distributed load (not necessarily axisymmetric) on its plane surface. In this paper, we apply these fundamental equations system to the inhomogeneous semi-infinite body whose plane surface is penetrated slowly by a rigid cylindrical punch of arbitrary shape. As an example, we consider the case where the inclined flat-ended cylinder indents the plane surface of the inhomogeneous semi-infinite body. Numerical calculations are carried out for several cases taking into account the variation in inhomogeneous elastic properties, and the numerical results for displacements, stress and stress intensity factor at the edge of the rigid punch are shown graphically.
Author TANIGAWA, Yoshinobu
MORISHITA, Hiroyuki
Author_xml – sequence: 1
  fullname: TANIGAWA, Yoshinobu
– sequence: 1
  fullname: MORISHITA, Hiroyuki
BookMark eNo9kMlOwzAURS0EEqV0yd4_kOIhcewlVAxFBSqGdXhJXlq3iV05rlD-nkoFVmdz71mcC3LqvENCrjibcmHM9dZuwcJUZVOp0hMy4lqniZZSn5IRkzpPMsb0OZn0vS0ZkzznTIkR-Xrxrh-6DmOwFbT0za5sTZd7V63pMviyxY42PlCg79jZZO4a62xEeuvrgX7buKZzt_adX6FDv-_pM0QM9iA6nHcY4nBJzhpoe5z8ckw-7-8-Zo_J4vVhPrtZJBtuREy0wDJDoaQQTIPRyvC8TLECnrNUaaNykaWom9SkdYamAqlqU-bamKw0AKUck6ejd9NHWGGxC7aDMBQQoq1aLI59uMlNobJCSfaHQ67_UbWGUKCTP-QDZ6k
ContentType Journal Article
Copyright The Japan Society of Mechanical Engineers
Copyright_xml – notice: The Japan Society of Mechanical Engineers
DOI 10.1299/kikaia.65.364
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1884-8338
EndPage 371
ExternalDocumentID article_kikaia1979_65_630_65_630_364_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
ID FETCH-LOGICAL-j192t-82eb5e2632208a986917b4eca170468967254e8f494d5e9ca36d9b78995b9aab3
ISSN 0387-5008
IngestDate Wed Sep 03 06:29:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 630
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j192t-82eb5e2632208a986917b4eca170468967254e8f494d5e9ca36d9b78995b9aab3
OpenAccessLink https://www.jstage.jst.go.jp/article/kikaia1979/65/630/65_630_364/_article/-char/en
PageCount 8
ParticipantIDs jstage_primary_article_kikaia1979_65_630_65_630_364_article_char_en
PublicationCentury 1900
PublicationDate 1999-00-00
PublicationDateYYYYMMDD 1999-01-01
PublicationDate_xml – year: 1999
  text: 1999-00-00
PublicationDecade 1990
PublicationTitle Transactions of the Japan Society of Mechanical Engineers Series A
PublicationTitleAlternate JSMET
PublicationYear 1999
Publisher The Japan Society of Mechanical Engineers
Publisher_xml – name: The Japan Society of Mechanical Engineers
References (4) 谷川義信•銭相杓•畑俊明, Kassirの不均質特牲を有する 半無限体の軸対称弾性解析, 機論, 63-608, A(1997), 742- 749.
(2) Kassir, M, K. and Sih, G. C., Three-Dimensional Crack Problems, Mech. Fract., 2(1975), 382-409, Noordhoff.
(8) 宮本博, 3次元弾性論, (1967), 16, 裳華房.
(3) 谷川義信•銭相杓•曽根大輔, カシヤの不均質体における 軸対称熱弾性問題の定式化と半無限体に対する熱応力解 析, 機論, 63-605, A(1997), 94-101.
(6) 森下博之•谷川義信, 不均質材料の三次元弾性問題の定式 化と半無限体に対する解析例, 機論, 64-623, A(1998), 97 -104.
(5) 銭相杓•谷川義信, 不均質材料特性を有する半無限体の軸 対称圧入問題, 機論, 64-617, A(1998), 73-79.
(1) Kassir, M. K., Boussinesq problem for non homogeneous solid, Journal of the Engineering Mechanics Division, ASCE, 98, EM2(1972), 457-470.
(7) Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, (1966), 106-118, North-Holland Pub. Co.
References_xml – reference: (4) 谷川義信•銭相杓•畑俊明, Kassirの不均質特牲を有する 半無限体の軸対称弾性解析, 機論, 63-608, A(1997), 742- 749.
– reference: (2) Kassir, M, K. and Sih, G. C., Three-Dimensional Crack Problems, Mech. Fract., 2(1975), 382-409, Noordhoff.
– reference: (3) 谷川義信•銭相杓•曽根大輔, カシヤの不均質体における 軸対称熱弾性問題の定式化と半無限体に対する熱応力解 析, 機論, 63-605, A(1997), 94-101.
– reference: (6) 森下博之•谷川義信, 不均質材料の三次元弾性問題の定式 化と半無限体に対する解析例, 機論, 64-623, A(1998), 97 -104.
– reference: (8) 宮本博, 3次元弾性論, (1967), 16, 裳華房.
– reference: (7) Sneddon, I. N., Mixed Boundary Value Problems in Potential Theory, (1966), 106-118, North-Holland Pub. Co.
– reference: (5) 銭相杓•谷川義信, 不均質材料特性を有する半無限体の軸 対称圧入問題, 機論, 64-617, A(1998), 73-79.
– reference: (1) Kassir, M. K., Boussinesq problem for non homogeneous solid, Journal of the Engineering Mechanics Division, ASCE, 98, EM2(1972), 457-470.
SSID ssib003171062
ssib020472909
ssib012348311
ssib023160638
ssib006634344
ssib005439746
ssib002252314
ssib000936936
ssib003117832
ssib002223790
ssj0000578916
ssib002222542
ssj0000608107
Score 1.5105349
Snippet In this study, a three dimensional elastic problem for an inhomogeneous medium whose shear modulus G increases with coordinate variable z according to relation...
SourceID jstage
SourceType Publisher
StartPage 364
SubjectTerms Analytical Treatment
Elasticity
Inhomogeneous Medium
Rigid Punch Problem
Semi-Infinite Body
Singular Stress Field
Stress Intensity Factor
Three Dimensional Problem
Title Nonsymmetrical Rigid Punch Problem for a Semi-Infinite Body with Inhomogeneous Material Property
URI https://www.jstage.jst.go.jp/article/kikaia1979/65/630/65_630_364/_article/-char/en
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Transactions of the Japan Society of Mechanical Engineers Series A, 1999/02/25, Vol.65(630), pp.364-371
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfKuMAB8SlggHzgNqUksRPbx24C2qEVmDKxW3ASl6VVm2lrD-X_4__ivThuEsFhTFzSNo2dyO_bee_3CHnLIdyaFXrmhaJQHpe58tAMe5opbSIhRFC_wT-ZxuMzfnwenQ8GvzpZS5t1Nsx__rWu5DZUhXNAV6yS_QfK7iaFE_Ad6AtHoDAcb0TjKUy8XS6xKRYu9Wn5oywOvoClusACAGwUY5MkQSMsS2-ympXoYR4cVsXWbsBOVhfVsoL5DWbCnuh1_dQ4-BIxd7uea9I2Fr92iQXHYGlXu8RPTKYxWEhcP4wDOrxGdQTheLtpmoymk4-jb6Na-1e4BVZlmx3hP5_iFlpS_zsur6rtZlG2WxMIZ7Bjo-Smj9DRdgjyG_m-VcbGamMpObCOhX9x6tq2lmjYMm5e6ljtyywgemPIme3t8oeNAAMMhF2UC13qYRwNd6N6sNsNUVN7XaCESuMohfu5DxiWuouwQg4Y8g65GwJ3Y2bpp68dLxebJrIuKh0oUR52fzPRK0eOwl5TgSAQslP-Cy4fBPIdlDV0KjtRPTiRnLVeG_gmXLJWjYcIEKpa1Da4V-w7NWwh8YV0UYN1aMBvtMADjkgNWi0s5bveQoIfN4eoxmVE1k5a8pA8aKIrOrIL9ogM5voxud_B3HxCvveFhtZCQ2uhoY3QUBAaqmlPaCgKDUWhoT2hoU5oqBOap-Tsw_vkaOw1bUa8OYQ3a0-GJosM9i0IfamVjFUgMm5yHQifx1LFAqhl5IwrXkRG5ZrFhcpgiVSUKa0z9ozsraqVeU5oYZgOcolNBzCUz7TIFcwpo1zOfCbEC3Jklye9tFgy6W3Y7OV_mWWf3LMQJLid-Irsra825jU42OvsTc2-vwEDfsQD
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonsymmetrical+Rigid+Punch+Problem+for+a+Semi-Infinite+Body+with+Inhomogeneous+Material+Property&rft.jtitle=Transactions+of+the+Japan+Society+of+Mechanical+Engineers+Series+A&rft.au=TANIGAWA%2C+Yoshinobu&rft.au=MORISHITA%2C+Hiroyuki&rft.date=1999&rft.pub=The+Japan+Society+of+Mechanical+Engineers&rft.issn=0387-5008&rft.eissn=1884-8338&rft.volume=65&rft.issue=630&rft.spage=364&rft.epage=371&rft_id=info:doi/10.1299%2Fkikaia.65.364&rft.externalDocID=article_kikaia1979_65_630_65_630_364_article_char_en
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0387-5008&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0387-5008&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0387-5008&client=summon